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Introduction

Introduction I

Our knowledge of the Physics at distances shorter than fm := 10−15 m, i.e. the
sub-nuclear scale is derived from the study of the outcome of the collision of
elementary particles at high energies.

The key parameters for a HEP collider are:

(1) Energy of the beam
(2) Intensity of the beam, called Luminosity (more later).

There are two commonly used reference frames:

(a) The center of mass frame (CM): ~p1 + ~p2 = 0

s =
(
E

(cm)
1 + E

(cm)
2

)2

(1)

(b) The laboratory frame (Lab): ~p2 = 0
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Introduction

Introduction II

s = m2
1 + m2

2 + 2m2E
(Lab)
1

E
(Lab)
1

>>m1,m2−−−−−−−−→ 2m2E
(Lab)
1 (2)

Thus, At high energies (much larger than the mass of the beam particles)

√
s(collider) = (E

(cm)
1 + E

(cm)
2 ) (3)

√
s(fixed target) '

(
2mE

GeV 2

)
GeV

For instance, colliding two proton beams with energies E1 = E2 = TeV , yields

√
spp(collider) = 2 TeV (4)

whereas, a colliding a beam of proton with energy Ebeam = 1 TeV on a fixed
target (such a carbon foil), yields

√
spp(fixed target) =

√
200 GeV ' 44.7 GeV (5)

S. Nasri (UAEU) Lecture notes On Introduction to Particle Physics. June 2012 3 / 86



Introduction

Introduction III

Some kinematics
Let us consider the process

X → 1 + 2 (6)

where X can be a single particle for the case of a decay or two particles
colliding in the case of scattering process. In the zero momentum of X (which
is the centre of mass system if X represents two colliding particles) we have

~p1 = −~p2 := ~kf (7)

Energy momentum conservation implies that PX = P1 + P2, which implies
that

(PX − P1)2 = P2
1 ⇒ E 2

cm + m2
1 − 2EcmE1 = m2

2 (8)

Hence,
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Introduction

Introduction IV

E1 =
s + m2

1 −m2
2

2
√
s

(9)

Similarly, for particle 2 (just exchange m1 with m2) we get

E2 =
s + m2

2 −m2
1

2
√
s

(10)

Using E 2
1 = k2

f + m2
1, we can solve for kf and we obtain

kf =

√
(s −m2

1 −m2
2)− 4m2

1m
2
2

2
√
s

(11)

It is convenient to introduce the function

S. Nasri (UAEU) Lecture notes On Introduction to Particle Physics. June 2012 5 / 86



Introduction

Introduction V

λ(x2, y2, z2) = (x2 − y2 − z2)− 4y2z2 (12)

known as the Kallen function, and write

kf =
1

2
√
s

√
λ(s,m2

1,m
2
2) (13)

Mandelstam variables
For the scattering of two particles, i.e. the process

1 + 2→ 3 + 4 (14)

There are three independent Lorentz-invariant kinematic variables, called the
Mandelstam variables:
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Introduction

Introduction VI

s = (p1 + p2)2 = (p31p4)2 (15)

t = (p1 − p3)2 = (p2 − p4)2

u = (p1 − p4)2 = (p2 − p3)2 (16)

Their sum is

s + t + u = 3m2
1 + m2

2 + m2
3 + m2

4 + 2p1p2 − 2p1(p3 + p4) (17)

= 3m2
1 + m2

2 + m2
3 + m2

4 + 2p1p2 − 2p1(p1 + p2) (18)

= m2
1 + m2

2 + m2
3 + m2

4 (19)
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Introduction

Introduction VII

Mandelstam variables in the high energy limit Here one can neglect the

masses of the particles (i.e. m1 = m2 = m3 = m4 = 0), and in this case we
have

|~p1,2| =

√
Ecm

2
(1; 0, 0,±1) (20)

|~p3,4| =

√
Ecm

2
(1;± sin θ, 0,± cos θ)

where θ is the angle between the momentum of the incident particle 1 and the
scattered particle 3. The Mandelstam variables read

s = E 2
cm (21)

t = −2p1p3 = − s

2
(1− cos θ)

u = −2p2p4 = − s

2
(1 + cos θ)
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Introduction

Introduction VIII

Mandelstam variables in the massive case Let us define

βij =

√
λ(s,m2

3,m
2
4)

s
(22)

Then, we have

p3,4 =

√
s

2

(
1± m2

3 −m2
4

s
;±β34 sin θ, 0,±β34 cos θ

)
(23)

t = m2
1 + m2

3 −
s

2

(
1 +

m2
1 −m2

2

s

)(
1 +

m2
3 −m2

4

s

)
+

s

2
β12β34 cos θ
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Introduction

Introduction IX

Challenges for colliding beams:

(a) The particle density in a beam is much lower than in a fixed target (solid
or liquid). Thus, one tries the means many times and maximizes the beam
intensities (i.e. the number of particle bunches per beam).

(b) In order to avoid beam-gas interaction (unintended fixed target
collisions), a high vacuum is needed in the beam pipe (very low pressure
10−9 Pa, which is about 10−14 pressure at the sea level.
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Introduction

Introduction X

Examples of HEP experiments

Experiment (start) Location Beams Beams energies

CESR (1979-) Cornell Univ e+ ⊕ e−
√
s(max) = 12 GeV

LEP (1989-200) CERN e+ ⊕ e−
√
s = 90 - 200 GeV

SLC (1989-1998) SLAC e+ ⊕ e−
√
s ' 89 - 93 GeV

HERA (1990-2007) DESY e±⊕ p 27.5 + 920 GeV
Tevatron (1983-2011) Fermilab p ⊕ p̄

√
s ' 2 TeV

LHC (2008- present) CERN p ⊕ p
√
s ' 7− 14 TeV

(At HERA,
√
s(e± ⊕ p) = 320 eV .)
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Transition rate

Transition rate I

Let |i > and |f > denote the initial state of a particle or system of particles
and the final multiple particles final state, respectively. We chose the
(relativistic) normalization condition of a single particle state as

< ~p|~p′ >= (2π)32p0δ(3)(~p − ~p′) (24)

The dynamics of the transition from an initial state |i > to some final state
|f > is represented by the operator Ŝ, defined as

