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1. In the first three chapters I discuss the historical developments of the quan-
tum theory. I find it important for Physics students to appreciate how the Quan-
tum theory evolved to its current form as it is presented in textbooks. For that I
relied on the original papers written by the founders of the Quantum Theory and
a number of excellent books such as [1], [2] and [3], given in the list of references.

2. I tried hard to avoid the statement "it can be shown that ...". For that, I gave a
detailed derivations to most of the important results presented in these notes.

3. Topics with superscript * are for advanced undergraduate students. These
can be discussed at the end of the course if time permits.

4. I have included a lot of footnotes (more than 80).

5. I suggested a set of exercises, and provided the final answers to most of them.
Most of these are straightforward, but some of them require both the thinking
and technical skills.

6. I added a number of Appendices which I felt they can be useful to the students
who want to know more about the topics discussed in theses notes.
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1 Cracks in the Foundations of Classical Physics

1.1 Black Body Radiation [1859− 1901]

In the middle of the 19th century, Physicists studied thermal radiation radiation, i.e.
the emission and absorption of radiation by an object at some temperature T. It was
known then that an object whose temperature is higher than the surrounding, it will
emit more radiation than it absorbs from its surrounding. Conversely, a cooler object
absorbs more radiation than it emits. Moreover, objects made of different materials
and kept at different temperatures emit different amount of radiation.

An object which absorbs all the incident radiation for all wavelengths is called ideal
black body, or for short a black body. It is an object that allows the whole of the
incident radiation to pass into it and absorbs within itself the whole incident radia-
tion1. The reason for such name is because those bodies that absorbs all the incident
visible light seem black to the human eye2. A body that does not absorb all incident
radiation is sometimes known as a grey body.

In practice, a very good approximation of a black body can be realized by consid-
ering as a hollow cavity with a tiny hole, as shown in fig.1, so that practically no
radiation can escape from it. In this case any ray of radiation that penetrates the hole
will be reflected by the cavity’s walls and eventually absorbed by them. On the other
hand, the atoms/molecules of the wall emit also radiation due to their chaotic motion.
After sufficiently long time, the amount of the emitted and absorbed radiation of a
given wave length will be equal and isotropic. That is the radiation is in thermal equi-
librium with the walls of the cavity, and so the only parameters that can characterize
the radiation are the temperature of the cavity and the wavelength of the radiation.

Figure 1: A schematic of a black body. Taken from ref..

1The concept of black-body was introduced by Gustav Robert Kirchhoff in 1860.
2The term black is purely conventional. For instance, our sun is almost a black body within a

wide band of the electromagnetic radiation wavelengths, however, surely, we don’t characterize it as
a black object. Another example of radiation that is approximately black body radiation is the one
emitted by a metal heated by a welding torch.
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1.1.1 Kirchhoff’s law of radiation [1859]

In 1859,Gustav Kirchhoff, a German physicist derived a law which gives the relation
between the emission and absorption intensities of any object in thermal equilibrium
with its surrounding. But before discussing Kirchhoff’s law, we will first introduce
few definitions. Let dEν be the amount of energy of radiation in the frequency band
between ν and ν + dν which propagates inside an infinitesimal solid angle dΩ in the
direction Ω and passes through elementary area dA at position r during the time
interval from t to (t+dt). We denote by θ the angle between the unit vector n̂ normal
to the element of area d A and the Ω. If I(ν, T,Ω) is the spectral intensity radiated
by the object (see the appendix for the definition and details) and IBB(ν, T ) is that of
black-body at the same temperature and the same wavelength, then the ratio

κ(ν, T,Ω) =
Iemis(ν, T,Ω)

IBB(ν, T )
(1.1)

is called the directional emissivity (or the directional emissive ability) of an object.
Similarly, we define the directional spectral absorptivity (or the absorbing ability)
of an object as

α(ν, T,Ω) =
Iabs(ν, T,Ω)

Iinc(ν, T,Ω)
(1.2)

where Iabs(ν, T,Ω) is the spectral intensity of absorbed radiation, and Iinc(ν, T,Ω) is
the one of the incident radiation.

Now, let us assume that an object at temperature T is held inside an isothermal,
ideally black cavity. After sufficiently long time both the walls of the cavity and the
object will have the same temperature T. The intensity of radiation incident on an
element d A of the object’s surface in the direction Ω will be equal to IBB(ν, T ) since
for an ideal black-body cavity the radiation intensity is isotropic. Since the object and
the cavity walls came into equilibrium, then the fluxes of the absorbed and the emitted
radiation should be equal3, and therefore we get

κ(ν, T,Ω) = α(ν, T,Ω) (1.3)

The above equality is called Kirchhoff’s law. It states that at equilibrium the emis-
sivity of a body is equal to its absorptivity and is valid for all bodies in a state of
thermal equilibrium with their surroundings. It also implies that a good absorber of a
particular frequency is a good emitter at the same frequency; similarly weak absorber
is weak emitter.

Another formulation of Kirchhoff’s law follows from (1.1), (1.2), and (1.3), which yield
3Otherwise, the body will heat up or cool down in time, contrary to the assumption of thermal

equilibrium.

– 3 –



I(λ,T,Ω)
α(λ,T,Ω) = IBB(λ, T ) (1.4)

So the ratio of the radiation intensity of a body, at temperature T, to its absorptivity
is a universal function of temperature and wave length, but it is independent of the
material and the shape of the object.

It is straight forward to show that

IBB(λ, T ) =
c

4π
u(λ, T ) (1.5)

Here c is the speed of light, and u(λ, T ) is the spectral energy density, i.e. energy
density per unit wavelength, of a black-body radiation. By integrating equation (1.5)
over all wavelengths, yields

IBB(T ) =
∫∞

0 IBB(λ, T )dλ = c
4πu(T ) (1.6)

where IBB(T ) is the radiant energy emitted per unit time per unit area by a black-body,
and u(T ) is its total energy density, which depend only on the temperature of the body.

In 1859, very little was known about u(λ, T ), and Kirchhoff had challenged physi-
cists to find it. Indeed, it was one of the great experimental challenges of the next four
decades which attracted the interest of many scientists.

1.1.2 Stefan-Boltzmann law [1879/1884]

In 1879, Joseph Stefan, after analyzing the experimental data published by Tyn-
dall in an 1865 book on the radiation emitted by a platinum strip heated electrically
to different temperatures, deduced that the total power radiated per unit area by the
heated body is proportional to the fourth power of its temperature. Later in 1884,
Ludwig Boltzmann, who was an ex-student of Stefan, provided a theoretical deriva-
tion of this law using thermodynamics considerations (the first and the second law )
and Maxwell’s equations of electromagnetism. Below I present his derivation.

Imagine a cylinder of volume V filled only with electromagnetic radiation enclosed
by a piston so that the gas of radiation can be compressed or expanded as the piston
moves, which allows the radiation to do work on its external environment and vice
versa. The walls of the cylinder are assumed to be perfectly reflecting and maintained
at constant temperature T by being in contact with an external reservoir. If some heat
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∆Q is added to the system, the total internal energy increases by an amount dU and
work is done on the piston as the radiation gas exerts a pressure P on it, increasing
the volume of the cylinder by dV . From the conservation of energy one can write,

δQ = dU + PdV (1.7)

or, equivalently,

dU = TdS − PdV (1.8)

with dS = δQ/T is the entropy increase of the gas. The above equation can re-written
in terms of energy and entropy densities u = U/V and s = S/v, as

du = Tds+
1

V
(Ts− u− P ) dV (1.9)

At the time when Boltzmann set out to prove Stefan formula, it was known that
the radiation pressure was derived almost a decade earlier by James Clerk Maxwell
in his Treatise on electricity and magnetism, and it is given by4

P =
1

3
u (1.10)

Substituting this expression in (1.9), we get

du = Tds+
1

V

(
Ts− 4

3
u

)
dV (1.11)

But u and s depend only on temperature, not volume, and so

Ts =
4

3
u; du = Tds (1.12)

Combining the two equations above, yields

du

u
= 4

dT

T
(1.13)

So, we obtain
4Another way to get this result is given in the appendix.
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u = aT 4 (1.14)

where a is called the radiation density constant. The emergent flux density from
a black-body is5

FBB =

∫
cos θ>0

I cos θ dΩ = πIBB(T ) (1.15)

Using (??), we obtain

FBB = σ T 4 (1.16)

which is known as the Stefan-Boltzmann law for the total radiant energy. The con-
stant of proportionality σ = ca/4, called the Stefan’s constant, is measured to be
approximately 5.67× 10−8 W/m2K4 in the SI unit system6.

For a body which is not a black body, emits less radiation than given by equation
(1.16). It is, however, proportional to T 4 and can be written as

F = κ σ T 4 (1.17)

where the dimensionless constant κ is the emissivity of the body which is less than unity.

1.1.3 Wien’s Displacement Law [1893]

In 1893, based on a combination of thermodynamics and electromagnetism considera-
tions, Wilhelm Wien showed that the wavelength of maximum emission of any body
is inversely proportional to its absolute temperature (measured in Kelvin). Below I
will show how he derived his formula.

