Department of Mathematical Sciences

College of Science

United Arab Emirates University

Numerical Analysis 1		Spring2010	Section: 52
Final Exam	Tuesday, June 8, 2010		Instructor: Dr. Hani Siyyam
Student Name:			I.D.NO.:

Question One: Let $f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$.

- (a) With $x_0 = -1, x_1 = 0$. Find x_2 using the Secant method.
- (b) With $x_0 = -0.5$. Find x_1 using the Newton method.

Question Two: For a function f, the forward divided differences are given by

$x_0 = 0.0$	$f[x_0] = ?$		
		$f[x_0, x_1] = ?$	
$x_1 = 0.2$	$f[x_1] = ?$		$f[x_0, x_1, x_2] = 8$
		$f[x_1, x_2] = 6$	
$x_2 = 0.4$	$f[x_2] = 5$		

Determine the missing entries in the table.

Question Three: Use the most accurate three-point formula to determine each missing entry in the following table

x	f(x)	f'(x)
2.0	3.6887983	?
2.1	3.6905701	?
2.2	3.6688192	?
2.3	3.6245909	?

Question Four: Let $h = \frac{b-a}{3}$, $x_0 = \frac{b+2a}{3}$, $x_1 = \frac{2b+a}{3}$. Find the degree of the

precision of the quadrature formula

$$\int_{a}^{b} f(x)dx = \frac{3h}{2} [f(x_0) + f(x_1)].$$

Question Five: Assume that A is split into A = M - N, where

$$M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}, N = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(a) Find the first iteration of the Jacobi method for the system Ax = b, where

$$b = \begin{bmatrix} 3\\ -3\\ 0 \end{bmatrix} \text{ and } x^{(0)} = \begin{cases} 0\\ 1\\ 1 \end{cases}.$$

(b) Find the first iteration of the Gauss-Seidel method for the system Ax = b, where

$$b = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix} \text{ and } x^{(0)} = \begin{cases} 0 \\ 1 \\ 1 \end{cases}.$$

- (c) Find $\rho(T_j)$.
- (d) Find $\|T_j\|_{\infty}$.
- (e) Determine whether A is strictly diagonally dominant matrix or not.
- (f) Find the number of iterations needed to apply the Jacobi method to obtain an approximation to the solution of Ax = b accurate to within 10^{-6} . Use $\|.\|_{\infty}$ and

$$x^{(0)} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
 where needed.

Question Six: Use Gaussian elimination with scaled partial pivoting and three-digit chopping arithmetic to solve the following system

$$0.03x_1 + 58.9x_2 = 59.2$$

$$5.31x_1 - 6.10x_2 = 47.0$$

Question Seven: Assume that the LU-decomposition of A is stored in the matrix

$$B = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 6 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$
. Find the matrix A so that A =LU, then solve the system $Ax = \begin{bmatrix} 2 \\ 2 \\ -5 \end{bmatrix}$.

Question Eight: Obtain a factorization of the form $A = P^T L U$ for the following matrix

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 2 & 3 \\ 2 & -1 & 4 \end{bmatrix}.$$

Question Nine: Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 13 \end{bmatrix}$$
.

- (a) Show that A is positive definite.
- (b) Find the Choleski factorization of A.

GOOD LUCK