Foundations of Geometry Fall 2009: Final Exam

Exercise 1. Let P and Q be two points inside the Poincaré disk such that P and Q are not on a diameter. Explain how to construct the hyperbolic line through P and Q.

Exercise 2. For each of the following statements say whether it is true or false.

For any three points P, Q and T in the Poincaré disk, we have (1) $d_H(P,Q) + d_H(Q,T) = d_H(P,T).$ True \Box False \Box (2)The 5th postulate in hyperbolic geometry is equivalent to Playfair's Postulate. False \Box True \Box Any hyperbolic line has infinitely many limiting parallels. False \Box (3)True \Box The hyperbolic circle centered at A and of radius r is the same (4)as the Euclidean circle of center A and radius $|ln(\frac{1+r}{1-r})|$. True \Box False \Box **Exercise 3.** Consider the triangle $\triangle OAB$ where O = (0,0), A = (0,3) and B = (4,0). Then, consider the points A' = (2,0), B' = (0,2) and $O' = (\frac{4}{3},2)$.

- (a) Find the equation of the line through A and B.
- (b) Prove that O' belongs to the segment \overline{AB} .

(c) Prove that the three segments $\overline{AA'}$, $\overline{BB'}$ and $\overline{OO'}$ meet at one point (without writing the equations of lines).

Exercise 4. Let \mathcal{C} be the circumscribed circle of the triangle $\triangle ABC$. Let O be the center of \mathcal{C} and P the point where the bisector of $\angle ABC$ intersects \mathcal{C} .

- (a) Prove that $\triangle OPC \cong \triangle OPA$.
- (b) Prove that \overline{OP} is perpendicular to \overline{AC} .

Exercise 5. Let A = (1, 1), B = (3, 3) and C = (t, t). Determine the measure of the angle $\angle BAC$ for any value of $t \neq 1$.

Exercise 6. (1) Is the line of equation y = -x+4 tangent to the circle of equation $x^2+y^2 = 8$? Justify your answer!!

(2) Prove that in a parallelogram, opposite sides are congruent!

(3) Let A = (1,1), B = (5,5) and C = (3,6). Find the coordinates of the centroid (the intersection point of the three medians) of ABC.