Wien considered the following thought experiment. He imagined a perfectly reflecting
spherical cavity of radius r and volume V, filled with black-body radiation with tem-
perature T. Assume that the sphere expands at a speed vw that is vanishingly small

5See appendix for the relation between the radiant flux density and specific intensity.
6In the cgs unit system σ = 5.67× 10−5 erg/s.cm2.K4. The value of the radiation density is

a =

 7.56× 10−16 W/m3K4, SI unit system

7.56× 10−15 erg/s.cm3.K4, cgs unit system.
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relative to the speed of light so that the process is adiabatic. Then, with U = uV and
P = u/3, we have

d(uV ) +
1

3
udV = 0⇒ du

u
= −4

3

dV

V
(1.18)

which after integration yields

u ∝ V −4/3 (1.19)

Using (1.14) for the energy density, we obtain

T ∝ V −1/3 ∝ r−1 (1.20)

Now, in this adiabatic process, where there is a change in volume, we expect that the
a shift in the wave length of the radiation reflected on the wall of the cavity. Let ν
be the frequency of the incident radiation as seen by an observer at rest, and Kw the
reference frame attached to an element of the wall on which a ray of radiation strikes.
Then, in Kw reference frame, the source of the radiation looks that is receding with a
speed vw, and so the radiation get redshifted in this frame, with frequency ν(Kw)

inc , given
by

ν
(Kw)
inc = ν

√
1− v2

w

c2

1 + vw
c

cos θi
(1.21)

where θi is the angle of incidence on a point at the wall. Note that only the component
of the of the velocity parallel to the direction of observation that contribute to the shift
in the frequency. Then the radiation gets reflected by an angle θr but with the same
frequency from Kw viewpoint since the element of the wall is at rest in this frame, i.e.
νKwref = νKwinc . So, the reflected radiation will be seen by an observer at rest to have
frequency

ν ′ = ν
(Kw)
ref

√
1− v2

w

c2

1 + vw
c

cos θr
(1.22)

= ν
(Kw)
inc

√
1− v2

w

c2

1 + vw
c

cos θr

= ν
1− v2

w

c2(
1 + vw

c
cos θi

) (
1 + vw

c
cos θr

)
or, equivalently, in terms of wavelengths
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λ′

λ
=

1 + vw
c

(cos θi + cos θr) + v2

c2
cos θi cos θr

1− v2

c2

(1.23)

The angle reflection θr can be expressed in terms of θi as7

cos θr =
−2vw

c
+
(

1 + v2
w

c2

)
cos θi

1− 22vw
c

cos θi + v2
w

c2

(1.24)

which for vw/c << 1 can be approximated by

cosθr ' cos θi (1.25)

Substituting this result in (1.23), we obtain8

∆λ

λ
=

2vw
c

cos θi (1.26)

This the shift in the wavelength during the time ∆t = 2r cos θi/c between reflections.
In the infinitesimal time interval d t, the the radius of the sphere expands by dr = vwdt,
and the change in the wave length during this time is dλ = (dt/∆T ) ∆λ. Therefore,
we get

dλ

λ
=
dr

r
⇒ λ ∝ r (1.27)

Combining this result with the one in (1.20), we find9

λ T = b (1.28)

where b is a constant, called Wien’s displacement constant. Note that if we consider
the whole spectrum of blackbody radiation, or some interval of it, at some given tem-
perature, then b is not a constant, instead it changes with the wavelength10. So, for
a radiation with a particular wavelength and subject it to an adiabatic expansion or
compression, its wavelength is inversely proportional to the temperature. That it is
the radiation wavelength get displaced as the temperature changes. As a result, as
the temperature rises, the maximum of the radiant energy shifts toward the shorter
wavelength end of the spectrum, i.e.

7For the derivation see the appendix.
8Actually, this result could also be obtained as if the image were moving away from the observer

at a speed 2vw cos θ/(1 + v2
w/c

2).
9The value of the constant b was determined by Lummer and Pringsheim in 1897 to be

' 0.29 cm.K.
10W. Wien, Sitzungsberichte der preussischer Akademie, pp. 55-62 (1893).
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λmax = b
T (1.29)

where λmax is the wavelength at the peak of the radiation intensity spectrum11 .

1.1.4 Wien’s Energy Distribution for a Black Body [1896]

In 1896, based on simple thermodynamics considerations, Wien was able to derive
a constrain on the form of spectral energy distribution of a black-body radiation.
He found that uλλ5 is a constant. To show this, consider a blackbody radiation,
approximately monochromatic, with wavelength between λ and λ+dλ at temperature
T in a cavity of volume V which is expanded adiabatically. So during the expansion,
the volume changes by ∆V , and the work done by the radiation on wall (negative
work) of the cavity is equal to the decrease of the energy within the cavity, i.e.

1

3
(uλ dλ)∆V = −∆ (uλdλV ) (1.30)

or, equivalently,

4

3

∆V

V
+

∆uλ
uλ

+
∆(dλ)

dλ
= 0 (1.31)

where we have used the fact that the radiation pressure is one third the energy density
of the radiation. Since dλ is the interval within which the wavelengths are included,
we have

∆(dλ)

dλ
=

∆λ

λ
(1.32)

so,

4

3

∆V

V
+

∆uλ
uλ

+
∆λ

λ
= 0 (1.33)

But, according to (1.27), ∆V/V = 3∆λ/λ, and the above equation reads

∆uλ
uλ

= −5
∆λ

λ
(1.34)

which implies that

uλ λ
5 = Constant (1.35)

Now, the only combination of wavelength and temperature that is constant is λT . So,
in general, the spectral energy density has the form

uλ = λ−5 Φ(λT ) (1.36)
11 In some textbooks, the above expression is called Win’s displacement law.

– 9 –



where Φ is an arbitrary function of a single variable λT . The above formula is called the
general Wien’s displacement law. Note that integrating (1.36) over the wavelength
gives

uλ(T ) =

∫ ∞
0

uλdλ =

∫ ∞
0

λ−5Φ(λT ) dλ = T 4

∫ ∞
0

x−5Φ(x) dx (1.37)

which is proportional to T 4, in agreement with the Stefan-Boltzmann law. Note that
for the integration to be finite, Φ(x) must approach zero faster than x5 when x → 0
and x→∞.

To determine the form of the function Φ, Wien made made the assumption that
the blackbody radiation was emitted by molecules obeying Maxwell’s velocity distri-
bution , where each one emits a radiation of a single wavelength only depending on the
velocity of the molecule. He also supposed the spectral energy density uλ, in the wave-
length interval [λ, λ+ dλ], is proportional to the number of vibrating molecules with
periods corresponding to wavelengths in the same range. Based on these assumptions
he found that12:

uλ(T ) =
α

λ5
exp

[
− β

λT

]
(1.38)

where α and β are constants to be determined empirically. In terms of frequency, Eq
(1.38) reads

uν(T ) = C1ν
3exp

[
−C2ν

T

]
(1.39)

where we used the equality uλ|dλ|= uν |dν|, and the relation λ = c/ν, with c being
the speed of light. Here C1 = α/c4, and C2 = β/c. In 1897, Lummer and Pring-
sheim13 had shown by a very careful measurements that Stefan-Boltzmann and Wien’s
radiation formula were correct for short wave lengths. Based on their data they de-
termined b ' 0.29 cm. K. However, soon after that, they carried out experiments for
long wavelengths and showed that Wein’s radiation formula was incorrect for shorter
wavelengths14.

1.1.5 Rayleigh-Jeans law and Ultra-Violet Catastrophe [1900/1902]

In 1900, Lord Rayleigh published a paper which suggests a modification of Wien’s
distribution law, which appeared to give a good fit to the the data for low frequency.

12W. Wien, Ann. Phys. Ser. 3, 58, 662-669 (1896). There is also an English version of this paper
published in "The London, Edinburg, and Dublin Philosophical Magazine and Journal of Science,
Series 5, Vol. 43, No. 262, p 214- 220 (1897)".

13O. Lummer and E. Pringsheim, Wied. Ann. 63, 395 (1897).
14 O. Lummer and E. Pringsheim, Verh. Deutsch. Phys. Gesell. 1, 226 (1899); O. Lummer and E.

Pringsheim, Verh. Deutsch. Phys. Gesell. 2, 163 (1900).

– 10 –



His idea was to think of the black-body radiation inside a cavity as a a superposition
of standing waves, which satisfy the wave equation

~∇2ψ − 1

c2

∂2ψ

∂t2
= 0 (1.40)

For a cubic cavity of size L filled with black body radiation, the energy density of
waves, with frequency between ν and (ν + dν), is given by

uνdν =
(Number of standing waves)

L3
ε̄ dν ≡ ε̄N (ν) dν (1.41)

where N (ν) is the number of standing waves per unit frequency and unit volume,
and ε̄ is the average energy of each standing wave ψ. Note that the total energy is
independent on the size of the cavity. However, for a standing wave, it should have
zero amplitude at the walls. This implies that

ψ = C sin (
nxπ x

L
) sin (

nyπ y

L
) sin (

nzπ z

L
) cos (ωt) (1.42)

Here nx, ny and nz are positive integers. So for each standing wave is a harmonic
oscillator of frequency ν = ω/2π. If we write n2 = (n2

x + n2
y + n2

z), we obtain the
dispersion relation

n2 =
4L2

2c2
ν2 (1.43)

We can regard the triplets (nx, ny, nz) as points forming a lattice in a 3 dimensional
space. For larger modes, the lattice becomes essentially continuous, and then (1.43)
represents the equation of a sphere of radius 2Lν/c. In this case the number of modes
with frequency in the interval [ν − ν + dν] is given by the surface area of a shell in
octant of a concentric sphere with inner and outer radii n and (n+ dn), respectively:

N (ν) dν =
1

8

[
4π

3
(n+ dn)3 − 4π

3
n3

]
(1.44)

' π

2
n2dn

dν
dν =

4π

c3
ν2 dν

For electromagnetic waves, there are two independent polarization states for a given
value of the wave vector ~k = π/L ~n. Therefore, we need to multiply the above result
by a factor of two, and get

N (ν) dν =
8π

c3
ν2 dν (1.45)

Now we need to calculate the average energy of each oscillator. This is can be obtained
from the equipartition theorem in statistical mechanics, which states that for a system
in equilibrium at temperature T, every degree of freedom (or generalized coordinate)
that appears only quadratically in the total energy has an average energy of 1/2 kBT ,
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where kB = 1.38× 10−23 J/K is the Boltzmann constant15. Since the electromagnetic
energy density is EEM ∝ ( ~E2 + ~B2), one might think that there are 6 degrees of
freedom: 3 for the electric field and 3 for the magnetic field. However, ~E and ~B are
not independent, they are related are constrained by Maxwell’s equations (4 equations),
which reduces the degrees of freedom from 4 to (6− 4) = 2. So the energy per mode is
KBT . This implies that the energy density per unit frequency of a black body radiation
is16

uν(T ) =
8πν2

c3
kBT (1.46)

The factor 8 on the right hand side of (1.46) was 64 in Rayleigh’s original calculation17

, and five years later was corrected by Jeans and showed that the correct result is
one-eighth of the amount found by Rayleigh, as given in the above equation. That is
why the above distribution is known as the Rayleigh-Jeans law18.

The Rayleigh-Jeans distribution agrees quite well with the experimental results at
long wavelengths, but it has an obvious problem in that the irradiance energy increases
without bound at high frequencies, leading to the "ultra-violet catastrophe"19. In other
word, the total energy energy density emitted by a black-body, is infinite regardless of
the temperature T20.

1.1.6 Planck Distribution [1900− 1901]

We have seen two theoretical relations for the specific intensity of a black-body radi-
ation given in (1.38) and (1.46), respectively. Wien’s law was in disagreement with
the data at long wavelengths (IR) and the Rayleigh-jean’s law, although it provides a
good fit at long wavelength, gives nonsensical result in the UV. This was a signal of a
fundamental flaw in classical physics.

