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1 Introduction

In 1903, Konstantin Tsiolkovsky (1857- 1935), a Russian Physicist and school
teacher, published "The Exploration of Cosmic Space by Means of Reaction Devices",
in which he presented all the basic equations for rocketry. He determined that liquid
fuel rockets would be needed to get to space and that the rockets would need to be
built in stages. He concluded that oxygen and hydrogen would be the most powerful
fuels to use. He had predicted in general how, 65 years later, the Saturn V rocket
would operate for the first landing of men on the Moon.

Robert Goddard, an American university professor who is considered "the father
of modern rocketry," designed, built, and flew many of the earliest rockets. In 1926
he launched the world’s first liquid fueled rocket.

The German scientist Hermann Oberth independently arrived at the same rock-
etry principles as Tsiolkovsky and Goddard. In 1929, he published a book entitled
"By Rocket to Space", 1 that was internationally acclaimed and persuaded many that
the rocket was something to take seriously as a space vehicle.

One of the leading figures in the development of pre-war Germany’s rocket program
and the development of the V2 missile is Von Braun (1912-1977). He entered the
United States after the war and became a naturalized citizen. He worked on the
development of intercontinental ballistic missiles and led the development team that
launched Explorer 1. Von Braun was the chief architect and engineer of the Saturn V
Moon rocket2.

2 Types of Rockets

A rocket is an engine that produces a force, a thrust, by creating a high velocity out-
put without using any of the constituents of the atmosphere in which the rocket is
operating. This means that it can operate in any part of the atmosphere and outside
the atmosphere which makes it ideal for space propulsion2. The thrust is produced
because the rocket engine must have exerted a force on exhaust material and an equal
and opposite force, the thrust, therefore, exerted on the rocket.

There are two basic types of rocket engines:

• Chemical Rockets:

1Actually this book was based on his dissertation for the University of Heidelberg, which was
rejected for being too speculative.

2On July 20, 1969, American astronaut Neil Armstrong set foot on the Moon. It was the first time
in history that humans had touched another world.

2Means pushing or driving forward.
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In such engines, a fuel (e.g. liquid hydrogen (LH2) or Kerosene) and an oxi-
dizer (liquid oxygen (LO2)) are usually supplied to the combustion chamber of
the rocket. The chemical reaction between the fuel and the oxidizer produces
a high pressure and temperature in the combustion chamber and the gaseous
products combustion can be expanded down to the ambient pressure, which is
much lower than the combustion chamber pressure, giving a high velocity gaseous
efflux from the rocket engine.

Chemical rockets are unique in that the energy required to accelerate the pro-
pellant comes from the propellant itself, and in this sense, are considered energy
limited. Thus, the attainable kinetic energy per unit mass of propellant is limited
primarily by the energy released in chemical reaction; the attainment of high
exhaust velocity requires the use of high-energy propellant combinations that
produce low molecular weight exhaust products. Currently, propellants with the
best combinations of high energy content and low molecular weight seem capable
of producing specific impulses (see later) in the range of 400 to 500 seconds or ex-
haust velocities of 13, 000− 14, 500ft/sec1 is the universal gas constant, γ ' 1.2
is the ratio of specific heat, Tooc is the combustion chamber temperature, patm
and pocc are the atmospheric and the combustion pressures, respectively.

• Non-Chemical Rockets:

In a non-chemical rocket, the high efflux velocity from the rocket is generated
without any chemical reaction taking place. For example, a gas could be heated
to a high pressure and temperature by passing it through a nuclear reactor and
it could then be expanded through a nozzle to give a high efflux velocity.

There have been many types of rockets developed by NASA. The Mercury Redstone 3
rocket carried the spacecraft of America’s first astronaut, Alan Shephard, into space.
The Atlas 6 rocket carried John Glenn’s spacecraft into Earth’s orbit, making him the
first American to ever orbit the Earth. The Titan rocket carried the Gemini 12 mission
into space. Titan series rockets carried many Gemini missions into space.