< f |Ŝ|i >≡ Sfi = δfi + i(2π)4δ(4)(p′f − pi ).Tfi (25)

where pi and p′f are the 4-momenta of the initial and the final particle states,
Tfi represents the scattering amplitude of the process, which can be
calculated using QFT techniques, namely, Feynman diagrams. Note that the
term δ(4)(pf − pi ) insures that the energy and momentum are conserved in
the transition1. Thus, the probability for such process to occur, is given by
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Transition rate

Transition rate II

P(|i >→ |f >) =
|Sfi |2

< f |f >< i |i >
, |i > 6= |f > (26)

To calculate the transition probability for the process, we need to evaluate the
square of the δ-distribution. A convenient way to do that is to put the system
in a box of size.Now we can write the square of the delta distributions as

[
(2π)δ(p0

f − p0
i )
]2

=

[∫
T

tdt e i(p0
f−p

(0)
i )t

]
2πδ(p0

f − p0
i )

= T .2πδ(p0
f − p0

i )

and [
(2π)3δ(3)(~pf − ~pi )

]2

=

[∫
V

d3x e i(~pf−~pi )t

]
(2π)3δ(3)(~pf − ~pi )

= V .(2π)3δ(~pf − ~pi )
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Transition rate

Transition rate III

Considering the fact that in a box of volume V = L3, the states are
normalised as

< j |j >= (2EjV )1/2 (27)

we have

P(|i >→ |f >) = (V .T )(2π)4δ(4)(pf − pi ).

Ni∏
j=1

1

2EjV

) Nf∏
f =1

(
1

2E ′f V

)
|Tfi |2 (28)

where Ni and Nf are the number of particles in the initial and final state,
respectively. Thus, the transition probability per unit time, i.e.
P(|i >→ |f >)/T , reads
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Transition rate

Transition rate IV

ωfi = V (2π)4δ(4)(pf − pi ).
Ni∏

j=1

(
1

2Ej V

) Nf∏
f =1

(
1

2E ′f V

)
|Tfi |2 (29)

The above expression assumes that the final state has a well defined quantum
numbers. However, since the angle and the momentum of the final state
particles are only known up to some accuracy, we define

dωfi = V .(2π)4δ(4)(pf − pi ).

Ni∏
j=1

(
1

2EjV

) Nf∏
f =1

(
1

2E ′f V

)
|Tfi |2.dΦf

with dΦf the number of states with momentum ~pf and ~pf + d3~pf , with
f = 1, ...,Nf , and so it is an element of volume in the phase space. To
compute dΦf , we recall that the momenta are multiples of 2π/L (i.e.
quantized) in each direction2:
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Transition rate

Transition rate V

~p =
2π

L
(n1, n2, n3), n1,2,3 ∈ Z (30)

which implies that

d3n =

(
L

2π

)3

d3~p ≡ V

(2π)3
d3~p (31)

Hence, the transition probability for the final state particles to have momenta
between ~p′f and ~p′f + d3~p′f is

dωfi =

[
V

Ni∏
j=1

(2EjV )−1

]
.|Tfi |2.DNf
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Transition rate

Transition rate VI

where

DNf
= (2π)4δ(4)(pf − pi )

∏
out

d3~pf

(2π)32Ef

is the relativistic density of final states. Note that |Tfi |2 and D are Lorentz
invariant quantities.

(a) Nf = 2 (two particles in the final state)
The integration over ~p′2 gives

D2 =
d3~p′1

(2π)34E ′1E
′
2

δ(E ′1 + E ′2 − Ein) (32)

=
p′21 dp′1dΩ

(2π)34E ′1E
′
2

δ(E ′1 + E ′2 − Ein)
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Transition rate

Transition rate VII

where Ein is the total energy of the initial state particles. In the zero
momentum frame, i.e. ~Pin = ~p′1 + ~p′2 = ~Pout ≡ 0, we can write

δ(E ′1 + E ′2 − Ein) =
1

|∂E ′
1

∂p′ +
∂E ′

2

∂p′ |p′=k′

δ(p′ − k ′) (33)

with p′ = |~p′1| = |~p′2|, and k ′ is the value of the momentum for which
[E ′1(k ′) + E ′2(k ′)− Ein] = 0. Using the fact that

∂E ′1
∂p′
|k′ =

k

E ′1(k ′)
,

∂E ′2
∂p′
|k′ =

k

E ′2(k ′)
(34)

then the integration over dp′ yields

D2 = dΩ
16π2

k ′

Ein
(35)
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Transition rate

Transition rate VIII

(b) Nf = 3 (Three particles in the final state)
In this case we have 9 variables (three 3-momenta of the final state particles)
subject to 4 constraints (energy momentum conservation). in the rest frame
of the three particles we have ~p′1 + ~p′2 + ~p′3 = 0, and so one of the
3-momentum, say ~p′3, is determined in terms of (~p′1 and ~p′2. Moreover, the
momenta ~p′1 and ~p′2 are related by the energy conservation constraint:

Ein = E ′1(p′1) + E ′2(p′2) + E ′3(|~p′1 + ~p′2|) (36)

where Ein is assumed to be specified. After integration over ~p′3, the
relativistic density of the final state reads

D3 =
1

(2π)58E ′1E
′
2E
′
3

p′21 dp′1dΩ1p
′2
2 dp′2dΩ12δ(E ′1 + E ′2 + E ′3 − Ein) (37)

where Ω12 is the solid angle of ~p′2 relative to ~p′1, parametrised by angles θ12

and φ12 such that
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Transition rate

Transition rate IX

dΩ12 = d cos θ12dφ12 (38)

We will eliminate cos θ12 using the energy conservation constraint:

∫
d cos θ12δ(E ′1 + E ′2 + E ′3 − Ein) (39)

Using

E ′3 =
√

(~p′1 + ~p′2)2 + m2
3 =

√
p′21 + p′22 + 2p′1p

′
2 cos θ12 + m2

3 (40)

we obtain that

D3 =
1

8(2π)5

p′1dp
′
1

E ′1

p′2dp
′
2

E ′2
dΩ1dφ12 (41)
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Transition rate

Transition rate X

Using the fact that for relativistic particles EdE = pdp, the density of state
for a three body final states in the zero-momentum frame reads

D3 = dΩ1dφ12

256π2 dE ′1dE
′
2 (42)

Decay rate
The process such as

X → 1 + 2 + ...Nf

is called decay of X into Nf particles. The total decay rate, ΓX , can be
obtained by setting Ni = 1 in the above expression of the transition rate and
integrating over all possible final state momenta:
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Transition rate

