United Arab Emirates University Department of Mathematical Sciences Set Theory and Logic (MATH 245) Section 51 Final Exam Tuesday June 8th 2010 - 08:00 - 10:00

Name :_____

Student Number:_____

Exercise	points	Max
1		6
2		3
3		3
4		3
5		6
6		2
7		4
8		9
9		4
Total		

Part 1: Propositions and Logic Proofs (12 points).

Exercise 1(Truth tables and rules - 6 points=2+2+2) 1) Show the following using truth table:

$$P \Rightarrow (Q \land R) \equiv (P \Rightarrow Q) \land (P \Rightarrow R).$$

2) Show the following by giving only one line of the truth table:

$$(P \land Q) \Rightarrow R, P \nvDash R.$$

3) Identify the rule that allows to write the following result:

$$P \lor (Q \lor S), \sim P \vdash Q \lor S.$$

Exercise 2(Paragraph proof- 3 points) Write a biconditional proof for the following statement: For any 2 integers a and b we have: a divides b if and only if a divides b - a.

Exercise 3(Quantifiers- 3 points=1+2)

1) Negate the following proposition and find a counter-example showing that the statement is not true:

The product of any two integers is even.

2) Label the following statements by True or False

a- $(\forall x)(\exists y)(f(x) = k)$ defines f as a constant function.

- b- $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x = y^2).$
- c- $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x = y^2).$

d- The negation of "All the functions are differentiable" is "Some functions are not differentiable".

Part 2: Sets and Mathematical Induction (15 points).

Exercise 4(True or False- 3 points)

4

Label the following statements as **True** or **False**. Correct the false statements. 1) $\sqrt{2} \in \{x \in \mathbb{Z}; x^2 = 2\}$. 2) $[1,3] \subset \{x \in \mathbb{R}; (x-1)(x-3) < 0\}$. 3) $1 \in P(\mathbb{Z})$. 4) $\{1\} \subset P(\mathbb{Z})$. 5) $(0,1) \subset [0,1]$. 6) $\phi \in P(\phi)$.

Exercise 5(Set Notations- 6 points=2+2+2)

1) Write in set-builder notation the set of all polynomials with real coefficients and of degree 2.

2) Write as a roster the set $(A \cup B) \setminus (A \cap C)$, where $A = \{0, 2, 4, 6\}$, $B = \{3, 4, 5, 6\}$ and $C = \{0, 1, 2\}$.

3) Draw a Venn Diagramm for $A \cap \overline{B} \cap C$.

Exercise 6(Paragraph proof- 2 points) Show that for any 2 sets A and B we have: $A \setminus (A \cap B) = A \setminus B$.

Exercise 7(Mathematical Induction- 4 points) Show that for any $n \ge 1$, we have:

 $1 + 3 + 5 + \dots + (2n - 1) = n^2.$

Part 3: Relations and Functions (13 points).

Exercise 8(Functions- 9 points =3+4+2)

1) Consider the function $p : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ defined by p(x, y) = x. a- Is p a one-to-one-function? b- Is p an onto function?

c- Is p an invertible function?

Justify your answers.

6

2) Consider the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = x^2$. a-Find $f^{-1}([0,1])$. b-Find $f(\mathbb{R})$.

3) Given two odd functions f and g. Is the function fg odd or even? Justiy your answer.

Exercise 9(Equivalence relation- 4 points) 1) Show that the relation defined on Z by:

$$aRb \iff a - b = 3p$$

is an equivalence relation.

2) Identify [a] induced by R for any element a in \mathbb{Z} .