15For example, the equipartition theorem for the case of a harmonic oscillator requires assigning
kBT/2 of kinetic energy term plus another kBT/2 for potential energy.

16In terms of wavelength, the energy density reads

uν(T ) =
8π

λ4
kBT

17J. W. Strutt (Lord Rayleigh), Philos. Mag. 49, 539 (1900).
18J. H. Jeans, Philos. Mag. 10, 91 (1905).
19A name that wasn’t coined until 1911 by the Austrian physicist Paul Ehrenfest for the divergence

of the Rayleigh-Jeans distribution at high frequencies.
20If one reads Rayleigh’s paper given in the footnote above, will see that in the fifth paragraph of his

paper he introduces empirically an exponential factor exp(−ν/kBT ) so that the radiation spectrum
would converge at high frequencies. However, his exponential distribution is not consistent with
Wien’s displacement law given in Eq (1.29) .

– 12 –



In October, 1900, Max Planck, found an empirical formula for uν that fit the
black-body radiation data21:

uν dν =
8πhν3

c3

1

e
hν
kBT − 1

dν (1.47)

However, Planck wanted to derive and interpret (1.47)22, and that lead him to the
discovery of quantum mechanics. To understand Planck’s derivation of the black-body
sdistribution we need first to discuss the equilibrium radiation spectrum of a harmonic
oscillator.

As we described earlier, the radiation field in a cavity in thermal equilibrium
with the walls. The radiation field then exerts forces on the electrons making up the
molecules and that cause them to be in motion and as a result radiate. So, the electron
can be modeled by a harmonic oscillator which radiates when undergoing oscillation.
Let us recall that the rate of energy loss of radiation by an accelerated electron in its
instantaneous rest frame is given by the Larmor’s formula 23

−
(
dE
dt

)
=
|p̈|

6πε0c3
=

e2|~̈r|
6πε0c3

(1.48)

Here p = |e|~r is the dipole moment of the electron with respect to some origin, and
e is its electric charge. For the case of a one dimensional harmonic oscillator, with
amplitude x = x0 cosω0t, we get

−
(
dE
dt

)
rad

=
e2ω2x2

0

6πε0c3
cos2 ω0t (1.49)

which, after averaging over time yilds

Prad =< −
(
dE
dt

)
>rad=

e2ω2
0x

2
0

12πε0c3
(1.50)

Note that the time averaged of a harmonic oscillator is

< E >=<
1

2
mẋ2 > + <

1

2
mω2

0x
2 >=

1

2
mx2

0ω
2
0 (1.51)

where we used the fact that for a harmonic oscillator the spring constant is k = mω2
0.

Defining γ = e2ω2
0/6mπε0c

3, we re-write (1.50) as

Prad = γ < E > (1.52)
21M. Planck, Verh. Deutsch. Phys. Gesell, 202(1900).
22As he stated it in one of his letters to William Robert Wood in 1931: "....A theoretical interpre-

tation therefore had to be found at any cost, no matter how high...".
23For a particle of charge q, we just substitute e2 by q2 in the equation (1.48)
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The oscillating charge will experience a damping force, F , also called "radiation re-
sistance", due to the radiation it emits. So, the power radiated away by the electron
integrated over time must be equal to the mechanical power lost by the oscillator :∫ t2

t1

Fυdt = −
∫ t2

t1

Praddt (1.53)

=
e2

6πε0c3

[
υ
dυ

dt

]t2
t1

− e2

6πε0c3

∫
d2υ

dt2
υdt

If the time integration is over a full cycle of oscillation, υdυ/dt takes the same value
at the equivalent points of the cycle. Thus, we deduce that

F = − e2

6πε0c3

d3x

dt3
(1.54)

Thus, the emitted radiation can be modeled by damped oscillator with equation of
motion

mẍ+ kx− e2

6πε0c3

d3x

dt3
= 0 (1.55)

If the damping effect very small, the natural frequency of oscillation is ω2
0 = k/m. This

implies that

d3x

dt3
' d

dt

(
−ω2

0x
)

= −ω2
0

dx

dt
(1.56)

In this approximation, Eq (1.55) reads

ẍ+ ω2
0x+ γ ẋ = 0 (1.57)

with

γ =
e2

6πε0c3

ω2
0

m
(1.58)

Now, if the system is a cavity, with a perfectly reflecting walls, then the re-emitted
radiation by the electron remain inside the cavity undergoing multiple bounces on the
wall and interact with the oscillators. So, although the radiation is represented by
a damped oscillator, the total energy of the system is not lost. Planck called this
"conservative damping". So, if the electron is accelerated by an incident wave, with
electric field Ex = eE0x cosωt, the equation of motion reads

ẍ+ ω2
0x+ γ ẋ =

eE0x

m
cosωt (1.59)

where we assumed that the damping coefficient is very small so that k/m ' ω2
0, with ω0

is the frequency of free oscillator. The generalization to three dimensions is obtained
by simply replacing x by the ~r, and E by the corresponding electric field in three
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dimensions. The steady state solution to Eq (1.59) can be written as x = Re(x0e
iωt),

which after substituting into the equation above yields

x0 =
eE0x/m

(ω2
0 − ω2 + iγω)

(1.60)

Note that x0 is complex which means that the oscillator does not vibrate in phase with
the incident electric field. Hence according to Eq (1.48), the rate of radiation of the
oscillator due to the incident wave is given by

−
(
dE
dt

)
=
e2ω4|x0|2

6πε0c3
cos2 (ωt− φ) (1.61)

where φ is the argument of the complex amplitude x0. Taking the average over time
gives

−
(
dE
dt

)
=

1

12πε0c3m2

e4ω4E2
0x

(ω2 − ω2
0)2 + ω2γ2

(1.62)

The energy E of the oscillator is mω2
0x

2
max/2 and one get

Eosc(ω) =
e2E2

0x

2m

ω2
0

(ω2 − ω2
0)2 + ω2γ2

(1.63)

For small damping, the only driving frequencies that really matter are those close to
resonance frequency, i.e. ω ' ω0, since only these give rise to a large amplitude of
oscillations. Thus,

Eosc(ω) '
(
e2E2

0x

2m

)
1

(ω − ω0)2 + γ2
(1.64)

This energy is for one single frequency ω of an incident radiation. However, in reality,
the electric field consists of a superposition of waves with frequency in the interval ω
and (ω + ∆ω). For black-body radiation at temperature T we can make the following
replacement24

1

2
ε0E

2
0x → u(x)(ω, T ) dω (1.65)

Hence the total energy of the oscillator can be obtained by integrating Eosc(ω)dω over
the above all possible frequencies of the incident radiation:

Eosc =

(
e2

ε0m

)∫ ∞
0

u(ω, T )

(ω − ω0)2 + γ2
dω (1.66)

24Form the electromagnetism course you know that the energy density in an electric field E is
uE = 1

2ε0E
2.
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Since for γ small, the contribution at the resonance is the most dominant one , we can
replace u(ω, T ) by u(ω, T ) in the above integral. This yields25

u(x)(ω0, T ) =
ω2

0

3π2c3
Eosc (1.68)

However, this This is the spectral energy density for a single component of the electric
field along the direction of the oscillation, say, the x-axis. If the system is homogeneous
and isotropic, the other two components of the field and the directions of oscillations
will give the same result. So to account for the other directions we simply multiply by
three the righthand side of (1.68) and we get

u(ω0, T ) =
ω2

0

π2c3
Eosc (1.69)

or, equivalently, in terms of frequency26

u(ν, T ) =
8πν2

π2c3
Eosc (1.71)

Here ν is the oscillator characteristic frequency. It is remarquable that this result does
not depend on the damping constant or other detailed properties of the resonator27.
Moreover, it says that if we, somehow, can manage to find the energy of a given
oscillator of frequency ν in an enclosure at temperature T, we will automatically know
the spectrum of the black-body radiation. So, the natural thing to do now is to find
an expression for Eosc(T, ν).

In classical thermodynamics, one can use the equipartition theorem where an
average energy of kBT/2 is associated to each of the square terms ẋ2 and x2 in the
expression of the energy of the harmonic oscillator, i.e. Eosc = kBT . Thus, we find that

u(ν, T ) =
8πν2

π2c3
kBT (1.72)

which is exactly the Rayleigh-Jeans law we saw earlier. As we discussed it in the
previous subsection, Eq (1.72) leads to non physical result at high frequencies. It is
interesting to note that, although Planck could derive the Rayleigh-Jeans formula, but

25We used the integral ∫ +∞

−∞

dx

x2 + a2
=
π

a
(1.67)

26We used the fact that

u(ν) dν = u(ω) dω ⇒ u(ν) = 2πu(ω = 2πν) (1.70)

27M. Planck, Physikalische Abhandlungen und Vortrage, 1, 560- 600 (1899).
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he did not. The reason for that is that he did not accept the equipartition theorem as
fundamental.

On October, 1900, Rubens, based on the data of the measurements on the black-
body spectrum he and Kurlbaum have taken, informed Planck that at low frequencies
the intensity of radiation was proportional to the temperature. For Planck, this means
that in the limit ν/T → 0, the oscillator energy must proportional to the temperature
since u(ν, T ) ∝ Eosc. Using the thermodynamics definition of the absolute temperature
1
T

= ∂S
∂Eosc , with S being the entropy of the oscillator entropy, he concluded that

lim
ν/T→0

∂2S

∂E2
osc

∝ 1

E2
osc

(1.73)

For larger values of ν/T , Planck knew that Wien’s formula (1.38) is in good
agreement with data, which after equating it with his expression for the spectral energy
density in (1.47) yields

Eosc = ανe−βν/T (1.74)

or, equivalently,

1

T
= − 1

βν
ln

(
Eosc
αν

)
=
∂S

∂E
(1.75)

Taking the derivative with respect to the energy of the oscillator gives

lim
ν/T→∞

∂2S

∂E2
osc

∝ 1

Eosc
(1.76)

So, for Eosc between small and large values, the change in entropy satisfies an equation
of the form

∂2S

∂E2
osc

= − a

Eosc (b+ Eosc)
(1.77)

where a and b are undetermined coefficients. Now, integrating the above equation with
respect to Eosc gives the inverse of the temperature, i.e.

