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PREFACE

Modeling of the engineering systems is considered as one
the fundamental issue that needed by the engineers,  sinoe
understanding the behavior of the engineering syst:ms s an
essential matter for the engineers to manufacty ce, mou ify as well
as to maintain systems. Mechanical system is 02 0f the most
know engineering systems, where the systems move and
subjected to dynamic loads. The avcho.z woild like te present
their experiences in the morfcurg 71 engineering. .rstoms,
especially mechanical / enginec=+ig systems.| Tai.. humble
contribution 1s the firs . an ‘anticipated (ericC. wnat will be
published one by Gie to assist studers in tneir study at the

college of engit. ering
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Chapter 1

1.1 FUNDAMENTALS

Newton’s Law

First law: Every object in a state of uniform.iic¢tior tends to
remain in that state of motion (i.e.’ either s at rest or
moves at a constant velocity) utinss<an external
force is applied to it.

Second law: The sum of the forces <uian ociect 1s equa'+to the
total mass of that (hie 't multipnad @ Yy | the
acceleration of the obje t, i.2., the accilerction of a
body is dircctly proportional to the ue. fiice acting
on the body, nd ir versely propc ticiil to its mass.

Thus, 2F = ma

Where,

>F =is thane force acting on . object.
m="...thotiass of the object, and

a =15 e accelera 01 of t! e object.

Force and acceicration are both vectors (as denoted by the
bold type). This means that they have both a magnitude (size)
and a direction relative to some reference frame.

Third law: For every action there is an equal and opposite
reaction.



1.2 BASICS OF THE MECHANICAL MODELING

1. Study the system diagram as well as understand ths sta.>ment

given.

2. Identify the elements connected with the mass; like dampers,

springs, levers, ropes, etc.
3. Assume the direction of the motio.  1n ¢ ase <s not «hov n
4. Draw free body diagrars7B.)) of the system.

5. Disconnect (i.e., disas.>mble, cut) the elerier‘ tiiat connected
with the mass -und replace each (sne o1 them with the

correspondir_ reacti<nal forces vsing Nowton’s third law.
6. Apply Nu wton's second ik w ¢ mouon.

7. L=tac'ish. he matheniotical model of the system.

e

. Drgz nize the syst¢ m o1 2quations.



1. Problems

Find the equation of motion of the following system which
consist of a mass connected with spring of stiffness k. Knuwing
that the condition of the contact surface of the.mas  wi.: the

ground is considered as a frictionless.

rl

[/ w/V\A "
) ()

FIIITIITITIITIIIII IS

F e vl
Smooth surface



Solution

Draw the free body diagram of the system by disconnecting
the spring from the mass and replacing the element (i.e.,.Spring )

by the corresponding reactional force.

F.B.D 8,

kX m € ennas mx

x = displacement (m)

!

d :
X = d—: = velocity fm/ s)

d?x . 2,
no__ _ .
=5 =0 elciation (m/ 87,

Apply Nowe n’s Second Law :

+ -l .o
- ) F =mx
—LX =mX

mix + kx = 0 ¢ of motion

Knowing that the system of equation shown above is named as single
degree of freedom, since there is one mass in the system and moves in one
direction. Besides it is considered as undamped system, since no friction or

any damping element exist in the system.
8



1.2. For the problem 1.1, find expression for the natural angular

frequency of the same system.
Natural Frequency : w, ( circular )
From previous problem :
mi+ k.x=0
¥+ w2 x

Where natural frequency ( circular ) :

k
w, = |[— Where ,
m

k = spring stiffness ( N / 1)

m = mass ( Kg)

wy depino . _o.ly on the mass % stiffness of the system , where

are pidoesaes of the sysiein .



1.3. Suppose that the natural frequency is needed for problem 1.2

w, : angular frequency ( rad / sec )
f, : natural frequency ( hertz ), ( Hz)
Where ,

wn

n_ZTt

So for the case of mx+kX = 0 the natural fre ruency becomes :

Note : period of oscillaticn can t ¢ defined as 77, wheoeo :

T= -
f

10



14. A vertical hanged mass m is connected by a couple of
elements, a spring of stiffness k and a damper of a coefficient
B, as shown below. The system itself is subjected to cn
external force F(t) on the mass and is directed towara dow.:

Find the mathematical model of the system.

