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Observe that the series is a telescoping series. Indeed, if Sn is the nth partial
sum, then

Sn =

n−1∑
k=0
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Therefore, the series converges if and only if
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6 e−x if x > 1. Since
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e−x dx converges, by the Comparison

Test
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dx converges and so does
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dx.Now, Let I =
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Then,
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Further, setting x = r cos(θ) and y = r sin(θ), I2 simplifies to

I2 =

∫ π/2

0

∫ ∞
0

re−r
2

drdθ.

The inner integral converges to 1/2. Hence, I2 = π/4 and so, I =
√
π/2.

Note: As observed by Dr. Philippe, the convergence of
∫∞
0
ex

2

dx follows directly
from the computation of I2 (whose integrand is positive) and Fubini’s theorem.
Though this last argument saves computations, it is not elementary.
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