The Saturn V2 launch vehicle was used for Apollo flights to the Moon (from 1967
to the end of 1972). The rocket was 364 feet tall ( taller than the Statue of Liberty)
and included the spacecraft and three rocket stages. Each rocket stage pushed the
spacecraft farther and farther from Earth. The Saturn V flew ten missions to the

1The thermal rocket exhaust velocity is given by

Ve =

√√√√ 2γ

γ − 1

RTocc

M̄

[
1−

(
patm
pocc

) γ−1
γ

]
(2.1)

where M̄ is the average molecular weight of the exhaust, R = 8314.3 Joules/mole.K
2The "V" designation originates from the five powerful F-1 engines that powered the first stage of

the rocket.
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Moon, three un-piloted and seven piloted. (Apollo XIII was an unsuccessful mission
that returned safely to Earth).

The Soviets launched the Soyuz spacecraft into Earth orbit to meet the American
Apollo spacecraft. The two spacecraft met in space, proving that such a rendezvous
was possible. When the two crafts connected, American astronauts and Soviet Cos-
monauts marked the meeting with an historic handshake. The space shuttle has three
main rocket engines and a large external fuel tank. Two additional rockets are needed
to assist the shuttle in its journey into space.

3 Derivation of the equation of a rocket

Consider a rocket of mass M(t), moving at velocity υ(t) at the instant t and subject
to external forces Fext (typically gravity or drag), and let υ be the velocity of a small
amount of gas of mass |dM | expelled by the rocket in the instant (t+dt). the momentum
of the rocket at instant t is

P (in) = Mυ (3.1)

At the instant (t + dt), a small amount of gas of mass |dM | is expelled by the rocket
with velocity υ′ with respect to a stationary observer on the ground, and the rocket
will have mass is (M − |dM |) and velocity (υ + dυ). Thus, momentum of the system
is

P (fin) = (M − |dM |) (υ + dυ) + |dM |υ′ (3.2)

Thus, Newton’s second law reads,

Fextdt = |dM | (υ′ − υ) +Mdυ (3.3)

For the case of the rocket, |dM/dt| = −dM/dt, and so we get

M
dυ

dt
= Fext + VeṀ (3.4)

Here, ~Ve = (υ′ − ~v) is the velocity of |dM | relative to the the rocket. This expression
is valid when Ṁ < 0 (mass loss, such as the case of rocket) as well when Ṁ > 0 (mass
mass gain). The term VeṀ is called the thrust, and can be interpreted as an additional
force acting on the rocket due to gas expulsion. Equation (3.6) can be also written in
the familiar form

d (M~v)

dt
= ~Fext + ~v′Ṁ (3.5)
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which shows that, for systems involving variable mass, the usual expression d (M~v) /dt =
~Fext is only valid when the final (initial) velocity of the expelled (captured) mass, υ′,
is zero. Along the flight path, the above equation reads

M
dv

dt
= Ft − VeṀ (3.6)

where Ft is the component of Fext along the direction of υ (i.e. tangent to the path),
and v and Ve are the magnitudes of υ and Ve. If Ft is known, this equation can be
integrated in time to yield an expression for the velocity as function of time.

Another way to derive the rocket equation:

Let ~f be the impulsive force that M exerts on |dM | during the short time interval
dt. Thus, from point of view of |dM |, the impulse fdt is equal to the change of
momentum of |dM |,

fdt = |dM |(υ′ − υ) (3.7)

From point of view of M , in addition to the external forces Fext, by Newton’s third
law, M will experience a force −f , exerted by |dM |. Hence, impulse equation for M
is

Fextdt− fdt = M(υ + dυv)−Mυ (3.8)

By combining (3.7) and (3.9), we get

M
d~v

dt
= ~Fext + ~VeṀ (3.9)

which is the exactly the equation in (3.6).
In the absence of external forces, the integration of (3.6) gives

M(t) = M0e
−∆v

Ve (3.10)

where M0 and Mf = M(tf ) are the mass of the rocket at t0 and tf respectively. Equa-
tion (3.10) is known as the rocket equation, or the Tsiolkovsky rocket equation,
which gives the mass of the rocket as a function of the initial mass M0, ∆v, and Ve.
which is known as the rocket equation, or the Tsiolkovsky rocket equation, which
gives the mass of the rocket as a function of the initial mass M0, ∆v, and Ve.