B : Damping coefficient
FrIT TS TTTTTT s
F (t) : External force

The first.atep of the job is to ¢ :“w the free diagram of the system.

R k x
]

r
1N

F(t)

11



The next step is to apply Newton’s second law on the FBD:

-Bx — kx + F (t) = m¥
m¥ +Bx +kx=F (t)
This eq. represents of mathematical model of sciizle degree of

freedom system ( SDOF ) with viscous dampn g ( forcad ).

12



S A mass m is connected from the right side with a spring of k4,
and from the left side with three springs (k1 to k3) in series as
illustrated below. Find the equation of motion nsing

Newton’s second law.

04 v

It is important to find v.oorguivalent stiffness ot th 2 springs in series

X
NN

g, k4

. AN
AV m

&V
|

K, ky ks

WSV LNV VN

Three springs in series
13



Spring in parallel _/\/\/\}17\/‘/\—_
keq=k1+k2+"'+kn kn |
k1 k2 ; n .
Springs in series W / N SRRV ER TR VAR AR
1 1 1 1
—_ + —_ + o + —_
keq ki ke kn
X
+—
L
Keq K4

A I _
X
rrawng F.B_.D K,x — » m L kx
Where keq = __ it

Applaying Newtons second law :
miX+kpr.x=0
Where kr = ky + keq

:ZFx=m5c'
—keq.x — ky.x = mx
mi + x(k, + keq) =0
14



6 A mass has a shape of inverted U shape and is moving
vertically toward up, as shown in the figure below. The mass
is connected with two springs and a damper from the lowc -
side, and with one spring from the top. Devalop. the

mathematical model of the system.

15



ks §
W/W 7772777, 777777,

kl.X

WV

k2 . X k3 . X
Newton’s - law of motion :

+TY.Fx =mx
—ki.x— ky.x — k3. x —B.Xx = mi

mxX + Bx + keg.x = 0
keq = ? equivalent stiffness of system

16



7 Two dampers B; and B, are in series and connected to the left
side of the mass m, as shown in the figure below. The mass
moves to the left, and it is connected with a snrine €
stiffness k from the left side. Draw the FBD of tha system

and find the mathematical model.

PR S § g R pu—

17



Dampers in parallel : Beq =By + By + -

. : 1 1
Dampers in series : — = —
Beqg B1

Applying Newton’s 2™ Jaw \

Lo O

—Beq-y — K.y =my

my + Byq.y = 0,where Bgq = :iBZ *
1

+i+
B2



Chapter 2
Solved Problems

2.1. Determine the natural frequency of the system showt. ‘n

Figure (2.1)

— 1250 > fe— 1in. —f |

7 ) Y §

7 .
é ) . 4

<= 10.69 Ib/in 1/4 in

E= 30 x 10° Ib/in* ] '

50.7"

Figiie (2.1)

19



Solution:
From Appendix

The spring constant k;, which represent the static ‘orce

required to produce a unit deflection at the free e=Z;*s caual 0

3EI  3%30%10°+1x(0.25)° /1.

k. =
o3 (12.5)3

=00 Ib/in

The equivalent spring constant:' -, fo. the system in/wb:ch k;

and k, are assembled in series is givea L’

1 1 1

Ke < kl kz

1+ 1
T 6y 1069

2 k, = 207 lb/in

Tt ¢ natural. frecuenc v 1s then given by
ke | ke
P lm T w /9

20







2.2.The rigid steel frame shown in Figure (2.2) is subjected to a
horizontal dynamic force as shown. It is required to
determine the natural frequency of the frame. Assume th:
mass of the columns 1is negligible and the giracs is

sufficiently rigid to prevent rotation at t':ctops o1 the

columns.

L
g— ~> ) ()
7 SAEIIITTRRENRLGDS
Z
T 1=82.5 in’ - A=

m > F@®

(a) (b)

Figure (2.2)

22



Solution:

The frame may be modeled by the spring- mass systemn

shown in Figure 2.2(b).

From Appendix

12E1
L3

= 2 %

L, 12¢30410° 825 0 L
= * - .
(15 * 12)° i

oo F — k
T 2n (W/g

1 \/ 10185.2

—— —— =4.. 63 cps.

21 |5000.385

23



2.3. For the rigid steel frame shown in figure:

(1) Determine the natual frequency in the horizontal model.
Assume the mass of the columns is negligible .and_th»
horizontal girder is sufficiently rigid to prevent retation at
the tops of the columns.