Transition rate XI

ΓX = 1
2EX

∫
dp̃′1...dp̃

′
Nf

(2π)4δ(4)(pf − pi )|Tfi |2 (43)

where

dp̃′f :=
d3p′f

2E ′f (2π)3
(44)

Therefore, the life time of the particle X is

τX =
1

ΓX

Note that the term under the integral in Eq (43) is Lorentz invariant where
as EX is not. Hence, τX defined above is the life time as measured in the rest
frame of the particle X and in another reference frame it will be different3.
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Transition rate

Transition rate XII

For Nf = 2, and in the rest frame of the decaying particle (of mass MX ), we
have

Γ(0)(X → 1 + 2) =
1

2MX

∫
|TX→1+2i |2 D2 (45)

=
1

32π2M2
X

kcm

∫
dΩ|TX→1+2i |2

where kcm is the centre of mass momentum of the particles 1 and 2 (i.e.

kcm = k
(cm)
1 = k

(cm)
2 ). Hence, the decay rate of X to two final state particles

reads

Γ(X → 1 + 2) = kcm

8πM2
X
|TX→1+2i |2 (46)
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Transition rate

Transition rate XIII

In the non-zero momentum frame of the particle X the decay rate reads

Γ
(0)
X =

MX

EX
Γ

(0)
X ≡

1

γ
Γ

(0)
X (47)

where γ = 1/
√

1− υ2/c2 is the usual time-dilatation factor.
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Transition rate

Transition rate XIV

Cross section
Consider the scattering of two particles, say 1 and 2, into a number of a final
state particles. We denote JscdΩ the number of outgoing particles per unit
time, scattered into an element of solid angle dΩ in direction (θ, φ). This
number is proportional to the incident flux Φin, defined as the number of
particles per unit time crossing a unit area normal to the direction of
incidence.

We define the differential cross section as

dσ

dΩ
:=
Jsc

Φin
(48)

However,

Jsc =

(
dωfi

dΩ

)
Nin

S. Nasri (UAEU) Lecture notes On Introduction to Particle Physics. June 2012 25 / 86



Transition rate

Transition rate XV

Here Nin is the number of particles in the incoming beam. Thus, we can
write the differential cross section as4

dσ
dΩ

=
(

dωfi

dΩ

) (
1
φin

)
where

φin =
Φin

Nin
⇐ Incident flux per unit beam

The cross section can be obtained by integrating over the solid angle

σ =

∫
dσ

dΩ
dΩ (49)
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Transition rate

Transition rate XVI

In other words,
the differential cross section is the transition rate for one scattering center
divided by the flux of the incident particles on the volume containing this one
scattering center.

To derive the expression of the cross section we will first consider the particle
2 to be at rest. Then, for one particle in some volume V, with a speed

υ1 = |~p1|
E1

, the incident flux per unit beam is given by

φin = 1
V
|~υ1| = |~p1|

E1V
(50)
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Transition rate

Transition rate XVII

Thus, It is straightforward to show that |~p1|m2 can be expressed in terms of
the total center-of-mass energy squared, s = (E1 + E2)2 as

|~p1|m2 = |~p1CM |
√
s (51)

which implies

dσ
dΩ

= 1
4|~p1|cm

√
s
|Tfi |2 DNf

(52)

In general, for two colliding particles, with velocities ~υ1 and ~υ2, respectively,
the incident flux per unit beam is given by

φin = 1
V
|~υ1 − ~υ2| = 1

V
|~p1

E1
− ~p2

E2
| (53)
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Transition rate

Transition rate XVIII

Thus, the differential cross section for two colliding particles is

dσ =
1

4|E2~p1 − E1~p2|
|Tfi |2 DNf

(54)

In the CM frame of the two colliding particles we have

~p1 = −~p2 = ~kin (55)

Then

dσ =
1

4
√
skin
|Tfi |2 DNf

(56)

where
√
s = ]E1(k) + E2(k)] is the total energy of the colliding particles in

the their centre of mass frame.

The differential cross section (54) can be written in manifestly
Lorentz-invariant form as
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Transition rate

Transition rate XIX

dσ = |T |2

4
√

(p1p2)2−m2
1m2

2

DNf
(57)

The quantity p1p2)2 −m2
1m

2
2 can be expressed as

p1p2)2 −m2
1m

2
2 =

1

4

(
p2

1 −m2
1 + p2

2 −m2
2 + 2p1p2

)2 −m2
1m

2
2 (58)

=
1

4

[(
p1 + p2)2 −m2

1 −m2
2

)2 − 4m2
1m

2
2

]2

=
1

4
λ(s,m2

1,m
2
2)

Thus,
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Transition rate

Transition rate XX

dσ = |T |2

2
√
λ(s,m2

1,m
2
2)
DNf

(59)

Two-to-Two scattering
Inserting the expression of D for Nf = 2 in Eq (56) we obtain

dσ
dΩ

=
[

kfin

kin

]
1

64π2s
|T1+2→3+4|2 (60)
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Transition rate

Transition rate XXI

where kfin is the final CM momentum. If the scattering amplitude has no
φ-dependence, we can express the differential cross section as (the velocities
βij were introduced in Eq(22) in the introduction):

dσ =
β34

β12

d cos θ

32π
|T |2 (61)

The differential cross section with respect to the Mandelstam variable t can
be obtained from the above expression using the chain rule

dσ

dt
=

dσ

d cos θ

d cos θ

dt
(62)

Using the expression of the parameter t given in Eq (23), we get
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Transition rate

Transition rate XXII

dσ
dt

= 1
16πβ2

12

|T |2
s2 (63)

There are four type of cross sections:

(a) Elastic cross section:
The initial and final state particles are the same. Thus, the kinetic energy and
the three-momentum are conserved. In this case the expression reduces to

dσ(elastic)

dΩ
= 1

64π2s
|T1+2→3+4|2 (64)
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Transition rate

Transition rate XXIII

(b) Inelastic cross section:
The initial and final state particles are different. In this case the kinetic
energy and the three-momentum are not conserved. instead, the
4-momentum will be conserved.

(c) Exclusive cross section:
It is the cross section of a process with a given final state, and the process will
be called exclusive process. For example, at LEP, one search for Higgs boson
production along with a Z boson, and so we say that σ(e+e− → ZH) is a
exclusive cross section. Similarly, at the LHC, the cross section σ(pp →WH)
is exclusive. In general, Exclusive cross sections are easy to compute.

