Solution to Problem #3

January 14, 2012

Observe that the series is a telescoping series. Indeed, if S_n is the *n*th partial sum, then

$$S_n = \sum_{k=0}^{n-1} \left[\int_0^{k+1} e^{-x^2} \, dx - \int_0^k e^{-x^2} \, dx \right] = \int_0^n e^{-x^2} \, dx$$

Therefore, the series converges if and only if $\int_0^\infty e^{-x^2} dx$ converges. But,

$$\int_0^\infty e^{-x^2} \, dx = \int_0^1 e^{-x^2} \, dx + \int_1^\infty e^{-x^2} \, dx$$

and $0 \leq e^{-x^2} \leq e^{-x}$ if $x \geq 1$. Since $\int_1^\infty e^{-x} dx$ converges, by the Comparison Test $\int_1^\infty e^{-x^2} dx$ converges and so does $\int_0^\infty e^{-x^2} dx$. Now, Let $I = \int_0^\infty e^{-x^2} dx$. Then,

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-y^{2}} dy\right) = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dxdy.$$

Further, setting $x = r \cos(\theta)$ and $y = r \sin(\theta)$, I^2 simplifies to

$$I^{2} = \int_{0}^{\pi/2} \int_{0}^{\infty} r e^{-r^{2}} dr d\theta.$$

The inner integral converges to 1/2. Hence, $I^2 = \pi/4$ and so, $I = \sqrt{\pi}/2$.

Note: As observed by Dr. Philippe, the convergence of $\int_0^\infty e^{x^2} dx$ follows directly from the computation of I^2 (whose integrand is positive) and Fubini's theorem. Though this last argument saves computations, it is not elementary.