

United Arab Emirates University Department of Mathematical Sciences Final Exam, Real Analysis (Math 310) Thursday, June 10th, 2010 Duration: Two hour

Name:

Student Number:

[Question 1, 2+3 pts] (a) Define a cluster point c of a set A.

(b) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that if c is a cluster point of $A \subseteq \mathbb{R}$ and $f(c) \notin f(A)$, then f(c) is a cluster point of f(A).

[Question 2, 3 pts] Use the definition to show that $Lim_{x\to 2+}\frac{x}{x-2} = \infty$.

[Question 3, 2+3 pts] (a) State the sequential criteria of a <u>nonuniform</u> continuous function f on a set A.

(b) Give an example of a continuous function f on a set A which is NOT uniformly continuous on A.

[Question 4, 3+3 pts] Determine whether the following functions are uniformly continuous on their indicated domains : (a) $f(x) = \frac{1}{x}, x \in [a, \infty)$ with a > 0?

(b) $f(x) = \sin(\frac{1}{x}), x \in (0, 1]$?

[Question 5, 3+3 pts] Which of the following is Riemann integrable on its indicated domain? Justify your answer.

on its indicated domain? Justify your answer. (a) $f: [0,1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} 0; & x \in \{\frac{1}{n}; n \in \mathbb{N}\}\\ e^x; & o.w. \end{cases}$

(b)
$$g:[0,1] \to \mathbb{R}$$
 defined by $g(x) = \begin{cases} 0; & x \in \mathbb{Q} \\ \frac{1}{x}; & o.w. \end{cases}$

[Question 6, 4 pts] Use the Mean Value Theorem to prove that

$$1+x \le e^x, \ \forall x \in \mathbb{R}.$$

[Question 7, 2+3 pts] (a) Show that if $f \in R[a, b]$, then $f^2 \in R[a, b]$

(b) Show that if $f, g \in R[a, b]$, then $fg \in R[a, b]$

[Question 8, 5 pts] Show that if $f \in R[a, b]$, which is continuous at a point $c \in [a, b]$, then the function

$$F(x) = \int_{a}^{x} f$$
, for $x \in [a, b]$

is differentiable at c and F'(c) = f(c).

[Question 9, 5 pts] Show that if f is continuous on [a, b], then there exists $c \in [a, b]$ such that $\int_a^b f = f(c)(b - a)$. Hint: As f is continuous on [a, b], it has absolute max and min. Then use

the I.V.T. to prove the existence of c.

GOOD LUCK