Solution to Problem #1

December 10, 2011

(a) Let $f(x) = a^x - x^a$. Notice that f(a) = 0. Hence, for f(x) not to change sign, a must be a critical number: since $f'(x) = a^x \ln a - ax^{a-1}$, f'(a) exists and must satisfy f'(a) = 0. It yields $a^a \ln a - aa^{a-1} = 0$, that is, $\ln a = 1$, which is equivalent to a = e.

For the sake of completeness, let us prove that $y = e^x$ and $y = x^e$ do not cross. Letting $f(x) = e^x - x^e$, notice that $f''(e) = e^{e^{-1}} > 0$, so there is a local minimum at e. Notice also that f(0) = 1. If c is a critical number, then $e^c - ec^{e^{-1}} = 0$, and hence $f(c) = c^e(\frac{e}{c} - 1)$. In particular, there is no positive local maximum for x > e, while there is no negative local minimum for x < e. It forces f(x) not to cross the real axis.

(b) If x^x reaches its minimum at a, then $a^a \leq x^x$ for all $x \geq 0$. In other words, $(1/x)^{1/a} \leq (1/a)^{1/x}$. By what precedes (with 1/x in the role of x and 1/a in the role of a), we conclude 1/a = e, as desired.

Note:

It is instructive to mention the following, elegant solution proposed by Prof. Raghib. If $y = a^x$ does not cross $y = x^a$, then either $a^x \leq x^a$, or $a^x \geq x^a$. In other words, either $\ln a/a \leq \ln x/x$, or $\ln a/a \geq \ln x/x$. In any case, $\ln x/x$ must reach an extremum at a. But $\ln x/x$ has one maximum only, at e; it does not have a minimum. Therefore, a = e, —and $y = e^x$ does not cross $y = x^e$.