∂S

∂Eosc
=

1

T
=
a

b
ln

(
Eosc + b

Eosc

)
(1.78)

Solving for Eosc we obtain

Eosc =
b

eb/aT − 1
(1.79)

Now substituting the above expression in (1.71), we get

u(ν, T ) =
8πν2

c3

b

eb/aT − 1
(1.80)
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In the limit where ν/T is very large, the above formula for the energy density must
reduce to Wien’s expression in (1.39). This requires the coefficient b to be proportional
to the frequency. Therefore, Planck expression of the energy density reads28

u(ν, T ) =
8πν3

c3

C

ekν/T − 1
(1.81)

where both C and k are constants that don’t depend on the frequency. Planck also
calculated the entropy of the oscillator by integrating (1.78), which gives

S = a

[(
1 +
Eosc
b

)
ln

(
1 +
Eosc
b

)
− Eosc

b
ln

(
Eosc
b

)]
(1.82)

Although, it did not take long to show that Planck’s formula agreed well with the
experimental data, it was lacking the theoretical justification. Planck was convinced
that thermodynamics was not sufficient to tackle the problem, and so he decided to use
statistical mechanics which was developed few years earlier by Boltzmann29. In 1901,
Planck provided his approach to the derivation of the spectral distribution in (1.81),
based on Boltzmann definition of entropy.

He considered N oscillator with total energy EN to be shared among them. For
that he introduced an element of energy ε so that there are p = E/ε to be divided
among the N oscillators. So the number of possible ways that one can distribute p
energy elements over the N oscillators is 30

Ω(EN , N) =
(N + p− 1)!

p! (N − 1)!
(1.83)

Then, Planck, made the following two statements: (i) entropy is proportional to the
logarithm of probability of a state, (ii) the probability of a state is proportional to

28Max Planck, Verhandlungen der Deutshchen Physikalischen Gesellschaft, 2, pp. 202-204. An
english translation can be found in: H. Kangro, Planck’s Original Papers Quantum Physics, pp. 38-
45 (1972).

29Ludwig Boltzmann, Wiener Berichte 76 (1877), 373Ð435, reprinted in Wissenschaftlich Abhand-
lungen, 3 Vols. (Leipzig: Barth, 1909), Vol. 2, pp. 164-223.

30This can be seen as follow. Consider a sequence of symbols

ε...ε|ε...ε|...|ε...ε

where ni is the number of energy elements assigned to the ith oscillator, i.e it is the occupation number
of the ith cell, such that

∑N
i=1 ni = p, and with (N − 1) symbols "|" separating the N spaces. There

are (p + N − 1)! permutations of the (p + N − 1) symbols in all. However, suffling the ε’s among
themselves, or the |’s among themselves, do not change the occupation numbers. In other word, the
ε’s are indistinguishable and so are the | symbols. Thus, in order not to have an over-counting, we
must divide the number of permutations by p! (N − 1)!, and we obtain the result in (1.83). The
general expression of Ω(E,N) given above was first given (with no proof) by Boltzmann in 1877. In
statistical Physics language, the quantity Ω(E,N) is called the total number of macrostates.
To see this explicitly, suppose there are two kids (N = 2 ), A and B and two identical chocolate

bars (p = 2). Then we can distribute the chocolate bars as follows: A gets 2 bars and B get nothing,
or B gets two bars and A nothing, or A get one bar and B get one bar. So the number of possible
ways to distribute the two bars of chocolate is 3. If we use the formula (1.83) we get the same result.
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the total number of configurations in which the state can be realized, and (iii) all
configurations are equally probable. So,

SN = k ln (Ω(EN , N)) = k ln

(
(N + p− 1)!

p! (N − 1)!

)
(1.84)

where k is a constant, known as Boltzmann constant. For very large values of N
and p, we can use the Stirling’s formula , N !' NN and p!' pp, and obtain

SN ' k [(N + p) ln(N + p)− p ln p−N lnN ] (1.85)
= kN [(N + p) ln(N + p)− p ln p−N lnN ]

Thus, for an oscillator of average energy Eosc = EN/N , the average entropy per oscil-
lator, S = SN/N , is given by

S = kB

[(
1 +
Eosc
ε

)
ln

(
1 +
Eosc
ε

)
− Eosc

ε
ln

(
Eosc
ε

)]
(1.86)

Comparing the above expression to the one in Eq (1.82) implies that ε must be pro-
portional to the frequency:

ε = hν (1.87)

The constant h is known as Planck’s constant. So, the expression of the spectral
energy density of a black body radiation is31

u(ν, T ) =
8πhν3

c3

1

ehν/kBT − 1
(1.88)

or, equivalently, in terms of wavelength

u(λ, T ) =
8πc h

λ5

1

ec h/λkBT − 1
(1.89)

The total energy density for a black-body radiation is

u(T ) =

∫ ∞
0

u(ν, T )dν =
8π

c3

ν3

ehν/kBT − 1
(1.90)

=
8πk4

B

h3c3
T 4

∫ ∞
0

1

ex − 1

Which has the same form as the Boltzmann formula in Eq (1.14) for the energy density,
with

a =
48πk4

B

c3h3
=

4

c
σ (1.91)

31Max Planck, Ann. Phys. 4, pp. 553-563 (1901), Ann. Phys. 4 (1901), 564-566.
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To compare with Wien’s displacement law, Planck differentiated his expression for the
spectral energy density (1.89) with respect to the wavelength and set it to zero to
obtain (

1− c h

5kBλmaxT

)
exp

(
c h

kBλmaxT

)
= 1 (1.92)

By solving the above transcendental equation, yields

λmaxT =
c h

4.965 kB
(1.93)

Now, the expression of the energy density that Planck has derived contains two
constants: kB32 and h, which were inferred from the experimental data. Kurlbaum
had measured the total heat radiated from a 1 cm2 per second of a black-body at
T = 0(0) Celsius (273 K) and at T = 100(0) C (373 K) and found that the difference
was 7.31 × 105 erg/cm2/s = 0.0731 Watt/cm2 . So, with these experimental data,
and using Stefan-Boltzmann law, Planck calculated the energy density of a black-body
radiation at T = 1 K:

u(T = 1 K) =
4

c
σ (1 K)4 =

4

3× 1010 cm/s

(
7.31× 105 erg.cm−2. s−1

[(373 K)4 − (100 K)4]

)
(1 K)4

= 7× 10−15 erg. cm−3. s−1 = 7× 1022 Watt. cm−3 (1.95)

Now, using his formula (1.91) he deduced that

k4
B

h3
= 1.168× 1015

[
J

K4. s3

]
(1.96)

Next, he made use of the experimental result on the value of λmaxT reported by
Lummer and Pringsheim., which they found to be approximately 0.29 cm.K. Replacing
this value in (??) he got

h

kB
= 4.866× 10−11

[
K

s

]
(1.97)

32The Boltzmann constant is related to the universal constant of gases and the Avogadro number.
This can be shown as follows. Consider a container of volume V1 filled with one mole of a perfect gas.
The the probability for a molecule to occupy only half of the container is 1/2. So, the probability of
for the NA ' 6× 1023 to occupy half of the container is p1 = (1/2)NA , which is, of course, extremely
tiny. If we double the volume of the container, the probability change from p1 to p2 = p1(V2/V1)NA

(because the number of arrangements for each molecule got doubled). So, the change in the entropy
of the system when the volume was doubled is

∆S = kB ln p2 − kB ln p1 = kB ln p2/p1 = kB ln 2NA = kBNA ln 2

However, in principle, you have seen in your thermodynamics course that the change of entropy of a
perfect gas undergoing Joule expansion, is given by ∆S = R ln

(
V2

V1

)
= R ln 2, where R = 8.314 J

mol.K

is the universal gas constant . Therefore we conclude that

kB =
R

NA
(1.94)

So, the Boltzmann constant is the number of molecules per kilogram molecules.
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Combining (1.96) and (1.97), gave Planck his universal constants

h = 6.55× 10−27 erg.s = 6.55× 10−34 J.s (1.98)
kB = 1.35× 10−16 erg.K−1 = 1.35× 10−23 J.K−1

The best current measured values of these constants are33

h = 6.62606957× 10−34 J.s (1.99)
kB = 1.3806488× 10−23 J.K−1

Max Planck was awarded the Noble Prize in Physics in 1918 for "his discovery
of energy quanta".

1.2 Photoelectric Effect [1887− 1905]

The photoelectric effect occurs when a metal surface is illuminated with light of cer-
tain frequency and electrons are emitted by the surface. The explanation of this effect
allowed the understanding of the nature of light which was a crucial step forward in
the development of modern Physics.

1.2.1 Experimental Observations

It was first observed in 1887 by Heinrich Hertz34 by accident when he was working on
an experiment trying to test the existence of electromagnetic waves. He noticed that
when the electrode in his experimental setup is shined with ultraviolet light, the in-
tensity of the spark increased. Hertz documented his observation of this phenomenon,
but he could not explain why it was happening.

In 1888, Wilhelm Hallwachs considered a circular plate of zinc mounted on an
insulating stand and attached by a wire to a gold leaf electroscope, which he charged it
negatively. The electroscope loses its energy very slowly. However, when the zinc plate
was exposed to ultraviolet light charge leaked away more quickly. He also observed
that if the plate was positively charged, there was no fast discharge.

During the period 1900 to 1902, Philipp Lenard, performed a series of experiment
to study the newly discovered photoelectric effect by Hertz. A sketch of the experi-
mental setup used by Lenard is similar to the one shown in Fig.3, which consists of
a vacuumed glass tube with two electrodes and a window allowing light to shine on
a metal surface of the cathode. He found that a current (photocurrent) was induced

33For the latest measurement of planck and Boltzmann constants see the following link at the
National Institute of Standards and Technology:
http://physics.nist.gov/cuu/Constants/index.html.

34This is not to be confused with his nephew Gustav Hertz who won the Nobel prize of Physics in
1925.
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Figure 2: A schematic of Hallwachs experiment.

as a result of the charges ejected from from the electrode, and had shown that they
were identical to the cathode rays discovered by Thomson in 1897, that is, they were
electrons35.

Figure 3: A schematic of Lenard’s experiment on the photoelectric effect.

By studying the relationship between the kinetic energy energy of the emitted
electrons and the intensity and the frequency of incident light he found that:

35Actually, in 1899, J. J. Thomson showed that the charges emitted from a an illuminated metal
(he used zinc plate) were identical to his previously "discovered" electrons. He published his result in
Philosophical Magazine 48, 547-567 (1899).