(d) Inclusive cross section:
Here one sums over all possible exclusive cross sections for a given initial
state, e.g. σ(pp → anything). Often, inclusive cross sections are easy to
measure, as one does not need to identify which kind of particle has been
produced.
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Transition rate

Transition rate XXIV

Units used for cross section in particle Physics:
As we noted above, the cross section has unit of area, i.e. m2. However, in
particle physics, we use much smaller unit called barn, denoted by the letter
b. By definition,

1 b := 10−24 cm2

which a typical size of a heavy nuclei. For instance, the proton-proton cross
section is5

σ(pp) ∼ 100 mb ≡ σel + σinel

where σel ∼ 25 mb is the elastic cross section, i.e. pp → pp (no color flow
between the colliding protons), and σinel ∼ 70 mb is the inelastic cross
section which results in multi-particle final states (e.g. pp → pn+,
pp → (pπ+π−)(pπ+π−),...). Note that, roughly, the value of σpp
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Transition rate

Transition rate XXV

corresponds to the cross section area of a proton6, πr2
p , with rp ∼ fm is the

classical radius of proton. The cross section for W and Z production at the
LHC are of the order nano barn (nb).
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Transition rate

Transition rate XXVI

Example:
At energies much smaller than the Z (0) gauge boson mass, the cross section for
the annihilation of electron-positron to muons- anti-muons is dominated by the
EM interaction (QED), and it is given by by

σ(e+e−µ+µ−) = 87
s
nb :≡ 1 R unit (65)

with s is the center of mass energy in GeV 2. Thus, at
√
s = 10 GeV, the cross

section for muon production is about 1nb.

Ŝ = I + i T̂

2I am taking ~ = 1
3In fact, according to the theory of special relativity, it will be longer.
4One can also think of the cross section as follows. If the incident beam has flux

Φin (number of particles per unit time per unit area), and the number of particles per
unit time and per unit area scattered in the direction (θ, φ) is Φsc , then the total
amount of particles scattered through a spherical surface element with area dA at
distance D is Φsc A. This amount must be proportional to the incident flux; therefore

Φsc A = Φin σ(θ, φ)

The quantity dσ(θ, φ) determines which fraction of the incident flux contributes to the
scattered flux in the direction (θ, φ). It has the dimensions of an area. and can be
interpreted as the size of the area in the total incident beam which accounts for the
radiation flux scattered through dA. Hence, the cross section defines an imaginary area
in which the interaction takes place.

5It is between 40 mb and 100 b, depending on the energy of the proton beams.
6It is also called geometrical cross section of the scattering particles.
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Luminosity

If the cross section of a process is σ, and R is the event rate, i.e. the number
of events per seconds, then the luminosity is defined by

R = L.σ (66)

which has units of cm−2.s−1, and so it is a measure of the number of
collisions that can be produced in a detector per cm2 per second.

For a fixed target experiment, where the target is homogeneous and larger
than the incoming beam, we have

R = ntargetVJsc

= ntarget(A× l)Φin × σ

Here ntarget is density of scattering center in the target material and l is its
length. Writing the incident flux as

Φin =
Jin

A

where Jin is the intensity of the incoming beam. Thus, the fixed target
luminosity is given by
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Luminosity

LFT = Jinntargetl

For a collider, I am not gonna derive the expression of the luminosity it here.
I will give you its formula:

LCollider = nB NLNR

Aeff
frev (67)

where

nB : Number of bunches,

NL,NR : Number of particles per bunch in each direction,

f : Frequency of revolution around the ring

Aeff : Effective transverse area of the beam
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Luminosity

For a Gaussian shaped beam with dimensions sx and sy , its transverse size is

Aeff = 4πsxsy

the accumulated luminosity over a period of time T is

L =

∫ T

0

Ldt (68)

which is also called the integrated luminosity. From the formula (67), we
note that the luminosity can be increased by reducing the cross section of the
beam, by increasing the number of particles in the beam or by increasing the
revolution frequency.

Example:
The LHC is collides two beams of protons running in a ring of about 27 km
in circonference, and so

frev '
3× 108 /s

27× 103 m
' 104 HZ

S. Nasri (UAEU) Lecture notes On Introduction to Particle Physics. June 2012 40 / 86



Luminosity

It uses nB ' 2800, NL = NR ' 1011, and
√
sxsy = 16 microns, which yields a

luminosity7

L(LHC) ∼ 1034cm−2.s−1 = 10 nb−1s−1 (69)

Of course it takes time for the machine to reach the peak of the design
luminosity. Then, after a year of running with such a design luminosity, the
LHC can accumulate

L(LHC) ∼ 100 fb−1 (70)

In the table below, we give estimates of the expected number of events at the
LHC for different production cross sections at the design luminosity.

Final states Cross section # events/s
Total 100 mb 109

W or Z 100 nb 103

tt̄ nb 10
WW or ZZ 0.1 nb 1
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Luminosity

The cross section is determined from experiment via the relation

σ(
√
s) :=

Nsel−Nbkg

ε
∫
Ldt

where Nsel and Nbkg represent to the number of events passing the selection
cuts and the number of background events in the selected sample, and ε is
the detection efficiency factor which accounts for the trigger efficiency, the
geometrical acceptance and the efficiency of the selection cuts.

71 barn = 10−24 m2.
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Kinematics

Kinematics I

Lorentz transformations:
Let PµLab := (E , ~p) be the 4-momentum of a particle or system of particles in
the laboratory frame. For an observer in frame moving with velocity ~υ, the
viewed 4-momentum will be (P ′µ := (E ′, ~p′), and is related to PLab via the
Lorentz transformation (β = υ/c):

E ′ = γ
(
E − βp‖

)
(71)

p′‖ = γ
(
p‖ − βE

)
p′⊥ = p⊥

where γ = (1− β2)−1/2 is the relativistic factor, and the symbols ‖ and ⊥
refer to the components parallel and perpendicular to the velocity ~v ,
respectively.
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Kinematics

Kinematics II

System of two particles:

Consider two particles, say 1 and 2, of masses m1 and m2, and have
4-momentum (E1, ~p1) and (E2, ~p2), respectively, in some reference frame.
Then, the center-of-mass energy can be written

Ecm : =
√

(p1 + p2)µ(p1 + p2)µ

=
√

(E1 + E2)2 − (~p1 + ~p2)2

or, equivalently,

Ecm =
√

m2
1 + m2

2 + 2E1E2(1− β1β2 cos θ12)