In general, the external force consists of the force of gravity M~g and the drag
force ~D. Then (3.6) reads

dv

dt
= −Ve

M
Ṁ − g sin θ − D

M
(3.11)

where θ is angle that the velocity vector makes with respect to the horizontal. By
integrating (3.11) between some initial time t0 and a final time tf , we obtain

∆v = ∆v|space + ∆v|gravitational + ∆v|drag (3.12)
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where

∆v|space = Ve ln
M0

Mf

(3.13)

∆v|gravitational = −
∫ tf

0

g sin θdt

∆v|drag = −
∫ tf

0

D

M
dt

The effect of the drag force D is harder to quantify. It depends on the size, shape, and
the speed of the vehicle, the Mach number and the local properties of the atmosphere
through which the the vehicle is passing. It is given by

D =
1

2
ρv2ACD (3.14)

Here ρ is the air density, CD is the drag coefficient, and A is the cross sectional area of
the rocket. The air density changes with altitude z, and may be approximated (perfect
gas approximation) by

ρ = ρ0e
−z/H (3.15)

where H ' 8000 m is the so-called scale height of the atmosphere, and ρ0 is the
density at sea level. It turns out that the differential equation for the velocity can not
be integrated explicitly, and needs to be integrated numerically. however, to see the
importance of the drag versus gravity, we estimate the ratio D/Mg. For a rocket of
mass of 12000 kg with a cross section of A ∼ 1 m2 and CD, the drag force is maximal
for ρ ' 0.25 kg/m3 and speed v ' 700 m/s. Thus,

D

Mg
' 0.02 (3.16)

which shows that the drag force is only about 2% of the gravity force, and so it is
reasonable to ignore it in the first approximation. Thus, the gravitational losses are
by far the largest for the space velocity increment.

If the rocket is launched vertically from rest with a constant thrust, and assuming
that g is constant1, then after integration the velocity is given by

∆v(t) = Ve

[
ln

1

µ
− 1− µ

n

]
(3.17)

where µ = M/M0 and n = −VeṀ/gM0 is thrust induced acceleration in units of g,
also called the number of gees2. Note that we have assumed that t = 0, VeṀ > M0g,
otherwise the rocket will sit on the pad, burning fuel until the remaining mass satisfies

1 Assuming g to be constant may not be always as a justifiable assumption.
2Note that Ṁ is constant
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this requirement. By integrating the velocity equation, and taking v0 = 0, we find that
the trajectory of the rocket is given by

z =
V 2
e

gn

[
1− µ ln

1

µ
− µ(1− µ)2

2n

]
(3.18)

It is often used in practice to characterize the performance of a rocket engine by the
so-called specific impulse, Isp, defined as the ratio of the magnitude of the thrust to
the propellant weight flow rate:

Isp =
Ve|Ṁ |
|Ṁ |g

=
Ve
g

(3.19)

Thus, the greater the specific impulse, the greater the net thrust and performance of
the engine. Typical values of Isp are around 300 s. Values of Isp ' 370 are obtained
by using hydrogen1 as fuel and burning it either oxygen or fluorine. Value of Isp
up to 500 s can be achieved for higher energy fuels.

4 Optimizing a Single-Stage Rocket

By denoting ML,Ms, and Mp to be the masses of payload (the section of the rocket
that carries the cargo to be delivered), structure ( such as the engine and empty tank),
and propellant, respectively, we define the following coefficients

• Payload fraction

Π =
ML

M0

(4.1)

• The structural coefficient

ε =
Ms

Ms +Mp

(4.2)

Smaller values of ε are highly desirable, since small structural mass means that more
payload can be taken. For V-2 ballistic missile ε ' 0.3, which is considered to be huge
value. Launch vehicles posses much smaller structural coefficient. For example, the 1st

stage of the Saturn-V moon rocket had ε ' 0.07. Generally, ε strongly depends on the
density of the propellant: more dense propellants needs smaller tanks. This is why low
density is one of the highest disadvantages of the LOX/LH2 propellants3. However,
solid fuel motors, in spite of their high densities, needs thick castings, and hence their
structural coefficients are large as well.