(11) If the system has 15% of critical dam, ing, cc mpute the
damped natural frequency.

40 Kips 27 ’
AIEIEETTTETTETEEEEET SO NSESESSSSSSSSN w

10 |« I=649in"

FFF7

iy
==

m —>F®

(b)

24



2.4. A Cantileaer beam with a mass as shown i1s connected with
two springs. Find the mathematical model of the system.

7
ﬁl

Z

?"4— L ——

U

Y

2 o
Solution: NI/

The stiffress of the beam can be a=nress 1 by:

i
4

F=kN=n=—
A

Since for cantilever >eam, leflection eqral

F.L3
3EI

Bea Ky and K, 1)ve sanie displacement , series means
th 'y ai> in parallel , »+hercrs wrongly considered in sense based
U0 Ll rgure.

Kequivalent kKt ko

L7
+l Y F = mx- ?keq

— Keq.x = mx- m —lx

mx + keq.x =0 (FreeVibration)

25



2.5. A tapered bar subjected to axial load F, derive the axial

stiffness K of the bar from first principle.

X Y
< > |<% ‘ |
A - %
4
/‘4/
O <: dA DX dB
‘—\i\\ |
oy 7
La L -
< e T —,J( -

A

Solution:

The ratia. o7 diameters iy ¢nd 3 with respect to their

correspondi: 2 lengths, L ar.! I5, can be expressed by:

By triac 2lar s'mularities, a ratio for the diameter Dy can be

obtained as wel. with respect to the origin point o:
Dy X dg. X

—=— = Dy=
dy Ly XL,

26



So the cross sectional area for any distance with respect to
the origin point O, is given by:

T o, T dAZ.X2
A(X) ES Z Dx ES Z L 2
A

Basedon the general formula used te-wcalcilate the
elongation for an axial bar with continusly’ varyin: lvads or

dimensions:
L
f j NX).a.
= fX)
(0]

N(X) = Internal axial force actir 7 a..cross sectan aea A(X)

The obtained expr ssion «f A(X) can k¢ surstituted in &
equation , which yield

Lg Lg
5 jl\/:ﬁ:)ux j Fd, (4142 . 4.F.L,* jdx
B 1_.‘4(1:: B F\Tl,'dA XZ‘ B TI.'E. dAZ xZ

LA LA

B’ e rration for the limit.

mLody, xl T[E.dAZ

4.F.L{ ‘LB_4.F.LA2<1 1>
Ly Lg

Which ca. be simplified to:
1 1 LB - LA L

L, Lg LyLlp L, Lg

27



4.F.L /L,
gy
ﬂEdA LB

Ly _d
Eventually, L—A = d—A , thereforce
B B

4.F.L o .
6 = ———— For tapered bar with circular cres=.sec ionai area.
TL'E.dA.dB

To verify this formula in case we have < unifsm circular
bar with dimeter d subjected to axial force I

Al A
SR6S
d

Which is the ciassical equation »'ed for estimating § for
axially loaded 1 :muvers

4FL _ FL|/ FL

nEdd  Td2E . AE

For the stiiiaess,
Fi: k6
F ‘ \
k - 5 from th< ai.7ensormula:

mEAd.dpg

4.

F
6

2K = (52).dydy

The equivalent stiffness of tapered axial bar

28



2.6. For the system shown, find the mathematical model of the
spring mass equivalent.

If the tapered bar has length of 500 cm and 20 crr. 12 ci
for the bigger and the simaller diameters respectively and made
of steel of E= 200 GPa, estimate the error i sult from
approximating the tapered bar into a circular b'.r witl. an average
diameter of the tapered diameters.

For tapered bar , the stiffness
nE

k= (%) dads

+l Y F =mi

—kx = mx

mx + kx'=c¢

For tan crec bar

k
&M 200x10°N/m?x0.2x0.. m?
4 0.0, m
X
= 6.28 €N /1

Using avrage w.ameter which is 15cm

2.2 9 2
k= T X 0.15°m“x200x10°N/m — 707 GN/m

4 xX0.5m

7.07-6.28
7.07

Error % = X 100% = 12.6% which is relatively big error

29



2.7. Formulate the mathematical model of the following system

which is subjected to displacement y(t) on the spring.