– 22 –



1. The number of emitted photoelectrons per unit time is directly proportional to
the intensity of the incident light.

2. The maximum kinetic energy of the photoelectrons is independent of the intensity
of the incident radiation and increases with increasing the frequency.

3. There exist a certain minimum frequency for the photoelectric effect to occur.
The value of this frequency ν0, called threshold frequency, is different for different
materials.

4. The emission of photoelectrons was almost instantly (less than 10−9 s), even
when the incident radiation is made exceedingly dim36.

Philipp Lenard was awarded the Nobel Prize in Physics 1905 for " his work on
cathode rays".

1.2.2 Predictions of the Classical Physics

In classical Physics, It was believed that when a radiation is shined on a metal, the
electrons in atoms are being shaken by the oscillating electric field of the incident light
wave, and eventually some of them would would be ejected. So, according to this
classical picture, for Lenard’s experiment, we expect that:

36One can derive an estimate of the lower limit on the amount of time it should take for an electron
at the surface of a metal to absorb enough energy of EM radiation to be able to escape from the
metal. For that let us assume that there is one free electron per atom in the metal and imagine that
it occupies a square of size of about the atomic spacing d. Then each electron will absorb the energy
that falls on its square with the maximum rate of absorption given by(

dE

dt

)
max

= I d2

where I is the intensity of the incident light, and d2 is the area of the square. Thus, the maximum
amount of energy that an electron can absorbs in a time interval ∆t is

Emax = I d2∆t

If the atoms are arranged in a simple cubic array with spacing d, with number density Natom = d−3,
then

d =

(
µ

ρ

)1/3

with µ is the mass of each atom and ρ is the mass density of the metal. The time it takes before it
gets emitted, tem, is the time needed to absorb an amount of energy to overcome its bindingenergy,
Ebin, in the metal. Thus, setting Emax = Ebin, and solving for ∆t = tem, we obtain

tem =
Ebin
I

(
ρ

µ

)2/3
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1. Increasing the intensity of light would shake the electrons more violently, so
there would be more electrons emitted, and on average, they will come out of the
cathode at greater speed.

2. Increasing the frequency of the incident radiation would shake the electrons
faster, which causes the electrons to be emitted faster.

3. For very dim light, i.e. low intensity, it would take some time for an electron
to reach certain amplitude of vibration before it gets loose and come out of the
cathode.

Comparing with the experimental observations, we see that classical physics fails
to explain the photoelectric effect.

1.2.3 Einstein explanation for the photoelectric effect

In 1905, Albert Einstein proposed a simple and radical explanation to Lenard’s experi-
mental results of the photoelectric effect phenomenon. He extended Planck’s concept of
quantization (see the subsection on black-body radiation) to electromagnetic waves, by
considering radiation as a quanta, which were later called photons, of energy E = h ν,
where is h is Planck’s constant and ν the frequency of light. In this picture, the en-
tire energy hν of the photon is absorbed by an electron. If this energy is less than
the minimum energy, φ, needed for the electron to escape, called the work function
(binding energy), from the metal surface, then then no photoelectron can be emitted.
Whereas, if the photon energy exceeds the work function, the electron is emitted with
a maximum kinetic energy, Kmax, given by

Kmax = hν − φ (1.100)

This equation is known as "Einstein equation of the photoelectric effect". In table 2,
we list the work function of some metals. From this proposal we can draw the following
conclusions:

1. The intensity of light for a given frequency is determined by the number of
photons incident per second. So, increasing the intensity will increase the number
of photons incident per second, and as a result will increase the number of emitted
electrons.

2. Kmax depends linearly on ν because in this picture, the photoelectric effect arises
from the absorption of a single photon by a single electron. So Increasing the
frequency will increase the kinetic energy of the emitted electrons. Moreover,
Kmax is independent of the intensity of the incident light.

3. SinceKmax is non-negative, Eq (1.100) implies that photoelectric effect is possible
only if hv > φ, i.e. ν > φ/h ≡ ν0, where ν0 is the threshold frequency needed to
to emit an electron from the metal surface.
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Metal φ(eV )
Na 2.46
Al 4.08
Cu 4.70
Zn 4.031
Ag 4.73
Pb 4.14
Fe 4.50

Albert Einstein was awarded the Nobel Prize in Physics 1921 for " his services
to Theoretical Physics, and especially for his discovery of the law of the photoelectric
effect".

Robert Millikan, an American experimental Physicist, did not believe Einstein
theory for the photoelectric effect, because it contradicted the wave theory of light, so
he set up an experiment to disprove it. To his surprise, he found a linear relationship
between the stoping potential, and so the kinetic energy, and the frequency of the
incident light, which confirms Einstein theory. . This is shown in the fig.4. The slope
of the line should be h/e. So, with his previous knowledge of the electron charge37, he
was able to measure Planck’s constant to within 0.5% precision level.

Figure 4: Experimental results of Millikan experiment on the photoelectric effect.
Figure taken from ref [15].

Robert Millikan was awarded the Nobel Prize in Physics in 1923 "for his work
on the elementary charge of electricity and on the photoelectric effect".

37Robert Millikan is famous for measuring the charge of the electron in 1909.
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1.3 Compton Effect [1923]

Pre-1923, experiments scattering X-rays 38 from a crystal reveled their wave-like prop-
erties of construction and destruction interference. From the experimental study of
the scattering of X-ray off electrons that are weakly bound to the atom (see Fig. 5),
Compton showed that X-rays can act not only as a wave but also as a particles, i.e.
photons, which was an important leap in the understanding of the quantum nature of
light.

In 1923, Arthur Compton carried out a careful experiment where he scattered a
monochromatic beam of X-rays39 off a thin layer of graphite (carbon). He measured
the intensity of the scattered X-ray as a function of its wavelength and found that there
are were two components in the scattering direction (see Fig. 6). One component had
a wavelength λ0 identical to the one of the incident radiation, whereas the second
component had a wavelength λ larger than λ0. Furthermore, he found that the shift
∆λ ≡ (λ− λ0) has the following properties:

• It depends on the scattering angle θ.

• It increases rapidly at large scattering angles.

• It is independent on the wavelength of the incident radiation.

• It is independent of the scattering material.

Figure 5: Compton scattering process. Figure taken from ref [16]

Now, according the classical Physics, the carbons in the graphite will oscillate
at the frequency ν0 of the incident light, and radiate electromagnetic wave at the

38X rays were discovered in 1895 byWilliam Roentgen while experimenting with a cathode radiation.
Roentgen was the first Physicist to be awarded the Nobel Prize in Physics in 1901.

39The energy range of an X-ray is between 0.1 keV to 100 keV. A keV is an energy unit equal to the
kinetic energy an electron would gain by being accelerated through a voltage difference of 103 Volts.
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same frequency. So, the effect that Compton observed in his experiment can not be
explained with the classical theory. This, lead him to propose that a photon, denoted
by γ, behave like a particle so that its scattering off other particles is similar to the
collision of billiard balls40. From the of special relativity, discovered by Einstein in
1905, the energy and the components of velocity of a relativistic particle are given by

E =
√
p2c2 +m2c4; υi =

∂E

∂pi
=

pic2√
p2c2 +m2c4

(1.101)

where the index i takes values 1, 2, and 3 corresponding to the x, y, and z components
and pi is the ith component of the particle’s momentum. For a photon the magnitude
of the velocity is the speed of light, i.e. υ = c ' 3 × 108 m/s, from which we deduce
that

mγ = 0 (1.102)

Hence the photon is massless, and its energy is given by E = pc. Now, since the photon
energy i a quanta of energy E = hν, its momentum is given by

pγ =
hν

c
=
h̄ω

c
= h̄~k (1.103)

where ω = 2πν, h̄ = h/2π is called the reduced Planck constant, and ~k is the wavenum-
ber of the electromagnetic radiation of magnitude ω/c.

Let us by (~pγ,i = hνi, Eγ,i = pγ,ic) and (~p = hνf , Eγ,i = pγ,ic) the energy and
momentum of the incident and the scattered photons, respectively. Then, energy and
momentum conservation read:

• Energy conservation:

hνi +
√
p2
iec

2 +mec4 = hνf +
√
p2
e,fc

2 +m2
ec

4 (1.104)

where pe,i and pe,f represent the momenta of the electrons before and after the
scattering. Since the energy of an X-ray photon (∼ keV ) is much larger than the
binding energy of an electron it was assumed that the electron (few eV to about
10 eV ), we can approximate its energy by its rest mass. So, (1.104) becomes

hνi +mec
2 = hνf +

√
p2
e,fc

2 +m2
ec

4 (1.105)

It can also re-written as(
hνi − hνf +mec

2
)2

= p2
e,fc

2 +m2
ec

4 (1.106)
40A. H. Compton, Phys. Rev. 21, 207 (1923); Phys. Rev. 21, 483 (1923).
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Figure 6: A schematic of of Compton experiment and its results: In the plots, the
Y-axis represents the intensity and the x-axis is the wavelength of scattered X-rays for
different scattering angles [18].

• Momentum conservation:

~pγ, i = ~pγ,f + ~pe,f (1.107)

Taking ~pγ,f to the left hand-side of (1.107), then squaring both sides of the
equation yields

p2
e,f = p2

γ,i + p2
γ,f − 2pγ,ipγ,i cos θ (1.108)

or, equivalently,

p2
e,f = (hνi)

2 + (hνf )
2 − 2h2νiνf cos θ +m2

ec
4 (1.109)

Here θ is the angle between the incident and the scattered photon. Substituting
the above expression into (1.106), we obtain

(νi − νf )mec
2 − 2h2νiνf = −2hνiνf cos θ (1.110)
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dividing both sides of the equation above by νiνf , and using the relation ν = c/λ,
we find that the shift in the wavelength is

∆λ ≡ λf − λi =
h

mec
(1− cos θ) (1.111)

Thus, the wavelength of the scattered photon has increased (or the frequency has
decreased) compared to the wavelength of the incident radiation, and the shift is
directly related to the scattering angle. It is convenient to define

λC =
h

mc
(1.112)

called the Compton wavelength of particle of mass m, which for the elec-
tron is about 2.4 × 10−10 cm = 2.4 A(0). Equation (1.111) was found to be in
good agreement with the measured values of ∆λ for different scattering angles
in Compton experiment. Since λC is very small, one needs high energy radia-
tion, such as X-ray, in order to be able to observe the effect. For instance, an
incident light of wavelength λ = 10−−8 cm (in the lowest energy region of the
X-ray), scattered at right angle, one expect to see about 5% shift in the initial
wavelength.