In a frame where particle 2 is at rest, i.e. ~p2 = ~0, we get
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Kinematics

Kinematics III

Ecm =

√
m2

1 + m2
2 + 2E

(Lab)
1 m2

The velocity of the center of mass of this system of two particles, with the
particle 2 being at rest, is given by

~βcm =
~p

(Lab)
1

E
(Lab)
1 + m2

, γcm =
E

(Lab)
1 + m2

Ecm
(72)
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Kinematics

Kinematics IV

Rapidity:
Let us introduce a new parameter y such that

β = tanh y ⇒ γ = cosh y , βγ = sinh y

This allows us to write the Lorentz transformation as

(
E ′

p′‖

)
=

(
cosh y − sinh y
− sinh y cosh y

)(
E
p‖

)
Now, suppose the collision of beam of particles and as a result a particle of
mass m is produced with a velocity ~β making an angle θ with the beam line.
Decomposing its momentum into two components: one along the beam line,
p‖, and the other, pT , perpendicular to it, the energy of the particle with
respect to an observer in the laboratory frame (at rest) can then be expressed
as
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Kinematics

Kinematics V

E =
√
p2
‖ + E 2

T

where

ET =
√
m2 + p2

⊥ ⇐ Transverse energy

In a reference frame moving along the beam line with a speed equal to the
component of the particle’s speed along the beam, i.e. β‖ := p‖/E , the
4-energy momentum seen will be (m⊥, 0). The 4-momentum as seen by an
observer at rest in the laboratory, i.e. (E , p‖), can be obtained from (m⊥, 0),
is given by the Lorentz transformation (β → −β) as:

(
E
p‖

)
=

(
cosh y sinh y
sinh y cosh y

)(
m⊥

0

)
⇒ E = m⊥ cosh y , p‖ = m⊥ sinh y
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Kinematics

Kinematics VI

Hence, we deduce that8

y = tanh−1 p‖
E

:= tanh−1 β‖ = ln
E ′ + p′‖
m⊥

or, equivalently

y = 1
2

ln
E+p‖
E−p‖

This dimensionless variable is called rapidity, and as its name suggests, is
related to velocity of the particle along the beam line. It can also be
re-written in the form

y = 1
2

ln 1+β cos θ
1−β cos θ
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Kinematics

Kinematics VII

where θ is the polar angle between the particle velocity ~β and the beam axis,
i.e.

tan θ =
p⊥
p‖

Element of phase space in term of y and pT

The Lorentz invariant phase space element reads

d3p

E
:=

dp‖
E

d2pT

Now since this quantity is a Lorentz invariant, in particular under a boost
along p‖, we expect that dp‖/E to be written in terms of the differential
element dy . This is indeed the case. We have
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Kinematics

Kinematics VIII

dy =

(
∂y

∂p‖
+
∂y

∂E

∂E

∂p‖

)
dp‖

=

(
E

E 2 − p2
‖
−

p‖
E 2 − p2

‖

p‖
E

)
dp‖

=
dp‖
E

Thus,

d3p
E

= d2pTdy
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Kinematics

Kinematics IX

Assuming an azimuthal symmetry, we can write

d3p

E
= πdp2

Tdy

One can also define the cross section per Lorentz-invariant phase space,

E d3σ
d3p , which can be expressed in terms of the rapidity and transverse

momentum as:

E d3σ
d3p

= 1
π

d2σ
dp2

T dy
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Kinematics

Kinematics X

Why should we be interested in the rapidity?

To see why, consider a particle of velocity β, and rapidity y with respect to
some reference frame, say the lab frame, and another observer moving with a
velocity β∗ (boosted frame) along the direction of ~β. Then, the rapidity y ′ in
the boosted frame is given by

y ′ = ln
E ′ + p′‖
m⊥

= ln
(E cosh y∗ − p‖ sinh y∗) + (−E sinh y∗ + p‖ cosh y∗)

m⊥

which gives

y ′ = y − y∗
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Kinematics

Kinematics XI

where y∗ is the rapidity of the boosted frame.

This transformation law for the rapidity implies that ∆y = ∆y ′, i.e. the
difference of rapidity is a Lorentz invariant. This can also be applied to a
system of two particles. To see that suppose that during a collision two
particles were ejected, with rapidities y1 and y2 measured in some reference
frame. In another reference frame moving with velocity β∗ parallel to the
beam, these particles will have rapidities y ′1 = y1 − y∗ and y ′2 = y2 − y∗.
Hence,

y ′1 − y ′2 = y1 − y2 (73)

Therefore, the difference between the rapidities of two particles is an
invariant under boost transformation along the beam line.
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Kinematics

Kinematics XII

It is worth noting that using the transformation law of the rapidity under a
boost, and the identity

tanh−1 x1 + tanh−1 x1 = tanh−1 x1 + x2

1 + x1x2

we recover the relation for the addition of relativistic velocities, namely

β′ =
β − β∗

1 + ββ∗

where β′ is the velocity of the particle as seen by an observer moving with a
velocity β∗ (i.e. in the boosted frame).
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Kinematics XIII

Rapidity in the center of mass system

Consider a a system of two particles, 1 and 2, with equal masses and
rapidities y1 and y2, respectively, as seen by an observer in some reference
frame, say the lab frame. Obviously, in the center-of-mass (CM) frame, the
particles will have rapidities equal in magnitude but opposite sign, i,e,
y∗1 = −y∗2 , where the symbol ”*” label the quantities measured by an
observer in the CM frame. If yCM is the rapidity of the center of mass frame,
then according the transformation law of the rapidities under a boost we have

y∗1 = y1 − yCM , −y∗1 = y2 − yCM (74)

Thus,

yCM = y1+y2

2

S. Nasri (UAEU) Lecture notes On Introduction to Particle Physics. June 2012 55 / 86



Kinematics

Kinematics XIV

Also, given The rapidities of the particles 1 and 2 in the center-of-mass
frame, can be expressed as

y∗1 = −∆y

2
, y∗2 =

∆y

2

where ∆y = (y2 − y1).

Examples:
(a) In a fixed target experiment:

yCM = (ytarget + ybeam)/2 = ybeam/2

(b) At collider (leptons or at hadron level):

yCM = (ytarget + ybeam)/2 = 0
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Kinematics

Kinematics XV

Pseudo rapidity:
One problem with using rapidity is that it can be hard to measure for highly
relativistic particles. The reason is that component of the momentum along
the beam line will be large, and the beam pipe is on the way of measuring it
precisely, which makes it very difficult to infer the rapidity. As we will see
below, we will define another quantity that is very closely related to rapidity
which is much easier to measure.

