United Arab Emirates University College of Sciences Department of Mathematical Sciences

Final Examination

MATH 1120 Calculus II for Engineering

Date: Wednesday, January 6, 2009 Time: 8:00 - 10:00 am (120 Minutes)

Instructor: _____

Section: _____

ID No: ______

Name: _____

Instructions

- 1. This exam consists of 18 questions in 11 pages including this front page.
- 2. Write your section number, your instructor name, your name and ID above on this page.
- 3. Read the questions carefully before you start working.
- 4. Show all your work to get full credit in the multiple steps section.
- 5. Organize well your work and submit a clean copy as much as possible.
- 6. No extra sheet is allowed.
- 7. NO GRAPHING CALCULATOR!

Part A			Part B			Part C			
Outcomes	Question No	Points	Outcomes	Question No	Points	Outcomes	Question No	Points	Total
T2 T5	1		T7 T8 T9	7		T4	14		
	2			8			15		
	3			9			16		
	4			10			17		
	5			11			18		
	6			12					
				13					
	Total			Total			Total		

Part A: Multiple Choice Problems (2 Points Each)

1. Let
$$a = \langle 1, 0, -2 \rangle$$
 and $b = \langle 2, 1, -2 \rangle$. Then, $\operatorname{Proj}_{b} a$ is
(A) $\frac{6}{5} \langle 1, 0, -2 \rangle$ (B) $\frac{5}{6} \langle 1, 0, -2 \rangle$ (C) $\frac{2}{3} \langle 2, 1, -2 \rangle$ (D) $\frac{3}{2} \langle 2, 1, -2 \rangle$
1. _____

2. If
$$f(x,y) = x^3y^2$$
, then $f_{xx} + f_{xy}$ is
(A) $12x^2y$ (B) $6x^2y + 6xy^2$ (C) $6xy + 3x^2y$ (D) $12xy^2$

3. The equation of the circle
$$(x - 1)^2 + y^2 = 1$$
 can be expressed in polar coordinates by
(A) $r = \theta$ (B) $r = 1 + \sin \theta$ (C) $r = 2\cos \theta$ (D) $r^2 = 1 + 2r\sin \theta$

3. _____

2._____

4. The area of the region bounded by the circle of radius 2 centered at the origin is calculated by

(A)
$$\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x \, dx \, dy$$
 (B) $\int_{0}^{2\pi} \int_{0}^{2} r \, dr \, d\theta$
(C) $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} dy \, dx$ (D) $\int_{0}^{2\pi} \int_{-2}^{2} r \, dr \, d\theta$

5.
$$r(t) = \langle \sin(2t), \cos(2t) \rangle$$
 is perpendicular to $r'(t)$ when t has the value
(A) $t = 0$ (B) $t = \frac{\pi}{2}$ (C) None (D) Any value

4._____

6. The solid whose volume is given by
$$\int_0^{2\pi} \int_0^1 \int_0^{\sqrt{1-r^2}} r \, dz \, dr \, d\theta$$
 is
(A) a cylinder (B) a sphere (C) a half sphere (D) a cube

6._____

Part B: Multiple Steps Problems Show all your work to get the full credit.

- 7. (6 points) Consider the vector-valued function $r(t) = \langle x(t), y(t), z(t) \rangle$, where $x(t) = 1 + \cos t$, y(t) = 2 and $z(t) = 2 + \sin t$.
 - (1) Find the relation between x(t) and z(t) independently to t.

(2) Sketch the graph of r(t) and describe it.

- 8. (10 points) Consider $f(x,y) = x^3y xy + x^2$.
 - (1) Find all critical points of f(x, y).

(2) Classify each critical point as a local maximum, a local minimum, or a saddle point.

- 10. (15 points)
 - (1) Let Q be the solid bounded by the upper hemisphere $z = \sqrt{4 x^2 y^2}$ and the xy-plane. Evaluate the triple integral $\iiint_Q e^{(x^2+y^2+z^2)^{3/2}} dV$.

(2) Consider a solid formed by $x^2 + y^2 = 4$ and z = 1 and z = 2. If the solid has the density $\rho(x, y) = e^{x^2 + y^2}$, find its total mass.

- 11. (6 points) Consider $r = \langle x, y, z \rangle$.
 - (1) Write down the formula of the norm of r.

(2) Find the gradient of the norm of r.

(3) Evaluate $\nabla \|\mathbf{r}\|$ at (1, -1, 0).

- 12. (12 points)
 - (1) Let C be the arc parametrically defined by x(t) = 1, y(t) = t and $z(t) = t^2$, $0 \le t \le 1$. Compute the line integral $\int_C y \, dx + z \, dy + x^2 y \, dz$.

(2) Let $F(x, y, z) = \langle y, x^2y, y + 3z \rangle$. i. Find the curl of F.

ii. Find the divergence of F.

13. (5 points) Let R be the region inside the upper half unit circle on the xy-plane, i.e., the region bounded by y = 0 and $y = \sqrt{1 - x^2}$. The region R is heated so that the temperature at a point (x, y) inside and on the boundary of R is given by $T(x, y) = x^2 - x + 2y^2$.

Find the hottest point (i.e., the point at which T(x, y) has the the absolute maximum value) in R and the coldest point (i.e., the point at which T(x, y) has the absolute minimum value) in R.

Part C: True or False with Justification (1.5 Points Each)

State whether or not each statement is true.

If it is not true, give a counterexample or explain why it is not true.

14. The graph of the vector-valued function r(t) = 2ti + (1+3t)j - 4tk in \mathbb{R}^3 is a line. Here i, j and k are standard basis vectors for \mathbb{R}^3 .

```
15. Any two lines in \mathbb{R}^3 are either parallel or intersecting. .....
```

16. The graph of z + y = 5 in \mathbb{R}^3 is perpendicular to the *x*-axis.

17. For two vectors a and b, if $a \cdot b = 0$, then either a = 0 or b = 0.

18. A sphere is the set of all points in \mathbb{R}^3 whose distance from a fixed point is constant.