The above calculation correspond to the shifted line in the intensity of the scat-
tered X-rays. The reason for the existence of an un-shifted line is due to the
fact that not all X-rays scattered off a free electron. An X-ray photon passing
through graphite target could strike valence electrons (a tightly bound electron
to its carbon atom ), or even the nucleus . So, in the above calculations one
should use the effective mass of the electron which will be much larger than the
mass of free electron, and in the case of scattering off nucleus one should use mass
of the entire the carbon atom . In this case the predicted shift will have identical
form as in (1.111) but with me replaced by a much larger effective mass. For
example, the scattering off the carbon nucleus, the shift in the X-ray wavelength
will be more than four order of magnitude smaller (Mcarbon = 2 × 104 me) than
the shift caused by scattering off free electron. Thus, the scattering of X-rays off
a tightly bound electron or the nucleus of the atom is too small to observe, and
so the scattered X-ray off such target will seem to come out with the same initial
wavelength.

//

2 Old Quantum Mechanics: [1913− 1925]

2.1 Atomic Spectral Lines

In 1814, Joseph von Fraunhofer, made a detailed studies of the solar spectrum and,
to his surprise, he found a multitude of dark lines (over 570 lines), indicating that
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a certain colors (i.e. light wave lengths) are missing in solar light’s spectrum41. he
labelled the 10 strongest lines in the (solar) spectrum by the letters A, a, B, C, D, E,
b, F, G and H42. These dark lines are now referred to as Fraunhofer lines. However,
the origin of these spectral lines were not understood at the time. In 1859, Robert
Bunsen and Gustav Kirchhoff established that a heated low pressure gas emits
a spectrum of light with discrete lines at wavelengths characteristic of the gas; and
a cool low pressure gas in front of a hot source absorbs at those same characteristic
wavelengths. So, they realized that, for sun light’s spectrum, the heated interior of the
sun emits a continuous (Planck) spectrum and the cooler photosphere does the line
absorbing. This means that the atoms of the gas in the sun’s atmosphere has acted as
a filter for the light emitted from the sun’s interior and absorbed its own characteristic
wavelengths43. The study of the absorption lines in the sun’s spectrum lead scientists
to deduce its chemical composition 44, which turns out to be mostly hydrogen and after
that mostly helium.

Figure 7: Fraunhofer’s solar spectrum. The continuous line above the spectrum
shows, the approximate the solar continuous intensity, as estimated by Frauhofer [19].

In 1885, J. Balmer, a lecturer at a girls college in Switzerland,.... formula for
41These lines were observed earlier by William Wollaston in 1802, but his interest was in the

colors themselves, and not the dark lines, and so he did not provide any significance to them.
42J. Von Fraunhofer, Denkschriften der Koniglichen Akademie der Wissenschaften zu Munchen,

1814-1815, 5, 193-226.
43Kirchhoff showed that the D line (of wavelength 589 nm) in the sun’s spectrum was due to the

absorption of solar radiation by sodium atoms.
44For instance, Pierre Janssen, a french astronomer, along with Norman Lockyer, an English as-

tronomer, detected during a solar eclipse an unknown yellow spectral line signature in sunlight. The
line had a wavelength of about 588 nm, slightly less than the so-called D-lines of sodium. Norman
Lockyer suggested that this line is associated with an absorption line of some unkown solar element
(no known element at that time gave this line) and he named it " Helium" from the greek word Helios
for sun. Note that Helium was not observed on Earth until 1895.
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the visible region of the atomic hydrogen spectrum, denoted by Hα, Hβ, Hγ, ...

1

λ
= RH

(
1

22
− 1

n2

)
; n = 3, 4, 5, ... (2.1)

where n = 1, 2, 3, .. label the lines Hα, Hβ, Hγ, ..., and RH is a constant which has a
value 10.97 µm−1, which was later called the Rydberg constant for hydrogen. Few years
later similar series , known as Lyman, Paschen, Brackett and Pfund series, and
many others, were discovered. By 1900, Johannes Rydberg was able to describe all
wave numbers of the lines of hydrogen in each of of theses series, including the Blamer
series, by the formula

1

λ
= R

(
1

n2
1

− 1

n2
2

)
; n2 = n1 + 1, n1 + 2, n1 + 3, ... (2.2)

The constant R ' RH , and it is also called Rydberg constant45. Here n1 = 1, 2, 3, 4,
and 3 correspond to the Lyman, Balmer, Paschen, Brackett and Pfund series, respec-
tively.

The relations (2.1) and (2.2) are empirical, and no theoretical model at that time
could their origin. In order to make any progress in the understanding of the origin and
the characteristic spectra of elements, required a model of the atom. Unfortunately, all
the existing models pre-1913 were unsuccessful in explaining the origin of these lines.

2.2 Instability of Atoms

After the discovery of the electron46 in 1897 by J. J. Thomson in 1897, it became clear
that atoms are not the fundamental building blocks of nature. The neutrality of the
atom indicated that it should contain an equal amount of positive charge as that of the
electrons in it. This lead Thomson to propose that atom is a sphere where a positive
charge is spread through it, like a "pudding" in which in which negative electron are
suspended like "plum" . This model is sometimes dubbed a "plum pudding model
of Thomson" 47.

in 1911 Ernest Rutherford tested Thomson’s proposal by firing a beam of alpha
particles48 (of energy 7.68 MeV ) from a Radium source through a thin (0.6 µm) piece

45Although the value of R is not exactly the same for different elements, the variation is small
compared to RH . Now in modern physics, we know that this constant measures the strength of the
binding between electrons and nuclei in atoms.

46 the measurement of the size of its charge by Millikan in 1909. Combining Millikan results with
the measured value of e/m by J. Thomson it was possible to deduce that the electron mass is about
1/2000 the mass of the ion of hydrogen.

47Thomson model was proposed in 1904.
48Alpha particle is the helium nucleus. It was discovered along with the β particle (which is the

electron) by Ernest Rutherford in 1899.
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of gold foil. If Thomson’s model was correct, then the positive mass in the gold foil
would be relatively diffuse and would allow the alpha particles to pass through the foil
with only minor scattering. However, the results from that experiment showed most
of the alpha particles passed through the gold foil without changing direction much as
expected, but some of the alpha particles bounced back in the opposite direction, as
though they had struck something dense and solid in the gold foil. So Rutherford came
to the conclusion that an atom is mostly empty space and that its positive charge is
concentrated at its core, forming a nucleus. He also noticed that in order to overcome
the electrostatic attraction force between the negative electrons and positive nucleus,
the electrons must be moving around the nucleus like planets move around the sun.
This is why the atomic model of Rutherford is sometimes called the planetary model
for the atom49.

However, the planetary model of Rutherford does not explain the spectral lines in
the spectrum of atoms. Furthermore, the electrons are unstable in this model. Indeed,
according to classical electromagnetic theory, an electron orbiting around the nucleus
will emit radiation, and thus depletes its kinetic energy. As a result, the electron will
spiral inward toward the nucleus and eventually collapse on it. For instance, if we
find that the time of the collapse is large the age of the universe, ∼ 14 billion years,
then that might not be a serious problem. So let us see how long it would take an
electron before it crashes on a nucleus. For that suppose that the electron is moving
in a circular orbit of radius r around the a nucleus of charge Z e. Then according to
Newton’s second law we have

Ze2

4πε0r2
= me|

d2~r

dt2
|= meυ

2

r
(2.3)

Using Eq (1.48), and the expression of the acceleration from the above equation, we
find that the rate at which the electron loses energy by radiation reads

dE

dt
= −2

3

e6

(4πε0c)
3m2

e

(2.4)

The left hand side of the above equation can also be re-written as
dE

dt
=
dE

dr

dr

dt
=
dr

dt

d

dr

(
1

2
meυ

2

)
(2.5)

=
dr

dt

d

dr

(
Ze2

8πε0r

)
=

Ze2

8πε0

1

r2

dr

dt

49It was until 1932, when James Chadwick demonstrated that inside the nucleus, besides the
proton there are neutral particles. He used the Beryllium that is radioactive, the emanation from
which is electrically neutral and was thought to be an electromagnetic radiation. Chadwick aimed
this emanation at various materials, including paraffin (containing hydrogen), helium and nitrogen
and studied the energies of the recoiling nuclei from different targets. He was able to conclude that
this emanation which came from beryllium was a neutral particle with mass of the proton, which was
called neutron.
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Hence, we obtain

dr

r2
= −4

3

e4

(4πε0)2 c3m2
e

4

3r2
dt (2.6)

Integrating both sides of the above equation gives

t =
(4πε0)2 c3m2

e

4e4

(
r3

0 − r3
)

(2.7)

where r0 is the radius of the orbit at a the time t = 0. If we assume that r0 ∼ 10−10 m,
we get the time it takes for the electron to crash on the nucleus is

Tcrash =
(4πε0)2 c3m2

e

4e4
r3

0 ' 10−10 s ! ! ! (2.8)

which is clearly in contradiction with the observed stability of the atoms.

2.3 Bohr’s Model [1913]

In 1913, Bohr constructed a model for hydrogen-like atom, described by an electron in
circular orbit atom with one electron in circular orbit around a nucleus with positive
charge Z e50 . As we saw, earlier, the acceleration of the electron (circular orbit) will
cause it to lose energy by electromagnetic radiation and spiral toward the nucleus.
Bohr resolved this problem by assuming that the electron can move only in certain
orbits, which he called stationary states. The total energy of the electron in a circular
orbit of radius r is given by the sum of its kinetic and potential energy:

Etot =
1

2
meυ

2 +
(−Ze2)

r2
= −Ze

2

2r
= −W (2.9)

where we made used of Eq (2.3), and W represents the necessary energy to extract
the electron from its orbit. The frequency of revolution can be expressed in terms the
total energy of the electron as51

νrev =

√
2

πZe2

W 3/2

√
me

(2.10)

So, in order for the electron to remain in a certain stationary state, it must have
a certain corresponding energy. Then, Bohr, Inspired by Planck hypothesis that a

50N. Bohr, Philos. Mag. 26, 1 (1913). This is really a nice paper that I advise every student who
is learning Quantum mechanics to read it.

