United Arab Emirates University

Department of Mathematical Sciences

	Number Theory, Section 01	
Time: 120 minutes	Final Exam	June 5, 2010
	Textbooks or notes may not be used.	

Name:

ID:

Section:

Instructor:

Show all your work.

1

Use mathematical induction to prove that for all $n \ge 1$: (a) $1^2 + 3^2 + 5^2 + \ldots + (2n-1)^2 = \binom{2n+1}{3}$.

(b) $5|3^{3n+1} + 2^{n+1}$.

(a) Use the Euclidean algorithm to find gcd(4928, 1771).

(b) Express gcd(4928, 1771) as a linear combination of 4928 and 1771.

Determine all integer solutions of the Diophantine equation

123x + 360y = 99.

Use the theory of congruences to: (a) Find the remainder when 41^{65} is divided by 7.

(b) Show that $7|5^{2n} + 3 \cdot 2^{5n-2}$ for all $n \ge 1$.

5. (5 Points) Solve the following system of congruences:

$$\begin{cases} x \equiv 5 \pmod{6} \\ x \equiv 4 \pmod{11} \\ x \equiv 3 \pmod{17} \end{cases}$$

Let p > 2 be a prime number and let a and b be integers not divisible by p. (a) If $a^p \equiv b^p \pmod{p}$, prove that $a \equiv b \pmod{p}$.

(b) If $k \in \mathbb{Z}$, prove that p^2 divides $(b+pk)^p - b^p$.

(c) If $a^p \equiv b^p \pmod{p}$, use parts (a) and (b) to prove that $a^p \equiv b^p \pmod{p^2}$.

(2) Solve the quadratic congruence

$$x^2 + 1 \equiv 0 \pmod{23}.$$

(b) Find the remainder when 2(26!) is divided by 29.

(a) Find $\sigma(756)$ and $\tau(324)$.

(b) If p and 2(2p-1) are both odd primes, prove that $\Phi(n+2) = \Phi(n)$.