X
k |—> c
y(O) —> e —]]—E

Ragamagm Smootl. surfale

Solution:

By drawing free body diagrame.:+s snc vn that the snring k
is subjected to a couple of displacei. ents y aid x ,smecas it will
cause a force with respect to tke nc  a.ference betwein uic two
displacements. h

- X
—
K(x-V) —| 1 |*+—
«xX

Where mas: wsplacement (1s ¢onsidered greater than
external distlaccment.

+
— Y F =mx

. X —k(v— ) = nx
—C. X — X+ 1y =m¥
Where ky is considered as an external force.
By simplifying the above equation

mi+ c.x+kx=k.y

30



2.8. Amass is connected with two spring in series.

If it 1s desired to find the displacement of point A, Find an

! 3 }

——N\N\\——N"\N
m

k

Solution: TR,
Friction c
In the normal situation , if the equivale t stiffness for k; and
k, considered, finding displacemert. 0. »oint A becomes
impossible. In this situation, since: target is. displacenent of a
point, a false mass M can be iucduc G at point A o »ciltate
this mission as shown.

X 4— |
I_ I P S o
| ! 4
7/ ///E
By drawing “e¢ vody diagran of ti = two masses.

N ]

m |— kiy-x)—»| M |—» kyy
k]\,z\ V)

>
X

For mass m , vz applying newton's second law yield:

=+

YF =ma

—ki(x —y)—c.x—=mx
mi+cx+kix—y)=0 e (1

31



For mass m

=+

“YF =my

—ki(y—x)—kyy=my ..cc e ... (2)

Since M is false, than eq, becomes:

k,y+ki(y—x)=o0 e e e e e (3)

From eq; a relation of x with resna<t to", can be found

koy+kyy—kix=o0

k. . . .
y = (4 which Can e substituted in
kqi+k;
eq. (1) to eliminate y:
. : ky?
mi +.( % kyx — —=-
kl'l “o

. . oyl
mx +< o V{%)=o — eqs
Kq1t+k;

Where once eq. (5) is solved , the resultsol x can be used to

find the values of point y whith represents displacement of point A.

32



2.9. Establish mathematical model of the following system

" 5 F(t)

ka

—

keq.X

4 k k 2
M m —A{ELA f
C HLA
AE
k3 —_ T
k; and k3 in series with k; in parallel
k> 3
_ k,.k3 P — NV —
keq = k1 + Ky +ks - ki
—_—\S —
Free body diagram
=
Ke
| N ‘”‘% o
Lo :
L R «—
Cc.X
+
YF =mF

F(t) — ke x — c.Xx = mi%

mx + c.X + Keq.x = F(t) (Forced vibration)

33



2.10.Develop mathematical model of two masses m; and mp
connected by a rob with high stiffness The rob passes over a
drum which can be considered as negligible inertia. a-

shown in figure
X1

C1

2__«['; i z z}
ki

By drawing( frec. body diagran. of mass one through

disconnecting cle.2ents as wells d'sconi ect the rob.

F(t) - ClJ'Cl - klxl - T == mljél

mljél + ClJ'Cl + klxl + T == F(t) - eq1

34



For mass two, the same procedure is followed for free body

diagram
r]
+T Z F == mzjéz m, |' _sz
T — kzXz - Cz)&z = mzjéz _|_|' i
\

MyXy + CXy + kyxo — T = 0 —eq, Koxa i,

Since the rob with high stiffness , meai s

X1 RXyDXL R Xy DX =Xy — €3

From eq, , the tension = the rob  s:

T =myiy, + cyxy 1 kyx, —eqy

Subistitute ec, and eq, in eq; gives:

X1 (my omg it X1 (e +22) 2 x(k + k) = F (1)
My o xyc+xk = F(t) F(O)
V'here i

M=m1+Th M j
© X

C=c+c, K iic

K=k1+k2 &

And the system can be represented by the figure shown.

35






Problems

3.1. If the weight W of the system shown in figure P3.1 has on
initial displacement of y,=1.0 and aninitial velocity y = 2ot
/sec.,determine the displacement and the velocity . sec. laer.
Assume W=3000 Ib, El= 10° Ib-in® and k 7 20005 / 1.

