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Part A: Multiple Choice Problems (2 Points Each)

1. Let a = h 1; 0; �2 i and b = h 2; 1; �2 i. Then, Projb a is

(A) 6
5 h 1; 0; �2 i (B) 5

6 h 1; 0; �2 i (C) 2
3 h 2; 1; �2 i (D) 3

2 h 2; 1; �2 i

1.

2. If f(x; y) = x3y2, then fxx + fxy is

(A) 12x2y (B) 6x2y + 6xy2 (C) 6xy + 3x2y (D) 12xy2

2.

3. The equation of the circle (x� 1)2 + y2 = 1 can be expressed in polar coordinates by

(A) r = � (B) r = 1 + sin � (C) r = 2 cos � (D) r2 = 1 + 2r sin �

3.
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4. The area of the region bounded by the circle of radius 2 centered at the origin is calculated
by

(A)
Z 2

�2

Z p
4�x2

�
p
4�x2

x dxdy (B)
Z 2�

0

Z 2

0
r drd�

(C)
Z 2

�2

Z p
4�x2

0
dydx (D)

Z 2�

0

Z 2

�2
r drd�

4.

5. r(t) = h sin(2t); cos(2t) i is perpendicular to r0(t) when t has the value

(A) t = 0 (B) t =
�

2
(C) None (D) Any value

5.

6. The solid whose volume is given by
Z 2�

0

Z 1

0

Z p
1�r2

0
r dzdrd� is

(A) a cylinder (B) a sphere (C) a half sphere (D) a cube

6.
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Part B: Multiple Steps Problems
Show all your work to get the full credit.

7. (6 points) Consider the vector{valued function r(t) = hx(t); y(t); z(t) i,
where x(t) = 1 + cos t, y(t) = 2 and z(t) = 2 + sin t.

(1) Find the relation between x(t) and z(t) independently to t.

(2) Sketch the graph of r(t) and describe it.
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8. (10 points) Consider f(x; y) = x3y � xy + x2.

(1) Find all critical points of f(x; y).

(2) Classify each critical point as a local maximum, a local minimum, or a saddle point.
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9. (7 points) Sketch the region R bounded by x = 0, y = 1 and y = x
2 and compute the

double integral
ZZ
R

sin y

y
dA.
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10. (15 points)

(1) Let Q be the solid bounded by the upper hemisphere z =
q
4� x2 � y2 and the

xy{plane. Evaluate the triple integral
ZZZ

Q
e(x

2+y2+z2)3=2 dV .

(2) Consider a solid formed by x2 + y2 = 4 and z = 1 and z = 2. If the solid has the

density �(x; y) = ex
2+y2, �nd its total mass.

Page 6 of 10 Points Earned:



MATH 1120 Calculus II for Engineering Final Examination Fall, 2009

11. (6 points) Consider r = hx; y; z i.
(1) Write down the formula of the norm of r.

(2) Find the gradient of the norm of r.

(3) Evaluate rkrk at (1;�1; 0).
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12. (12 points)

(1) Let C be the arc parametrically de�ned by x(t) = 1, y(t) = t and z(t) = t2,

0 � t � 1. Compute the line integral
Z
C
y dx+ z dy + x2y dz.

(2) Let F (x; y; z) =
D
y; x2y; y + 3z

E
.

i. Find the curl of F .

ii. Find the divergence of F .
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13. (5 points) Let R be the region inside the upper half unit circle on the xy{plane, i.e., the
region bounded by y = 0 and y =

p
1� x2. The region R is heated so that the tempera-

ture at a point (x; y) inside and on the boundary of R is given by T (x; y) = x2 � x+ 2y2.

Find the hottest point (i.e., the point at which T (x; y) has the the absolute maximum
value) in R and the coldest point (i.e., the point at which T (x; y) has the absolute
minimum value) in R.
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Part C: True or False with Justi�cation (1.5 Points Each)

State whether or not each statement is true.

If it is not true, give a counterexample or explain why it is not true.

14. The graph of the vector{valued function r(t) = 2ti + (1 + 3t) j � 4tk in R3 is a line.

Here i, j and k are standard basis vectors for R3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15. Any two lines in R3 are either parallel or intersecting. . . . . . . . . . . . . . . . . . . . . . . . . . .

16. The graph of z + y = 5 in R3 is perpendicular to the x{axis. . . . . . . . . . . . . . . . . . . . .

17. For two vectors a and b, if a � b = 0, then either a = 0 or b = 0. . . . . . . . . . . . . . . . .

18. A sphere is the set of all points in R3 whose distance from a �xed point is constant.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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