1The hydrogen is a preferred fuel because when it burns with oxygen it gives H2O which has small
average molecular weight, and hence a larger exhaust velocity (see the expression of Ve in the footnote
in page 3.)

3It has very low density of only 0.28 kg/m3 and needs large tanks.
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The mass ratio Mf/M0 can be written as

Mf

M0

=
ML +Ms

ML +Ms +Mp

= 1− Ms +Mp

M0

Mp

Ms +Mp

(4.3)

= 1− (1− Π)(1− ε)
= ε+ (1− ε) Π

Using (4.2) and (4.1), we can cast ∆v|space as

∆v|space = −Ve ln [ε+ (1− ε) Π] (4.4)

For a given value of ε and the ratio β = ∆v|space/Ve, the allowed payload mass fraction
that can be carried on board the vehicle is given by

Π =
e−β − ε
(1− ε)

(4.5)

and consequently, the propellant (fuel) mass fraction is

Mp

M0

= (1− ε) (1− Π) (4.6)

=
(
1− e−β

)
In order to reach a LEO 1, requires an orbital velocity of approximately 7700 m/s1.
This means that the rocket must achieve a velocity increment of 9000 m/s where the
extra velocity is needed to overcome gravity and drag2. if we suppose that the rocket
can produce exhaust jets at velocities as high as Ve ∼ 4500 m/s, then β = 2, and hence

Mp

M0

= 87% (4.7)

Thus the the vehicle must have at least 87% propellant mass fraction. If we assume
that the structural mass is about 10% of the propellant, which means that ε = 0.09,
then we find that

Π = 0.048 (4.8)

1The lowest altitude where a stable orbit can be maintained, is at an altitude of about 200 km.
1For a circular orbit, the velocity is constant throughout the orbit, and given by

vcirc =

√
µ

rcirc

where µ is a gravitational parameter and rcirc is the radius of the circular orbit to the planetary
center. For the Earth, µE = 398600 km2/s2, and has radius RE = 6378 km. Thus a 185 km altitude
circular LEO orbit has a velocity of approximately 7.8 km/s.

2The losses due to gravity and drag are of about 25%−30%. To reach moon or Mars, the required
∆v is more than 10 km/s.
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which is a very small fraction of the rocket weight. This shows the limitation in the
payload mass that can be carried. One possible solution is to drop off the empty
tank plus engine once the fuel is burnt. Although the thrust is the same, the mass of
the rocket is smaller, and so the acceleration will be greater. However, with current
technology and fuels, a single stage rocket to orbit (SSTO) is still not possible.

In fig.1, we plot ∆v|space/Ve v.s Π for different values of ε. We can see that, without
payload and for a reasonable value of the structural coefficient ε ' 0.1, the rocket
can (theoretically) achieve a velocity increment ∆v|space ' 2.8Ve. For LOX/kerosene
propellant with Ve ' 3400 m/s it .....

5 Multi-stages Rocket

Multistage rocket1 is a series of individual vehicles or stages, each with its own struc-
ture, tanks and engines. Multistage rocket permits to achieve higher velocities and
carry more payload for space vehicles3. In this case, the initial mass in the equation
is the total mass of the rocket at ignition, and the final mass is the total mass of the
rocket at burnout (prior to discarding expendable stages). After the propellant is fully
consumed in a particular stage, the remaining empty mass (tank plus its engine) of
that stage is dropped from the vehicle and the propulsion system of the next stage is
started. The last stage carries the payload.