51In SI units, it reads

νrev =
4ε0
√

2

πe2

W 3/2

√
me
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charged oscillator can emit or absorb energy only as a multiple hν, with ν is the
oscillation frequency of the oscillator ,postulated that

W =
n

2
hνrev (2.11)

But why there is a factor of 1/2 in the above equation, instead of 1 as in
Planck’s formula? Bohr explains his choice of the factor of 1/2 as follows52. First, he
assumes that the emitted energy is proportional to some, yet unkown, function f(n),
with n being an integer :

Wn = f(n)hνrev (2.12)

where n now labels a stationary state. Substituting the expression of νrev in (2.10)
into the above equation, we obtain

Wn =
π2meZ

2e4

2h2f 2(n)
; ν(n)

rev =
π2Z2e4me

2h3f 3(n)
(2.13)

The system can not radiate energy while remaining in the stationary. However, Bohr
assumed that when the electron moves from one stationary state to another, it emits
radiation. The frequency of the emitted light from the transition from state n1 to a
state n2 > n1, is given by the formula

ν =
Wn2 −Wn1

h
=
π2Z2e4me

2h3

[
1

f 2(n2)
− 1

f 2(n1)

]
(2.14)

He then noted that in order for the above expression to have the same form as the
Balmer series, one must have f(n) = C n, where c is some constant. To determine c,
he considered the transition between the state n1 = N and n2 = (N − 1), which yields

ν =
π2Z2e4me

2h3C2

(
2N − 1

N2(N − 1)2

)
(2.15)

Using (2.13), we find that the frequency of revolution of the electron before and after
the emission read

ν(N)
rev =

π2Z2e4me

2C3h3N3
; ν(N)

rev =
π2Z2e4me

2C3h3(N − 1)3
(2.16)

which for very large value of N, the ratio of the between the two frequencies approaches
1. So, in this limit, according to ordinary electrodynamics, the ratio between the
frequency of radiation ν and the the frequency of revolution ν(N)

rev is also very close to
1. This implies that we must have C = 1/2, which justify the factor of 1/2 in the
expression of Wn in (2.17). This implies that

Wn =
2π2meZ

2e4

h2n2
; ν(n)

rev =
4π2Z2e4me

n3h3
(2.17)

52See page 13 in his 1913-paper given in the footnote.
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Applying this result too the hydrogen atom, the frequency of radiation when the
electron make the transition from state n1 to n2 is

ν(n1 → n2) =
2π2e4me

h3

(
1

n2
2

− 1

n2
1

)
(2.18)

Then by setting n2 = 2, and allowing n1 to vary over larger values of integers, he re-
produced the experimental Balmer formula for the lines in the spectrum of hydrogen.
He also point out that n2 = 3 (with n1 taking values 4, 5, ..ect) corresponds to the
infrared spectrum observed by Paschen in 1908, and for n2 = 1 (or n2 = 4, 5..) while
letting n1 takes larger values gives a spectral lines in the extreme ultraviolet (extreme
infrared), which were not yet observed at that time.

For n1 >> (n1−n2) = ∆n, then we can Taylor expand the term 1/(n2)2 in (2.18)
to the first order in ∆n and find that

ν(n2,∆n) =
4π2e4me

h3n2
2

∆n (2.19)

Which for ∆n = 1 gives the orbital frequency, i.e. ν = νrev. Thus, in this limit, the
orbital frequency, which in classical theory gives rise to radiation, coincide with the
frequency associated with the difference of the quantum states of the electron. For
transitions with ∆n > 1 between states with large values of n such that n >> ∆n, he
noted that since the electron motion is periodic, its position can be represented by a
Fourier series as

x(t) =
∞∑
τ=1

Cτ cos τω(n) (2.20)

where each of these terms in the sum is known as a harmonic, and the τ th harmonic has
amplitude Cτ and a frequency τω(n) ≡ ν(n, τ), with ω is the fundamental frequency.
Then, according to classical electrodynamics, the frequencies the radiation emitted by
the atom is given by the frequencies in the harmonics, i.e. ω, 2ω, 3ω, ... ect53. So, Bohr
considered that the frequency associated with the transition from state n to n′, is equal
to the frequency of the τ th harmonic of the classical motion in the n′ stationary, i.e.

νquantum ≡ ν(n, n− τ) = ν(n, τ) ≡ νclassical; τ = n− n′ (2.21)

where here54

ν(n, n− τ) =
1

h
[E(n)− E(n− τ)] ; τ = 1, 2, .. (2.22)

53As it was pointed out in [20], strictly speaking the motion of an electron emitting radiation is not
periodic; but rather is a spiral toward the nucleus. However, if the initial energy of the electron is
very large compared to the energy lost, so that the energy radiated is negligible, then it can be well
approximated as being periodic.

54Here En is the binding energy of the stationary state with the quantum number n, i.e. En =
−Wn < 0.
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Bohr called theses correspondences the correspondence principle, which are valid
for large n and small τ . As we will see later that this principle can be used to to
determine the intensity and polarization of the emitted radiation in the quantum theory
associated with the transition from one state to another.

The quantum-theoretic frequency in (2.22) can be re-written as

ν(n, n− τ) =
1

h
[H[J(n)]−H[(J(n− τ)]] ; τ = 1, 2, .. (2.23)

where H is the Hamiltonian of the system which is represents the total energy, and
J is the action variable (see the Appendix), which in Bohr’s theory is equal to nh.
For n very large and τ small, we can Taylor expand the right-hand side of the above
expression, and obtain

ν(n, n− τ) =
1

h

dH

dJ
∆J = τ

dH

dJ
; n >> τ (2.24)

Now, in the classical theory, for a periodic motion the frequency of the αth har-
monic can be calculated using the Hamiltonian formalism, and it is given by

να = α
dH

dJ
(2.25)

where να = αν(n). Thus, in the classical theory the formula of the frequencies became
the same as in the quantum theories in the limit where n is very large, which is
consistent with Bohr’s principle. Furthermore, based on (2.23), (2.23), and (2.23), Born
suggested a prescription to translate from classical formulas into their corresponding
quantum-theoretic analogues by making the following replacement:

τ
Φ(n)

dn
←→ Φ(n)− Φ(n− τ) (2.26)

where Φ(n) can be any arbitrary differentiable function defined for a stationary state
n. The above recipe, which is sometimes referred to as Born’s correspondence rule
[2], and plays an important role in Heisenberg’s discovery of the matrix mechanics. It
has been generalized by Kramer and Heisenberg to the form55

τ
Φ(n, τ)

dn
←→ Φ(n+ τ, n)− Φ(n, n− τ) (2.27)

55H. Kramers and W. Heisenberg, "Uber die Streuung durch Atome ("On the dispersion of radiation
by atoms"), Zeitschrift fur Physik, 31, 681- 708 (1925).
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Bohr was also able to deduce the value of the Rydberg constant in terms of the
measured values of e, me, and h56:

RH =
2π2e4me

c h3
(2.28)

Here c denotes the speed of light. Using the measured values of e, e/m and h at
that time, gives RH = 1.097 × 107 m−1, in agreement with the experimental value.
Furthermore, from Eq (2.17), he calculated the energy of electron in the n = 1 state to
be 13 eV , not very different from the precise value of the energy of the lowest energy
state of hydrogen (13.6 eV ). So, the energy of the nth stationary state is57

En = −W = −13.6 eV

n2
(2.29)

Bohr’s condition for the stationary states in (2.17), can be translated into a quan-
tization rule for the angular momentum. This can be seen by writing the angular
momentum L as

L =
meυ

2/2

πνrev
=

W

πνrev
(2.30)

Since the kinetic energy is equal to W , the above expression reads

L = n h̄ (2.31)

where we have defined the constant h̄ = h
2π

= 1.05457× 10−34 J.s. So, we see that for
the electron to arrange itself in some stationary states, requires the quantization of the
orbital angular momentum58.

56To get the expression of RH written in SI units one just replace e2 by e2/4π in the (2.28), and
we get

RH =
π2e4me

8ε20c h
3

57For a hydrogen-like atom in which the nucleus contains Z protons, the energy of the nth state is

En = −W = −13.6 Z2 eV

n2

58So, in his original paper, Bohr arrived at the quantization of the angular momentum using the
relation W = n

2 h νrev; not as a starting assumption. It is interesting to note that the quantization
of angular momentum was used first in 1912 by J. Nicholson who was to trying to understand some
set of spectral lines observed in nebula and in the sun’s corona. He noticed that given that the
angular momentum has the same dimension as Planck constant, and suggested that the quantization
of angular momentum. This was acknowledged by Bohr in his 1913 -paper.
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In addition to the Balmer, it was known that there is a different type of spectral
series called Pickering series, found in 1896 by Edward Pickering in the star ζ Puppis.
These lines can arranged in a form analogue to Balmer’s series using half-integers
instead of integers, and were, erroneously, thought to be a second spectrum of hydrogen.
In 1912, Alfred Fowler showed that similar lines can be produced in a laboratory
mixture of hydrogen and helium gas. Bohr noticed that they have the same spectrum
of spectral lines as of hydrogen but with wavelength four times shorter59 and argued
that they could correspond to the spectral lines of ionized helium60. In Bohr’s theory
this means that the corresponding Rydberg constant for the helium, RHe, is four times
RH for the hydrogen atom. However, Fowler was not convinced and sent a letter to
Nature61 where he pointed out that the ratio RHe/RH is not simply a factor of 4, but
instead is 4.0016. Bohr understood that this small discrepancy is due to the fact that
one neglected the effect of the finite mass of the nucleus. So, in the above expressions
of Wn and νrev, the electron mass must be replaced by the reduced mass of the atom
or the ion:

µN =
meMN

MN +me

(2.32)

where N denotes the nucleus, and MN its mass. This implies that

RHe

RH

=
µHe
µH

= 4

(
1 + me

MH

1 + me
MHe

)
= 4.00160 (2.33)

In a very good agreement with the experimental data. Impressive !!62

2.4 Sommerfeld Extension of Bohr’s Model [1915− 1919]

Although, Bohr’s model provided an explanation for the origin of the spectral lines
observed in hydrogen and hydrogen like atoms, it failed when applied to systems with
more than one electron. For instance, it could not account for the spectrum of neutral
helium atom. Even for the hydrogen atom, it was known at time63 that the Hα and
Hβ lines of the Balmer series were composed of more than one line, i.e. they displayed
some narrow line splittings which is incompatible with Bohr’s theory64.

59This can be seen by substituting in the expression (2.18)substitute e4 by Z2e2, and which for
helium Z = 2.