For highly relativistic particle, we can expand the energy as powers in m2/p2

as

E = p

[
1 +

m2

2p2
− 1

8

(
m2

p2

)2

+ ...

]
(75)

Hence the rapidity reads
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Kinematics

Kinematics XVI

y =
1

2
ln

[
p(1 + m2

2p2 + ..) + p cos θ

p(1 + m2

2p2 + ..)− p cos θ

]

=
1

2
ln

[
cos2 θ

2 + m2

4p2 + ...

sin2 θ
2 + m2

4p2 + ...

]

where we used the fact that p‖ = p cos θ, and the trigonometric identities

cos θ + 1 = 2 cos2 θ/2, and 1− cos θ = 2 sin2 θ/2.

For massless particle, which is a good approximation for particles produced
with very high energy, the rapidity reduces to the so-called pseudo rapidity:

η = 1
2

ln
[

p+p‖
p−p‖

]
= − ln

(
tan θ

2

)
= ln

(
cot θ

2

)
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Kinematics

Kinematics XVII

which depends only on the angle θ, and hence can be easily measured. This
is why particle distributions are often in terms of dN/dη instead of dN/dy .
Note that η(θ) = −η(180− θ), i.e. the pseudorapidity is odd about θ = 90.
In the table below we show the corresponding η for some values of the polar
angle θ. A plot of η vs the angle θ in degree is shown in figure1.

θ(0) 0 10 20 30 45 90 180 170 160 150
η ∞ 2.44 1.74 1.32 0.88 0 −∞ -2.44 -1.74 -1.32

The Pseudorapidity is particularly useful in hadron colliders (such as the
Tevatron or LHC), where the composite nature of the colliding protons means
that interactions rarely have their centre of mass frame coincident with the
detector rest frame, and where η is much easier to estimate than the rapidity.

Since the azimuthal angle is confined to planes perpendicular to the beam
axis, say z-axis, ∆φ is invariant under boosts along the z-axis. So in the
plane η − φ plane we define the quantity

S. Nasri (UAEU) Lecture notes On Introduction to Particle Physics. June 2012 59 / 86
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Kinematics XVIII

d =
√

(∆η)2 + (∆φ)2

which represents the distance between two directions or particles (or jets) in
the (η − φ) plane. Note that d is invariant under a boost transformation
along the beam line.

Of course, the transverse momentum pT is another invariant under under
such boosts. For the process A + B → 1 + 2, the conservation of momentum
implies that transverse momentum of the final state 1 and 2 are equal and
can be written in terms of the centre of mass energy and the scattering angle
θcm in the centre of mass frame of the process (or the subprocess at parton
level for if A and B are protons or antiprotons) as

pT = p sin θcm =

√
s

2
sin θcm
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Kinematics

Kinematics XIX

So, often experiments measure the lab frame pseudo rapidities (which
parametrize the scattering angle θ in the center of mass of a process) of the
final state particles , their azimuthal angles, and their transverse momenta.
For hadron final states usually, the results are presented as a lego plot in the
η − φ− pT coordinates of the jet.

8Here we used the fact that

E + p‖ = m⊥ey , and ET =
√

(E − p‖)(E + p‖)

.
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Proton-Proton collision

Proton-Proton colision I

Introduction

At hadron colliders, such as the LHC, the collisions is between protons.
However, protons are like messy bags of quarks and gluons, where each
parton carries a fraction of the momentum of the proton with some
probability distribution. But , in fact, this can be seen as an advantage over
electron-positron colliders because now in every collision there will be a
scanning over a range of energies. Unfortunately, this happens simultaneously
and so we don’t have control on the initial state (unlike in the lepton
colliders), which means that we don’t know the center of mass frame of the
collision subprocess (at the parton level).

We have seen earlier, that the total cross section for proton-proton scattering
is of oder 100 mb. Thus, one wonder how can one search for new physics
which will have cross section of order pico barn, or even samller? It turns
out that most of the debris of that collision goes down the beam line, also
called minimum bias events, whereas the hard collisions, corresponding to
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Proton-Proton collision

Proton-Proton colision II

the interactions at short distance, will be distinguished by scattering out with
large angles and the presence of a hard scale Q which can be for example the
invariant mass of final state particles, or the transverse momentum of the
produced particles.

Parton kinematics
In the center of mass system, the proton 4-momenta are

Pµ = Eb(1, 0, 0, 1), P̄µ = Eb(1, 0, 0,−1)

We denote kµA and kµB the momenta of the partons in the proton and 2
antiproton, respectively. Since the energies of the particles (both in the initial
and final states) are much larger than the particle masses, I will take all the
masses to be zero. Thus,

ŝ := (ka + kb)2 ' 2ka.kb, S := (P + P̄)2 ' 2P.P̄ = 4E 2
b
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Proton-Proton collision

Proton-Proton colision III

The momenta ka and kb are fractions of P1 and P2, i.e.

ka = xaP, kb = xbP̄ 0 ≤ xa,b ≤ 1

and so,

ŝA,B ' xaxbS

As it has been mentioned in the introduction, at the parton level, we don’t
know the center of mass energy of the collision because we don’t know what
xa and xb really are, and so the collision can be taken place at any boost
along the z direction relative to the center mass frame of the protons. For
this reason, as we shall see below, it is useful to use the lightcone
coordinates, defined as

p± := p0 ± pz , pT = (px , py )
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Proton-Proton collision

Proton-Proton colision IV

and we label a 4-momentum as (p+, p−,pT ). In these coordinates, the scalar
product of two 4-vectors A and B reads

A.B =
1

2
(A+B− + A−B+)− AT .BT

Moreover, using the definition of the rapidity, we can write the momenta p±

as

p± = ET e
±y (76)

As we have shown earlier, under boosts in the z-direction with a velocity β,
the rapidity shifts as

y → y + η, η :=
1

2
ln

(
1 + β

1− β

)
S. Nasri (UAEU) Lecture notes On Introduction to Particle Physics. June 2012 65 / 86



Proton-Proton collision

Proton-Proton colision V

Hence,

p± −→ e±ηp±

and we see that these coordinates transform rather nicely under boosts in the
z-direction.