77
k= 2000 Ib/ir:
e ——
L i
Y= 20,0 Ib/in.
Tosl 100in
——— — 1

F.w eP3.1

3.2 vuolica pole 1007 > long and fixed at the base supports a
cocentrated.wei¢ nt o1 1000 Ib. at its upper end as shown in figure
P3.2 nenlecting the iiass of the vertical pole. If the modulus of
elasticity £ = 30 x 10° psi. and the moment of inertia| = 30 in.* find
the natural period and the natural frequency. Assume that the effect of
gravity is small and non linear effects may be neglected.

37



b
(n)—+

L =100in.

VI

Figu eP3.”

3.3. A fixed beam of span L. lexura rigicty El.5 carrying a
concentrated waight W at the centr2 of thc'span. Determine
the natura ‘oeniod and natural f.2aucacy. Neglect the mass

of theltea»

L/2 L/2

Figure P3.3

38



3.4. A mass of 36 Ib is held by three springs as shown in Figure
P3.4. neglecting the rolling friction in the floor as are the

inertial  effects of the rollers, determine the. naturc!

frequency.
7 k=34 Ib/in. ko=24 k"1, k=12 Ib/in.
;—4\/\/\/; W=36 — Vv —V M
7/ ¢
fm e e A v}z.

Fgure P3.4

39



3.5. Assume single degree of freedom in the horizontal direction
determine the natural frequency for horizontal motion in the
plane of each of the steel frames shown in Figure P3.L
Assume the horizontal girder to be infinitly riaia.and

neglect the mass of the columns.

W Y,
__W S SIS SIS S 7P
’ T | ‘[LIZ
Ll {1 |_| | 177
1 1
o L L g

—_—
—_—

(©)

Figure P3.5

40



3.6. Assume a single degree of freedom in vertical direction
determin the natural period of the system shown in Figure
P3.6, Assume E is equal to unity.

2l
L J
A |
a ‘ _
I
w NP !
} N {
)
w
R
|
ol 2R
! J
1 1
(b)
Figure P3.6

41






3.8. Develop the mathematical model of the following cases
through drawing free body diagram.

| FO
W 7
Xy Enl; 7
| » 7
K
2 )
5( EE,JZ \I
l F(t)
" |
Xy | ké |
| (b)
7%#/572 L 7, %0, 777
| v
| Na
SIS
,
T EL 1 WYX
7 P
k1
5 2 o Rt
| 7
Eilal, E
Figure P3.8

43



3.9. Establish mathematical model of the following cases:

PELNPELENg
| ElL |
k1
A m

il

NN
Ky
X
4_
<4—
A

NN

x4 _|

Figure P3.9

44



3.10. A hollow cylindrical mass connected with two spring
which are connected with rigid plate. A rod is passing
through the mass and connected with rigid plate as show

in Figure. Find the equivalent stiffness of the system.

Q 0O Q O Q
El,Ll,Al ExAs L,

PO

Rigid nlute
Solution:

The system can be repic=2ited in term of _urin Js.

keql = kl + kl

. ky. ks
€2 7 ko, + ks

45






Chapter 4

Using ODE45 MATLAB to solve differential equations

MATLAB's standard solver for ordinary diffe. ntial
equations (ODEs) 1is the function ode45. Thiy . function
implements a Runge-Kutta method with "a var able time
step for efficient computation. ode45 is. desigucd to handle

the following general problem:

%J{W} Y toy=Yo ()

where t is the indesundenc. varable (time, r0s) .an, volume)
and y is a vector of c(>pender. variables (cisplace.=iat, velocity,
temperature, ~ position.  concentrations,) ~to &< found.  The
mathematical pi Blen: is specified whan the vector of functions
on the right-na.d side of eq. (1), .f(ty), is set and the initial
conditions, *= 0 at time

. are specified ‘1he notes here apply to versions of

M TLAB abowe .0 «nd cover the basics of using the
furiction odeAs.

Syntax for ode'5
oded5 may be invoked from the command line via
[t,y] = oded5(fname, tspan, y0)

where

47



fname: name of a function Mfile, an inline function object
or an anonymous function used to evaluate the right-hand-side
function in eq. (1) at a given value of the independent.variabi:
and dependent variable(s). If an Mfile is used, the.fur:tion

definition line usually has the form
function dydt = fname(t,y)

and the file is stored as fname.m. The o tput variable (dydt)
must be a vector with the same/si.= as y. Note th=t the
independent variable (t) must be iacicded in the inpt ¢ gurient
list even if it does not exzucitly «nnsar in the exp’ es . ns used to
generate dydt. The varichle fn.me can confain thc name of the
Mfile or can be a~function handle ge.erated oy an inline or

anonymous fun: iom.