To show that in a multi-stages rocket, the payload fraction can be higher than a
single one, we consider an example of two stage vehicle. We again assume that each
empty tank plus its engine weighs 10% of the propellant it carries, and the exhaust
velocity is the same in the stages and equal to 4500 m/s. The required ∆v|space is now
divided into two ∆v’s of 4.5 km/s each. Then we have

• In the first stage, if Mf1 is the mass after burn out, we have

Mf1 = e4.5/4.5M0 = 0.368M0 (5.1)

where M0 is the total initial mass of the rocket. The fuel burnt will be

Mp1 = (M0 −Mf1) = 0.632M0 (5.2)

Hence the weight of the tank and the engine to be dropped will be Ms1 =
0.0632M0, leaving an initial mass for the second stage,Mf2, of

M02 = 0.368M0 − 0.063M0 = 0.295M0 (5.3)

• In the second stage, the mass after complete burn out is

Mf2 = e−1M02 = 0.109M02 (5.4)

1The idea of multi-staging of a rocket is credited to Konstantin Tsiolkovsky .
3It also improve performance for long-range ballistic missiles.
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The fuel burnt in this stage will be

Mp2 = (M02 −M2f ) = 0.186M0 (5.5)

So the weight of the tank plus engine will be Ms2 = 0.019M0, leaving for the
payload

ML = (0.109− 0.019)M0 = 0.09M0 (5.6)

Although it is still small but about twice the size of the payload obtained for the
single stage rocket.

As we stated earlier, multistage rockets are able to reach orbital velocity because
they discard structural weight during boost. This can be seen by again considering a
two-stage rocket, whereMsi andMpi denote the masses of the structure and propellant
at the ith stage (here i = 1, 2), respectively, and ML is the pay load. If, for simplicity,
assume that the exhaust velocity to be Ve for both stages, and that the tank is dropped
off with zero velocity relative to the remaining rocket1, then the final velocity is given
by

∆v(2−staging)|space = Ve ln

(
M01

Mf1

)(
M02

Mf2

)
(5.7)

where M01 = (Ms1 +Ms2 +Mp1 +Mp2 +ML) is the initial mass of the rocket at
the take off, M02 = (ML +Ms2 +Mp2) is the mass of the second-stage vehicle af-
ter structure of the first stage is dropped off, Mf1 = (Ms1 +Ms2 +Mp2 +ML) and
Mf2 = (Ms2 +ML) are the masses of the rocket just after the complete burn out of
the fuel in first and second stage, respectively. The velocity increment (5.8) can be
written as

∆v(2−staging)|space = ∆v(single−rocket)|space + δ(2−staging) (∆v) (5.8)

where

∆v(single−rocket)|space = Ve ln

(
M0

M
(single−rocket)
f

)
(5.9)

and

δ(2−staging) (∆v) = Ve ln

(
M

(single−rocket)
f

Mf1

)(
M02

Mf2

)
(5.10)

Here M (single−rocket)
f = (Ms1 +Ms2 +ML) is the final mass of a single-stage rocket.

Let us now assume that Ms1 = Ms2 = MS/2, and Mp1 = Mp2 = MP/2. Since the
1If it is dropped off with some non zero velocity relative to the rocket, then there will be an extra

gain in the initial velocity of the next stage.
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propellant mass is the dominant contribution to the total mass of the rocket, we can
expend the second term in (5.8) in powers of MS/MP and ML/MP , and obtain

δ(2−staging) (∆v) = Ve ln

[
1 +

MS

MS + 2ML

(
1− 2

(MS +ML)

MP

+ 4
(MS +ML)2

M2
P

)]

= Ve ln

[
1 +

MS

MS + 2ML

(
1− 2

(M0 −MP )

MP

+ 4
(M0 −MP )2

M2
P

)]
(5.11)

From the above expression we see that δ (∆v) is positive provided that MP/M0 >
2
3
,

which is the case in almost all rocket.
To get an idea an idea about the magnitude of δ (∆v), we consider a rocket of

total mass M0 = 100 tonnes, carrying a payload of mass ML = 1 tonnes, and with a
structural mass of about 10% of the rocket mass. We assume that the engines develop
a constant exhaust velocity of Ve = 2700 m/s. In this case, equations (5.9) and (5.10)
yield