So, in this coordinates, the 4-momenta of the colliding protons read
P =

√
S(1, 0, 0, 0) and P̄ =

√
S(0, 1, 0, 0), where we used the approximation

that protons are massless in the Ultra relativistic collision. Thus,

(a) incoming partons : ka =
√
S(xa, 0, 0, 0), kb =

√
S(0, xB , 0, 0)

(b) Outgoing particles : kj = (ETj e
yj ,ETj e

−yj ,pTj )

Thus, from conservation of momenta we deduce
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Proton-Proton collision

Proton-Proton colision VI

0 =
∑

i

pTj

xa =
∑

j

ETj√
S
eyj (77)

xb =
∑

j

ETj√
S
e−yj (78)

Therefore, if one could measure the rapidities and the transverse energies of
all the particles that come out, one could determine the momenta fractions
xa and xb of the partons.
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Proton-Proton collision

Proton-Proton colision VII

The Cross section of p + p → 1 + 2:
According to the parton model, the probability of finding a parton a with
momentum fraction between xa and (xa + dxa) in a proton is

fa/p(xa;Q2)dx (79)

where fa/p(xa) are called the parton distribution functions (PDF), and Q is
the energy scale which characterize the hard scattering (for more details see
the appendix). The PDFs are nonperturbative quantities and no one knows
how to compute them from first principle. They are determined from the
data of the deep inelastic scattering, i.e. electron-proton scattering. Once the
PDFs are determined at a given scale, the so called
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation can be used to
evolve them to any other scale. A non trivial fact about the PDFs is that
once you determine them from some experiments, they can be used for all
experiments.

S. Nasri (UAEU) Lecture notes On Introduction to Particle Physics. June 2012 68 / 86



Proton-Proton collision

Proton-Proton colision VIII

At the LHC, Q2 ∼ (TeV )2, and the cross section for the process
A + B → 1 + ...n reads

dσ =

∫ 1

0

dxadxbfA/p(xa)fb/p(xb)

(
|M|2

2ŝ

)
dΦn

where M is the amplitude of the above process, and

dΦn = (2π)4δ(4)(xaP + xbP̄ −
n∑

j=1

pj )
n∏

j=1

d3pj

2Ej (2π)3

=
(2π)(4−3n)

2n
δ(4)(xaP + xbP̄ −

n∑
j=1

pj )
n∏

j=1

dyjdpT ,j

Integrating over the x’s yields
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Proton-Proton collision

Proton-Proton colision IX

dσ =
fa/p(xa)fb/p(xb)

S

|M|2

ŝ
δ(
∑

pT ,j )
n∏

j=1

dyjdpT ,j

where now the fraction of momenta xa and xb are not free variables; they are
given by the expressions (77) and (78), respectively.

Now let us restrict our self to the case of n = 2. Then, integrating over the
transverse momentum of particle 2, we obtain

dσ =
fa/p(xa)fb/p(xb)

S

|M(a + b → 1 + 2)|2

ŝ
dy1dy2d

2pT (80)

where pT ≡ pT ,1 = −pT ,2. In terms of the variables y1, y2 and pT , the
Mandlestam variables read
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Proton-Proton collision

Proton-Proton colision X

ŝ = xaxbS = E 2
T ,1 + E 2

T ,2 + 2ET ,1ET ,2 cosh (y2 − y1)

t̂ = (xaP − p1)2 = −
[
p2

T + ET ,1ET ,2e
(y2−y1)

]
Note that both ŝ and t̂ depend pT and on the difference of the rapidities
∆y = (y2 − y1). This dependence is somehow expected since the
Mandelstam variables are Lorentz invariant, and, as we have shown before,
∆y is invariant under boosts along the z axis. Furthermore, one can easily
show that dy1dy2 can be written as9

dy1dy2 = dȳd(∆y)
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Proton-Proton collision

Proton-Proton colision XI

where ȳ = (y1 + y2)/2 is the average of the rapidities of the two final state
particles, which basically is a measure of how off is the centre of mass frame
of the collision from the lab frame.

Since the spin averaged amplitude square will depend on ŝ and t̂, we can
trade the variable ∆y with ŝ, as follows

dŝ = 2ET ,1ET ,2 sinh ∆yd∆y

= 2ET ,1ET ,2 sinh

[
cosh−1

(
ŝ − E 2

T ,1 − E 2
T ,2

2ET ,1ET ,2

)]
d∆y

≡ 1

J (ŝ,pT )
d∆y

where
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Proton-Proton collision

Proton-Proton colision XII

J (ŝ,pT ) =
1√

((ET ,1 − ET ,2)2 − ŝ) ((ET ,1 + ET ,2)2 − ŝ)
(81)

Thus,

dy1dy2 = J (ŝ,pT )dȳd ŝ

For the particular case where M1 = M2 so ET ,1 = ET ,2 = ET , it is
straightforward to show that

xa =

√
ŝ

S
e ȳ , xb =

√
ŝ

S
e−ȳ , J =

1√
ŝ(ŝ − 4E 2

T )
(82)

and so,
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Proton-Proton colision XIII

d2σ

d2pT
= dȳ fa/p(

√
ŝ/Se ȳ )fb/p(

√
ŝ/Se−ȳ )J (ŝ,pT )

|M|2(ŝ,pT )

ŝ
d ŝ

Note that the variable ȳ enters only in the PDFs. So, If we only measure the
transverse momentum, we can integrate over ȳ and obtain

d2σ
d2pT

=
dLa,b

dŝ
(ŝ)J (ŝ,pT ) |M(a+b→1+2)|2

ŝ
dŝ (83)
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Proton-Proton collision

Proton-Proton colision XIV

where

dLa,b

dŝ
(ŝ) =

1

S

∫
dȳ fa/p(

√
ŝ/Se ȳ )fb/p(

√
ŝ/Se−ȳ )

which is called the parton luminosity, and it is given in units of cross section
(e.g. pb or nb). An important observation is that for x < 0.1, the PDFs can
be well approximated by power laws, and naively the dependence on ȳ in
product fa/p(

√
ŝ, ȳ)fb/p(

√
ŝ, ȳ) almost cancels. Hence, one expect that the

rapidity distribution will be approximately flat up to values of x close to 0.1.
This means that ρab(ŝ) is a power law. Aplot of dLa,b/dŝ is shown in figure3.

