

United Arab Emirates University College Of Science Department Of Mathematical Sciences Linear Algebra & Eng. Appl. Math 2220

Final Exam

January 6th, 2010

Student's name:	
<u>ID#:</u>	
Instructor:	Section:

Exam regulations:

- 1) This exam consists of 10 questions and 8 pages including this cover page.
- 2) The time limit is **120 minutes**.
- 3) Only regular scientific calculators are allowed, but may not be shared.
- 4) Show all your work in order to qualify for full credit.
- 5) Total grade is 25

Questions	<i>Q.1</i>	<i>Q.2</i>	<i>Q.3</i>	<i>Q.4</i>	<i>Q.5</i>	Q.6	<i>Q</i> .7	<i>Q.8</i>	Q.9	Q.10	Total/25
Grades											
Outcomes	2	2	3	4	6	6	8	6,7	7	6,8	

Problem 1 (3 Points):

Solve the following system of linear equations,

$$2x_1 - 3x_2 = 1 -x_1 + 3x_2 = 0 x_1 - 4x_2 = 3$$

Problem 2 (2 Points):

For which value of k is the system inconsistent, show all the steps.

$$x + 2y = k$$

$$2x - k \ y = 4$$

- 1) All numbers k > 0.
- 2) For k= 4
- 3) For k = 2 or k=6.
- 4) For the odd value of k i.e for k=1, 3, 5, 7, 9, 11, 13,
- 5) None of the above.

Problem 3: (3 points)

Prove that A is non-singular and then find A^{-1} .

$$A = \begin{bmatrix} -2 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Problem 4: (3 points) Let

$$A = \begin{bmatrix} -3 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

(a) Find the eigenvalues of A.

(b) Find the corresponding eigenvectors.(c) Find a matrix P that diagonalizes A.

Problem 5: (2 points)

Determine the following values: 1) Log (2+2i)

2) $(-1+i)^{2/3}$

Problem 6: (2 points)

(i) Write the following in the form a+ib: $e^{(\pi/2)i+200\pi i}$

(ii) Write the following complex number in the polar form z = 8 + i

Problem 7: (3 points)

Evaluate the integral $\int f(z)dz$; if Γ is the half circle oriented counterclockwise, with Γ

radius 1, about the origin, from i to -i. and $f(z) = \frac{1}{\overline{z}}$.

Problem 8 (2 Points): True or False?

1) If z = x + iy then $|e^z| = e^x$ []

- 2) The complex exponential e^{z} is periodic of period $2\pi i$ []
- 3) $|\sin(z)| \le 1$, for all complex numbers z []
- 4) There is exactly one value of the cube root of (1+i)

Problem 9: (3 points)

Find u and v so that f(z) = u(x, y) + iv(x, y), determine all points at which the Cauchy-Riemann equations are satisfied, and determine all points at which the function is differentiable

$$f(z) = \overline{Z}^2$$

Problem 10 (2 Points):

a) Show that

 $\tan 3i = i \tanh 3$

b) Sketch the curve, determine its initial and terminal points, whether it is closed or open

 $\Gamma(t) = 1 - 2i + 5e^{3it} \quad , \ for \quad 0 \le t \le \frac{\pi}{2}$