∆v(single−rocket)|space = 2700 m/s ln

[
10 + 89 + 1

10 + 1

]
' 5960 m/s (5.12)

δ(2−staging) (∆v) = 2700 m/s ln

[(
10 + 1

10 + 44.5 + 1

)(
5 + 44.5 + 1

5 + 1

)]
' 1382 m/s

Thus, the final velocity of this 2-stage rocket is

∆v(2−staging)|space = 7342 m/s (5.13)

If the above rocket is divided into three stages with the fuel and the structural mass
being shared equally amongst the three steps, then it is straight forward to show that
the extra stage improve the velocity by another 749 m/s. Thus, that the final velocity
achieved by the three-stage rocket is ∆v(3−staging)|space = 8092 m/s.

For the general case of an n-stage rockets, we denote by

• M0i: The total initial mass of the ith stage prior to firing including payload mass,
that is the mass of i, i+ 1, ..., n stages.

• Mpi: The mass of the propellant in the ith stage.

• MBi
:= M0i −Mpi is the burnt out mass at the ith stage.

• Msi: The structural mass of the ith stage including the mass of its engine.

• MLi
:= M0(i+1).

• ML: The payload mass.

For the ith partial rocket, we define the structural coefficient εi, the payload ratio λi,
and the mass ratio Ri as follow

– 11 –



• Structural coefficient : εi = Msi

M0i−M0,i+1
= Msi

Msi+Mpi

• Payload ratio: λi =
MLi

M0i−M0(i+1)
=

M0,i+1

M0i−M0,i+1

• Mass ratio: Ri = M0i

MBi
= M0i

M0i−Mpi
= 1+λi

εi+λi

• Total payload ratio: Πn =
MLn

M0,1
= Πn

i=1

(
λi

1+λi

)
Note that only two of the three parameters are independent. Since the final velocity
of the ith stage is the initial velocity of the (i+ 1)th stage, the final velocity increment
after n stages reads

∆v|space = vf,n − v0,1 (5.14)
= (vf,n − v0,n) + (vf,n−1 − v0,n−1) + ....+ (vf,1 − v0,1)

=
n∑
i=1

∆vi

which can be written as

∆v|space =
N∑
i=1

Vei lnRi (5.15)

=
N∑
i=1

Vei ln
1 + λi
εi + λi

where Vei is the exhaust velocity at the ith stage.

6 Optimizing Multi-stages Rocket

The effective exhaust velocities , Vei and the structural coefficient ,εi, are known con-
stants based on some prior choice of propellants and structural design for each stage.
The question is given ∆v|space, how should one distribute the total mass of the vehicle
among the various stages so as to maximize the payload fraction1. So, the problem is
to maximize

λ∗ = Πn
i=1

λi
1 + λi

(6.1)

with the constraint (5.15). In this case one introduce a Lagrange multiplier γ, such
that Maximizing ln Γ is equivalent to maximizing

∂λ∗
∂λi

+ γ
∂ (∆v|space)

∂λi
= 0; i = 1, 2, .., n (6.2)

1One also could ask the question: given Π what is the maximum final velocity.
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which yields

λ∗
λi (1 + λi)

− γVei
1− εi
1 + λi

1

εi + λi
= 0; i = 1, 2, .., n (6.3)

Similarity of weight ratios for optimized rockets implies that

Veiλi
1− εi
εi + λi

=
λ∗
γ

=: α = Const (6.4)

Solving for λi gives

λ
(Optimal)
i =

αε

(1− εi)Vei − α
(6.5)

which when inserted in (6.6) and (5.15), yields

λ∗ = Πn
i=1

αεi
(1− εi) (Vei − α)

(6.6)

∆v|space =
n∑
i=1

Vei ln

(
Vei − α
εiVei

)
(6.7)

Fo a given ∆v|space, the constant α is numerically calculated from (6.7) and inserted
in (6.6) to determine the maximized total payload λ∗.

