

Electrical Properties

Chapter 18

- **18.1** (a) Compute the electrical conductivity of a 7.0-mm (0.28-in.) diameter cylindrical silicon specimen 57 mm (2.25 in.) long in which a current of 0.25 A passes in an axial direction. A voltage of 24 V is measured across two probes that are separated by 45 mm (1.75 in.).
 - **(b)** Compute the resistance over the entire 57 mm (2.25 in.) of the specimen.

(a) We use Equations 18.3 and 18.4 for the conductivity, as

$$\sigma = \frac{1}{\rho} = \frac{Il}{VA} = \frac{Il}{V\pi \left(\frac{d}{2}\right)^2}$$

$$\sigma = \frac{(0.25 \text{ A})(45 \text{ x } 10^{-3} \text{ m})}{(24 \text{ V})(\pi) \left(\frac{7.0 \text{ x } 10^{-3} \text{ m}}{2}\right)^2} = 12.2 (\Omega - \text{m})^{-1}$$

(b) The resistance, R, may be computed using Equations 18.2 and 18.4, as

$$R = \frac{l}{\sigma A} = \frac{l}{\sigma \pi \left(\frac{d}{2}\right)^2}$$

$$= \frac{57 \times 10^{-3} \text{ m}}{\left[12.2 (\Omega - \text{m})^{-1}\right] (\pi) \left(\frac{7.0 \times 10^{-3} \text{ m}}{2}\right)^2} = 121.4 \Omega$$

18.2 An aluminum wire 10 m long must experience a voltage drop of less than 1.0 V when a current of 5 A passes through it. Using the data in Table 18.1, compute the minimum diameter of the wire.

Equations 18.3 and 18.4 and solving for the cross-sectional area A leads to

$$A = \frac{Il}{V\sigma}$$

From Table 18.1, for aluminum $\sigma = 3.8 \times 10^7 (\Omega - m)^{-1}$.

Furthermore, inasmuch as $A = \pi \left(\frac{d}{2}\right)^2$ for a cylindrical

$$\pi \left(\frac{d}{2}\right)^2 = \frac{Il}{V\sigma} \qquad \qquad d = \sqrt{\frac{4Il}{\pi V\sigma}}$$

$$d = \sqrt{\frac{(4)(5 \text{ A})(10 \text{ m})}{(\pi)(1.0 \text{ V}) \left[3.8 \text{ x } 10^7 (\Omega - \text{m})^{-1}\right]}}$$

$$= 1.3 \times 10^{-3} \text{ m} = 1.3 \text{ mm}$$

18.11 At room temperature the electrical conductivity and the electron mobility for aluminum are $3.8 \times 10^7 \, (\Omega \text{-m})^{-1}$ and $0.0012 \, \text{m}^2/\text{V-s}$, respectively. (a) Compute the number of free electrons per cubic meter for aluminum at room temperature. **(b)** What is the number of free electrons per aluminum atom? Assume a density of 2.7 g/cm³.

$$\sigma = n|e|\mu_e$$

conductivity σ

 μ_e is called the electron mobility,

1/8/2012

where n is the number of free or conducting electrons per unit volume (e.g., per $\frac{1}{6}$ cubic meter), and |e| is the absolute magnitude of the electrical charge on an electron (1.6 \times 10⁻¹⁹ C). Thus, the electrical conductivity is proportional to both the number of free electrons and the electron mobility.

$$n = \frac{\sigma}{|e| \, \mu_e}$$

$$= \frac{3.8 \times 10^7 (\Omega - \text{m})^{-1}}{(1.602 \times 10^{-19} \text{ C})(0.0012 \text{ m}^2/\text{V-s})}$$

$$= 1.98 \times 10^{29} \text{ m}^{-3}$$

$$N_{\rm Al} = \frac{N_{\rm A} \, \rho'}{A_{\rm Al}}$$

$$= \frac{(6.023 \text{ x } 10^{23} \text{ atoms/mol})(2.71 \text{ g/cm}^3)(10^6 \text{ cm}^3/\text{m}^3)}{26.98 \text{ g/mol}}$$

$$= 6.03 \times 10^{28} \text{ m}^{-3}$$

(Note: in the above expression, density is represented by ρ' in order to avoid confusion with resistivity which is designated by ρ .) And, finally, the number of free electrons per aluminum atom is just n/N_{Al}

$$\frac{n}{N_{\rm A1}} = \frac{1.98 \times 10^{29} \,\mathrm{m}^{-3}}{6.03 \times 10^{28} \,\mathrm{m}^{-3}} = 3.28$$

18.12 (a) Calculate the number of free electrons per cubic meter for silver, assuming that there are 1.3 free electrons per silver atom. The electrical conductivity and density for Ag are 6.8 × 10⁷ (Ω-m)⁻¹ and 10.5 g/cm³, respectively. (b) Now compute the electron mobility for Ag.

$$n = 1.3N_{Ag} = 1.3 \left[\frac{\rho'_{Ag}N_A}{A_{Ag}} \right]$$

= 1.3
$$\left[\frac{(10.5 \text{ g/cm}^3)(6.023 \text{ x } 10^{23} \text{ atoms/mol})}{107.87 \text{ g/mol}} \right]$$

$$= 7.62 \times 10^{22} \text{ cm}^{-3} = 7.62 \times 10^{28} \text{ m}^{-3}$$

(b) Now we are asked to compute the electron mobility, μ_e . Using Equation 18.8

$$\mu_e = \frac{\sigma}{n \mid e \mid}$$

$$= \frac{6.8 \times 10^7 (\Omega - \text{m})^{-1}}{(7.62 \times 10^{28} \,\text{m}^{-3})(1.602 \times 10^{-19} \,\text{C})} = 5.57 \times 10^{-3} \,\text{m}^2/\text{V-s}$$

18.17 A cylindrical metal wire 3 mm (0.12 in.) in diameter is required to carry a current of 12 A with a minimum of 0.01 V drop per foot (300 mm) of wire. Which of the metals and alloys listed in Table 18.1 are possible candidates?

Table 18.1 Room-Temperature Electrical Conductivities for Nine Common Metals and Alloys

Metal	Electrical Conductivity $[(\Omega-m)^{-1}]$
Silver	6.8×10^{7}
Copper	6.0×10^{7}
Gold	4.3×10^{7}
Aluminum	3.8×10^{7}
Brass (70Cu-30Zn)	1.6×10^{7}
Iron	1.0×10^{7}
Platinum	0.94×10^{7}
Plain carbon steel	0.6×10^{7}
Stainless steel	0.2×10^{7}

$$\sigma = \frac{Il}{VA} = \frac{Il}{V\pi \left(\frac{d}{2}\right)^2}$$

$$= \frac{(12 \text{ A})(300 \text{ x } 10^{-3} \text{ m})}{(0.01 \text{ V}) (\pi) \left(\frac{3 \text{ x } 10^{-3} \text{ m}}{2}\right)^2} = 5.1 \text{ x } 10^7 (\Omega - \text{m})^{-1}$$

Thus, from Table 18.1, only copper, and silver are candidates.