Tspan: two . -element’ vesior “uefining the range of
integra 107 ("'to tf]) on can be > vector of values for which the

sq utic 18 desired.

Yo = vector.of i.'tiai conditions for the dependent variable.
There should by as many initial conditions as there are dependent

variables.

48



t: Value of the independent variable at which the solution
array (Y) is calculated. Note that by default this will not be a

uniformly distributed set of values.

y: Values of the solution to the problem (artay).. E«ch
column of y is a different dependent variabl:. The size of the

array is length(t)-by-length(y0)

Examplel:

Write Matlab code for t'ic systtm faown in the tigce 0 show

displacement versus time (0<t<") for the foll¢wira Cises:

a) Free response F(1)=0 cecese
P A
b) Forced _response F(t)= B — j y
50*sin( ") L

m-1 ko8- 2 N.s/m.,»=100
Nm, =05mV=9_m/s

o7+ Bz f4(1)

Solution:

Express the equation of motion in a state-space form

49






a) The system where the forcing term is zero

clear
plot(t,x(:,1), 'f', t, x(:,2), 'b")
xlabel('time t');

ylabel('displacment x');
legend('displacement’,'velocity')

[t, x] = ode45('TMechEx1", [0 5], [0.5; 0.2]);

title("Solution of Vertical Translational System - Example 1'):

function dxdt = TMechEx1(t,x)

M=1;

K=100;

B=2;

dxdt =[ x(2); (I/M)*(-B*» 2 K  x(1)) ;

v reeflesponse

“oalutie “Yertical Translational Sys. v - Example 1
4 - e " T T T
r [ — displacement
3 il - — welacity .
N -
'1 .
= oloA / \
é Or AN \ e
5 /
Rl \ : 1
o
=1 . I
2 i\ .
A H _
A i
_5 Il Il Il Il Il Il Il L Il
0 0.4 1 15 2 25 3 34 4 4.5 5
time t
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b)

The system where the forcing term is 50*sin(2t)

clear

[t, x] = 0ode45('TMechEx1',[0 20],[0.5; 0.2]);

plot(t, x(:,1), '", t, x(:,2), 'b")

title("Solution of Vertical Translational System - Example ' ;
xlabel('time t');

ylabel('displacment x');

legend('displacement’,'velocity')

function dxdt = TMechEx1(t,x)

M=1;

K=100;

B=2;

dxdt = [ x(2); (I/M)*(507 sin(2*t) R*:2)-K*x(1)) ];

3o’ .uon of Wertical Translational Sy~ :m - Example 1

o] — T

displacement
— walocity -

at ¥

dism.

0 2 4 53 8 10 12 14 15 18 20
time t
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Example?2:

Use SIMULINK to solve example 1 for the forced response part.

" 1 X a [ ]
%' s x' s X L » J
Gain velocity displacement Is_cor 3

Sine Wave Force

F(t)=50sin(2t)

Solu 1 of Wertical Translational System - Example 1

5]
[ displacement
A walocity
!
2t 4
=
a Tff 1
g
e M w
& f
=
“1H 4
2 4
-3
)




APPENCIX

Table of soring stiffness

K4 K>

P

+——— ' " " >

_ 1
T 1/ky*1/k-
k= kl * t"z
. 1 . .
L — - I = m me t 0. inertia of

L
( ross sectional arZ..

L = total length

EA .
= A = Cross — sectional
area.
GJ )
= 7 J = torsion constanl of

cross section.

Gd*
64 n R3

n = number of turns.
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3EI
|\4 k =— k at position of load.

QM k= 4 Zgr

1/2
r ’_A_/
768EI
% %7) ke = 715
e
~___37; 3EIL b
"‘/;X y L h=a2b2 Vx = %(12_9(2_22)
—
A
ik AV,
— k= 3
ELL / L3
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é/\é?i . _ _ 3EI
7 ¢
1

6+——
ELL ELL = &L (—t
1

3,1
2 I771

I Lq

Ly

ﬁg ! i% 24EI
K =——""—
ﬂ 1 ¢l a2(3l+8a)
—
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