By inspection, one finds that for
√
ŝ ≤ TeV , the parton-parton luminosity for

gluon-gluon and the quark-antiquark can be approximated as

dLa,b

dŝ
(ŝ) '

 2.5× 103
(

TeV√
ŝ

)4

pb : gg

4.5× 102
(

TeV√
ŝ

)3.3

pb : qq̄
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Proton-Proton collision

Proton-Proton colision XV

where q here can be a up or down quark. Thus, the parton luminosity falls
very rapidly with ŝ.

Some qualitative features of σ(p + p → 1 + 2)
Let us specialise to the following cases:

1 Production of massless particles via resonance
We consider the production of the particles 1 and 2 via the process

a + b → R → 1 + 2 (84)

where the resonance R has mass MR and total width ΓR . We assume that the
masses of 1 and 2 are much smaller than the centre of mass energy of the
process so that they can be considered to be massless. When ŝ ' MR , we can
use the narrow width approximation, i.e.

|M|2 ∝ product of coupling constant

(ŝ −M2
R )2 + M2

R Γ2
R

→ Kδ(ŝ −M2
R ) (85)
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Proton-Proton collision

Proton-Proton colision XVI

where K is a the product of the coupling constant and the factor π/MX ΓX

which arises from approximating the propagator with a delta-distribution.
Hence,

d3σ

dȳd2pT
∝ dȳ

∫
fa/p(

√
ŝ/Se ȳ )fb/p(

√
ŝ/Se−ȳ )J (ŝ, pT )

δ(ŝ −M2
R )

ŝ
d ŝ

which yields

d3σ ∝ d2pT /M2
R√

1−
4p2

T
M2

R

1
M2

R

[
dȳ fa/p(

√
M2

R/Se
ȳ )fb/p(

√
M2

R/Se
−ȳ )
]

(86)
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Proton-Proton collision

Proton-Proton colision XVII

(a) The dependence of the number of events as function of p2
T is

d2σ

d2pT
∝ 1√

1− 4p2
T

M2
R

which sharply peak at pT = MR/2, also called the Jacobian peak. Note that
the conservation of energy in the parroting process requires that ET ≤

√
ŝ/2,

and so the maximum value of the transverse momentum when
√
ŝ = MR is

excepted to be MX/2 for massless particles. In practice, the peak is is smeared
by finite width of the particle X and QCD radiation.

(b) The distribution of the number of events versus the rapidity reads

dσ

dȳ
∝ fa/p(

√
M2

R/Se
ȳ )fb/p(

√
M2

R/Se
−ȳ )

which, as we stated earlier, will be flat for x ≤ 10−1 (where the PDFs started
to have approximate power law behaviour), which corresponds to
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Proton-Proton collision

Proton-Proton colision XVIII

MRe
ȳ ∼ Ecm

10

at which the distribution falls very quickly to zero.
s

kip (c) The total cross section can be obtained by integrating (86) over the
transverse momentum(which gives a factor of π/2) and the rapidity, which
parametrically yields

σtot ∼
1

M2
R

ρab(M2
R/S) ∼ 1

M2
R

(
Ecm

MR

)2α

Thus,

σtot ∼

{
1

M6
R

: a = b = gluon
1

M5.3
R

(a, b) = (u, ū), (d , d̄)
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Proton-Proton collision

Proton-Proton colision XIX

The important result is that, the cross section for the production of SM
particles via resonance at the LHC drops as large power of MR : roughly
between 1/M5

R and 1/M6
R , which is due to the PDFs. This means that, at the

LHC it is important to cover very large range of cross sections because a
factor of 10 in the mass will correspond to about a factor of 106 in the rate.

2 Production of heavy particles:
Now let us assume that the particles 1 and 2 are heavy enough that their
masses can not be neglected. Also, assume that they have the same mass M.
Then, the differential cross section for the pair production of these particles
can be re-written as

d3σ ∝ d2pT/M
2

ŝ
M2

√
ŝ

M2

(
ŝ

M2 −
4E 2

T
M2

)ρa,b(ŝ)|M(a + b → 1 + 2)|2d(ŝ/M2)

Now, notice that because first factor falls like 1/ŝ and the parton luminosity

goes like 1/ŝ2, the collision is dominated by values of ŝ = 2E
(min)
T . This means
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Proton-Proton collision

Proton-Proton colision XX

rate for the collision is dominated by the smaller values of pT of the produced
particles.

At the LHC, heavy particles are primarily produced at threshold .
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Proton-Proton collision

Proton-Proton colision XXI

Top production and detection at LHC

The initial hard scattering that yields tt̄ final state involves either gluons or a
quark and an antiquark.

9Recall that under the transformation{
x = x(u, υ)
y = y(u, υ)

the differential element dxdy is related to dudυ as

dxdy = |
∂(x , y)

∂(u, υ
|dudυ

where

|
∂(x , y)

∂(u, υ
| =

∣∣∣∣∣ ∂x
∂u

∂x
∂υ

∂y
∂u

∂y
∂υ

∣∣∣∣∣
is the Jacobian of the transformation. Generalisation to more than two variables is
straightforward.
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Proton-Proton collision

Figure: Parton luminosity
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Proton-Proton collision

Figure: Parton luminosity
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Appendix-I: Scattering in Scalar QED

Scattering in Scalar QED I

The Lagrangian:
Let φ be a complex scalar field representing a charged particle interacting
with U(1) gauge field Aµ. The Lagrangian is given by

L = −1

4
F 2
µν − |Dµφ|2 −m2|φ|2

= −1

4
F 2
µν − gAµJ

µ + g2AµA
µ|φ|2

where Fµν = ∂µAν − ∂νAµ is the gauge field strength, and

Dµφ = ∂µφ+ igAµφ, Fµν = ∂µAν − ∂νAµ

and

Jµ = i (φ∗∂µφ− ∂µφ∗φ)
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Appendix-I: Scattering in Scalar QED

Scattering in Scalar QED II

Cross section for the process φ(p1)φ(p2)→ φ(p3)φ(p4):
There are two diagrams that contribute to this process:
(a) t-channel diagram:

iMt = (−ig) (pµ1 + pµ3 )
−i
[
ηµν + (1− ξ)

kµkν
k2

]
k2

(−ig) (pµ2 + pµ4 )

(b) u-channel diagram
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Appendix II: Drell-Yan scattering

Drell-Yan scattering: Production of l+l− I
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Appendix II: Drell-Yan scattering

Figure: Pseudorapidity
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