

Chapter 14

$$CH_3$$
 $C=C$
 CH_2
 CH_2-

Polymers Tutorial

Acrylonitrile

Styrene

Concepts

NUMBER-AVERAGE MOLECULAR WEIGHT

$$\overline{M}_n = \sum x_i M_i$$

where

Mi: represents the mean (middle) molecular weight of size range i, and

Xi: is the <u>fraction of the total number of chains</u> within the corresponding size range.

WEIGHT-AVERAGE MOLECULAR WEIGHT

$$\overline{M}_w = \Sigma w_i M_i$$

Where

Mi: again, is the mean molecular weight within a size range, whereas

Wi: Denotes the <u>weight fraction</u> of molecules within the same size interval.

Degree of Polymerization (DP)

$$DP = \frac{\overline{M}_n}{m}$$

DP: is number-average molecular weight *Mn* by m, where *m* is the <u>repeat unit molecular weight</u>.

14.5 Below, molecular weight data for a polytetrafluoroethylene material are tabulated. Compute (a) the number-average molecular weight, (b) the weight-average molecular weight, and (c) the degree of polymerization.

Molecular Weight		
Range (g/mol)	x_i	w_i
10,000-20,000	0.03	0.01
20,000-30,000	0.09	0.04
30,000-40,000	0.15	0.11
40,000-50,000	0.25	0.23
50,000-60,000	0.22	0.24
60,000-70,000	0.14	0.18
70,000-80,000	0.08	0.12
80,000-90,000	0.04	0.07

14.5 (a) From the tabulated data, we are asked to compute \overline{M}_n , the number-average molecular weight.

This is carried out below.

Mean Molecular weight

Fraction of total no of chain, sum of xi=1

Molecular wt			
Range	$\operatorname{Mean}'M_i$	x_i	$x_i M_i$
10,000-20,000	15,000	0.03	450
20,000-30,000	25,000	0.09	2250
30,000-40,000	35,000	0.15	5250
40,000-50,000	45,000	0.25	11,250
50,000-60,000	55,000	0.22	12,100
60,000-70,000	65,000	0.14	9100
70,000-80,000	75,000	0.08	6000
80,000-90,000	85,000	0.04	3400

$$\overline{M}_n = \sum x_i M_i = 49,800 \text{ g/mol}$$

Number Average molecular weight

(b) From the tabulated data, we are asked to compute \overline{M}_{w} , the weight-average molecular weight.

weight fraction of molecular

Molecular wt.			
Range	$\operatorname{Mean} M_i$	w_i	$w_i M_i$
10,000-20,000	15,000	0.01	150
20,000-30,000	25,000	0.04	1000
30,000-40,000	35,000	0.11	3850
40,000-50,000	45,000	0.23	10,350
50,000-60,000	55,000	0.24	13,200
60,000-70,000	65,000	0.18	11,700
70,000-80,000	75,000	0.12	9000
80,000-90,000	85,000	0.07	5950

$$\overline{M_w} = \sum w_i M_i = 55,200 \text{ g/mol}$$

weight-average molecular weight.

(c) Now we are asked to compute the degree of polymerization, which is possible using Equation 14.6.
For polytetrafluoroethylene, the repeat unit molecular weight is just

m= unit molecular weight

= 2*Atomic weight of C+4*Atomic weight of F

$$m = 2(A_{\mathcal{C}}) + 4(A_{\mathcal{F}})$$

= (2)(12.01 g/mol) + (4)(19.00 g/mol) = 100.02 g/mol

$$DP = \frac{\overline{M}_n}{m} = \frac{49,800 \text{ g/mol}}{100.02 \text{ g/mol}} = 498$$

Degree of Polymerization

14.6 Molecular weight data for some polymer are tabulated here. Compute **(a)** the number-average molecular weight, and **(b)** the weight-average molecular weight. **(c)** If it is known that this material's degree of polymerization is 477, which one of the polymers listed in Table 14.3 is this polymer? Why?

Molecular Weight Range (g/mol)	x_i	w_i
8,000-20,000	0.05	0.02
20,000–32,000	0.15	0.08
32,000–44,000	0.21	0.17
44,000–56,000	0.28	0.29
56,000–68,000	0.18	0.23
68,000-80,000	0.10	0.16
80,000-92,000	0.03	0.05

14.6 (a) From the tabulated data, we are asked to compute \overline{M}_n , the number-average molecular weight.

This is carried out below.

Mean Molecular weight

Fraction of total no of chain, sum of xi=1

Molecular wt. Range	\bigvee Mean M_i	\mathcal{X}_i	$x_i M_i$	
8,000-20,000	14,000	0.05	700	
20,000-32,000	26,000	0.15	3900	
32,000-44,000	38,000	0.21	7980	
44,000-56,000	50,000	0.28	14,000	
56,000-68,000	62,000	0.18	11,160	
68,000-80,000	74,000	0.10	7400	
80,000-92,000	86,000	0.03	2580	
			Σ 14 47.720 /	_

$$\overline{\underline{\mathbf{M}}}_n = \sum x_i M_i = 47,720 \text{ g/mol}$$

Number Average molecular weight

(b) From the tabulated data, we are asked to compute \overline{M}_{w} , the weight-average molecular weight. This determination is performed as follows:

weight fraction of molecular

Molecular wt.			
Range	$\operatorname{Mean} M_i$	w_i	$w_i M_i$
8,000-20,000	14,000	0.02	280
20,000-32,000	26,000	0.08	2080
32,000-44,000	38,000	0.17	6460
44,000-56,000	50,000	0.29	14,500
56,000-68,000	62,000	0.23	14,260
68,000-80,000	74,000	0.16	11,840
80,000-92,000	86,000	0.05	4300

$$\overline{M}_w = \sum w_i M_i = 53,720 \text{ g/mol}$$

(c) We are now asked if the degree of polymerization is 477, which of the polymers in Table 14.3 is this material? It is necessary to compute *m* in Equation 14.6 as

$$m = \frac{\overline{M}_n}{DP} = \frac{47,720 \text{ g/mol}}{477} = 100.04 \text{ g/mol}$$

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit
	Polyethylene (PE)	H H -C-C H H
	Poly(vinyl chloride) (PVC)	H H
	Polytetrafluoroethylene (PTFE)	F F
	Polypropylene (PP)	H H -C-C
	Polystyrene (PS)	H H -C-C-
	Dr.Waleed Khalil Ahmed ERU-FOE-UAEU	H

The repeat unit molecular weights of the polymers listed in Table 14.3 are as follows:

Polyethylene--28.05 g/mol

Poly(vinyl chloride)--62.49 g/mol

Polytetrafluoroethylene-(100.02 g/mol)

Polypropylene--42.08 g/mol

Polystyrene--104.14 g/mol

Poly(methyl methacrylate)--100.11 g/mol

Phenol-formaldehyde--133.16 g/mol

Nylon 6,6--226.32 g/mol

PET--192.16 g/mol

Polycarbonate--254.27 g/mol

Therefore, polytetrafluoroethylene is the material since its repeat unit molecular weight is closest to that calculated above.