Let us assume that the exhaust velocity and the structural coefficients is the same
for all stages, i.e. Vei = Ve and εi = ε. If we define

βn =
∆v|space
nVe

(6.8)

then, we have

α = Ve
[
1− εeβn

]
(6.9)

λ =
1− εeβn
eβn − 1

(6.10)

Πn =

[
e−βn − ε
(1− ε)

]n
(6.11)

R = eβn (6.12)

Note that for very large n, i.e. n→∞, the total payload fraction becomes

lim
n→+∞

Πn = exp

[
− ∆v|space
Ve (1− ε)

]
(6.13)

In figure.2, we plot the total payload ratio Πn versus ∆v|space/Ve for ε = 0.075 and
different values of the number of stages.

REMARQUES
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• (ε, π) parameterization of the staging

It is worth mentioning that some authors instead of choosing (λi, εi) as parameters
for the staging of the rocket, they use (πi, εi), where

πi =
M0,i+1

M0,i

(6.14)

is the payload fraction at the ith stage. Then the final velocity increment reads

∆v|space = −
n∑
i=1

Vei ln [εi + (1− εi) πi] (6.15)

If as before, we assume that Vei = Ve and εi = ε, then to find the optimum values
of payload, one must maximize

ln Γ =
n∑
i=1

lnπi + Λ

[
∆v|space

n
+ Ve ln [ε+ (1− ε) πi]

]
(6.16)

where we introduced the Lagrange multiplier Λ to take into account the constraint
(6.15). By taking the partial derivative w.r.t πi and set equal to zero, we get

1

πi
+ Λ

Ve (1− ε)
ε+ (1− ε) πi

= 0 (6.17)

Solving for the payload ratios we obtain

πi = − ε

(1− ε) (1 + ΛVe)
(6.18)

which is the same for each stage. Substituting the above expression of πi in (6.15)
gives

∆v|space = −
n∑
i=1

Ve ln

[
ε+

ε

1 + ΛVe

]
(6.19)

from which we can get

Λ =
e−βn − 2ε

Ve (ε− e−βn)
(6.20)

Using (6.18), we find that optimal value of payload is

πi =
e−βn − ε
(1− ε)

(6.21)

Thus, for n identical stages, the total payload ratio is

Πn =

[
e−βn − ε
(1− ε)

]n
(6.22)

which is the same expression as in (6.11).
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Examples

• Consider a liquid oxygen, kerosene system, and take

– The specific impulse Isp = 360 s, which implies that Ve = 3528 m/s.

– The final speed increment ∆v|space = 9077 m/s, needed to reach the orbital
speed.

– The structural coefficient ε = 0.1.

– The number of stages n = 3

With these numbers, the design results are

α = 2696 m/s (6.23)
λ(Optimal) = 0.5

R = 2.36

Γ(Optimal) = 0.047

Thus, less than 5% of the overall mass of the vehicle is payload.

• The Saturn V rocket engines that sent astronauts to the Moon, had three stages:
(a) First stage: M01 = 2902 t, ε1 = 0.0765, Ve1 = 2.98 km/s.

(b) Second stage: M02 = 658 t, ε2 = 0.114, Ve2 = 4.13 km/s.

(c) Third stage: M03 = 165 t, ε3 = 0.111, Ve3 = 4.13 km/s.

which gives a payload ratio of λ∗ = 1.62%, i.e. 47 t of payload, at ∆v|space =
12.4 km/s.

7 Derivation of the Exhaust Velocity of a Rocket

8 Rocket Design Principles

1. Discuss the components of a rocket ect...

2. To maximize ∆v|space, both rocket exhaust speed, Ve (or Isp), and mass ratio, R,
must be maximized. The exhaust speed derives from propulsion system perfor-
mance, while mass ratio is a figure of merit of the structural.

3. Typically, the propulsion Trust/Weight is more significant during early boost
(1 st stage) and Isp is important during last boost or for upper stages.
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