60 In 1913, while Bohr still developing his theory, E. Evans showed that Pickering lines can be
detected using a pure helium sample. He reported his results in a letter to Nature: E. Evans, "The
spectra of helium and hydrogen", Nature 92: 5 (1913).

61A. Fowler, "The spectra of helium and hydrogen", Nature 92: 95 (1913). Note the paper was
published in same month (september) as Evan’s paper and with the same title.

62 It is said that when Einstein was told about this result, he responded: "This is an enormous
achievement. The theory of Bohr must be right".

63Michelson, Philosophical Magazine (4), 31, 338- 346(1891).
64 This problem, although recognized by the time Bohr’s announced his theory, but was not regarded

as a very strong argument against Bohr’s theory in view of its remarkable success and the fact the
splittings was very small.
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Arnold Sommerfeld, suspected that is due to the fact that Bohr’s model was
an approximation, as the quantization condition of the angular momentum involved a
single quantum number. So, in 1915, Sommerfeld proposed a generalization of Bohr’s
model to two degrees of freedom where the electron orbit is elliptical rather than
circular, and hence, now there are two independent parameters r and φ. He and Bohr
also realized that the angular momentum quantization (2.31) could be also written as∫ 2π

0

pφ dφ = nh (2.34)

where φ is the angular coordinate describing the position of the electron in its circular
orbit, and pφ is the angular momentum, which in Hamiltonian mechanics represents
the canonical conjugate momentum of φ. This lead Sommerfeld to postulate that
stationary states of a periodic system with f degrees of freedom are determined by the
condition that phase integral for every coordinate is an integral multiple of
the quantum action65, i.e.∮

pk dqk = nkh; k = 1, 2, ...f (2.35)

where qk is one of the coordinate describing the position of the electron, pk is the
momentum conjugate associated with that coordinate66, nk is a non-negative integer,
and the integration is taken over one period of the coordinate.

For the case of elliptical orbits, we have two quantization conditions∮
pφ dφ = nφh;

∮
pr dφ = nrh (2.36)

This system of electron in the potential V (r) of a nucleus is described by the Lagrangian

L =
me

2
υ2 + V (r) (2.37)

=
me

2

(
ṙ2 + r2φ̇2

)
+ V (r)

from which we can calculate the conjugate momenta of the coordinates φ and r (see
the footnote) and find

pφ = mer
2φ̇; pr = mṙ (2.38)

which corresponds to the azimuthal angular momentum and the radial momentum of
the electron, respectively. Since pφ is a constant of motion67, the quantization condition

65A. Sommerfeld, Munchener Berichte, pp. 425- 458 (1915); Annalen der Physik 51, 1- 94 (1916).
66For a system that is described by a Lagrangian L(qk, q̇k), the momentum conjugate associated

with the coordinate qk is pk = ∂L
∂q̇k

.
67Euler-Lagrange equation of motion for the coordinate φ reads

∂L

∂φ
− d

dt

(
∂L

∂φ̇

)
= 0 (2.39)
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for the azimuthal angle is

pφ = nφh̄ (2.41)

which is exactly the same as the quantization condition given by Bohr for circular orbit.

Now, we would like to derive the quantization condition pr. For that, we first
recall that the equation for an ellipse with a semi-major axis a is given by

r =
a (1− ε2)

1 + ε cosφ
≡ A

1 + ε cosφ
(2.42)

where r is the distance from a focus to a point on the ellipse, ε is the eccentricity of
the ellipse, and the quantity A = a (1− ε2) is called the semi-latus rectum. With the
help of the expression of pφ in (2.38), we can write the integrand prdr in (2.36) as

prdr =

(
me

dr

dφ
φ̇

)
dr

dφ
dφ = pφ

(
1

r

dr

dφ

)2

dφ (2.43)

Taking the logarithm on both sides of Eq(2.42), then differentiating with respect to φ
gives

1

r

dr

dφ
=

ε sinφ

1 + ε cosφ
(2.44)

After substituting the above expression into in (2.43), the the quantization condition
reads ∮

pr dr = pφε
2

∫ 2π

0

ε sin2 φ

(1 + ε cosφ)2dφ = nrh (2.45)

or, equivalently,

nr
nφ

=
ε2

2π

∫ 2π

0

ε sin2 φ

(1 + ε cosφ)2dφ (2.46)

where we made use of the quantization condition on pφ given in Eq(??). Evaluating
the integral, yields

1− ε2 =
n2
φ(

n2
φ + n2

r

) (2.47)

Since L is independent of φ (in this case we say that φ is a cyclic coordinate), we get

d

dt
(pφ) = 0 (2.40)

So, pφ is a constant of motion.
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which shows that not all eccentricities are allowed. Since the coordinate r is function
of φ, we can express the total energy of the electron solely in terms of angle φ, and get

Etot =
p2
φ

mea2 (1− ε2)2

[
1 + ε2

2
+ ε cosφ

]
− Ze2

4πε0

1 + ε cosφ

(1− ε2)
(2.48)

However, we know that for time-independent potential, the energy of a system is a
constant of motion, and therefore the therms in front of cosφ must add up to zero.
This implies that the semi-major axis is given by

a =
4πε0p

2
φ

Ze2 (1− ε2)
(2.49)

or, equivalently,

an =
4πε0h̄

2

Ze2me

(nφ + nr)
2 ≡ 4πε0h̄

2

Ze2me

n2 (2.50)

which has exactly the same form as the energy derived by Bohr for circular orbit
but with the difference that for elliptical orbits the quantum number n is replaced by
(nφ + nr). So, now the emitted photon in the transition between two quantum states
represented by (nφ + nr) and (n′φ + n′r) > (nφ + nr), has frequency

ν =
Ze4me

8ε20h
3

[
1

(nφ + nr)2
− 1

(n′φ + n′r)
2

]
(2.51)

The state with nφ = 0 gives to ε = 1, which is a straight line joining the two foci of the
ellipse. This means the electron will pass through the nucleus, therefore this possibility
was excluded. So, the lowest energy state corresponds to (nφ, nr) = (1, 0), which yields
ε = 0, i.e. in this state the electron will have a circular orbit. For the first excited
energy state (nφ + nr) = 2, there are two possible orbits: circle ((nφ, nr) = (2, 0)),
and an ellipse ( (nφ, nr) = (1, 1) ). In the second excited state n = 3, the electron
can be in one of the three possible orbits: circle ((nφ, nr) = (3, 0)), and three ellipses
with different ellipticity ( (nφ, nr) = (2, 1), (1, 2) ). So for Z = 1, Eq (2.51) gives the
the spectral series of the hydrogen atom, but with the number of ways, also called
degeneracy, in which the transition can be produced has been greatly increased. For
example, for hydrogen ( Z = 1), the transition between the states n = 2 and n = 3,
which corresponds to the line Hα has a degeneracy 3× 2 = 6. The degeneracy is even
higher for the lines Hβ, Hγ, Hδ, and so on.Since not all of these transitions are realized
in nature, Sommerfeld suggested some empirical selection rules on the possible spectral
lines.

Finally, one of the important results of Sommerfeld extension of the Bohr’s model
is the calculation of the relativistic expression of the energy levels of hydrogen-like
atoms.
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2.5 Einstein Coefficients [1916]

In 1916, Einstein studied the transition and absorption of radiation by matter using
statistical mechanics. He considered a quantum system consisting of a large number
of molecules which occupy a discrete set of states which, in his original paper68, he
denoted them by Z1, Z2, ..., ect, with the corresponding energies ε1, ε2, ... ect69, and
postulated that the number of transitions, in time dt, from state Zm to a state Zn
will consist of two components. The first component corresponds to the spontaneous
emission70, which can occur without the need for an external field. The number of
transitions for this kind of emission is given by

dN (spont) = AnmNmdt (2.52)

where Nm denotes the number of molecules. The second component. The second
component arises from the stimulated emission, produced when when a particle in
an excited state interacts with an incident photon and make the transition from a
higher to a lower energy state71. The number of transitions in stimulated emission
reads

dN (stim) = Bn
mNmu dt (2.53)

where u is the energy density of the incident radiation72. The presence of this radiation
will also induce jumps from the state Zn to the state Zm if a molecule in the lower
state absorbs a photon of frequency ν = (εm − εn)/h. In this case e the number of
transitions as a result of photon absorption is

dN (abs) = Bm
n Nnu dt (2.54)

The coefficients Anm, Bn
m and Bm

n , called Einstein coefficients, are assumed to depend
only on the properties of the molecules, and not the radiation. A schematic of the
three types of emissions is shown in Fig. 8.

If the system is in a thermodynamic equilibrium at temperature T, then the
energy density of the radiation is a function of temperature, i.e. u = u (T ). Also, in
equilibrium, the rate at which molecules make a transitions from the state Zn to Zm
must be equal to the transition rate from Zm to Zn:

Nm [Anm +Bn
mu(T )] = NnB

m
n u(T ) (2.55)

68A. Einstein, "Strahlungs-Emission und -Absorption n ach der Quantentheorie" [Emission and
Absorption of Radiation in Quantum Theory]. Verhandl. D. Deutch. Phys. Ges., Vol 18, pp. 318-323
(1916).

69These are internal energies that a molecule can occupy apart from its translational and rotational
motion.

70Note Einstein never used the term "spontaneous emission" in his paper. It was Bohr who inter-
preted such transition as a spontaneous in the sense of "acausal".

71It’s like the photon "convinces" the particle in some excited state to jump to a lower energy state.
This process is accompanied with the emission of a photon which will have a frequency at or near the
frequency of the transition, i.e. hν ' (εm − εn).

72The incident radiation is not necessarily a black-body radiation.

– 42 –



Figure 8: A schematic of the types of radiation emitted between two energy states
(taken from [17]).

The number of molecules that occupy a state Zj is proportional to the probabilityWj,
which according to classical statistical mechanics is given by the Boltzmann distribu-
tion

Wj = gj exp

(
− εj
kBT

)
(2.56)

where the factor gj is the degeneracy of the the quantum state Zj73. This implies that
the equilibrium relation (2.55) becomes

gm e−εm/kBT [Anm +Bn
m u(T )] = gn e

−εn/kBTBm
n u(T ) (2.57)

Assuming that when T →∞, the energy density of the radiation goes to infinity, one
can neglect the coefficient Anm compared to the Bn

m u, and obtain

gm Bn
m = gn B

m
n (2.58)

Using this relation in (2.55), Einstein deduced that the spectral energy density u is
given by

u(T ) =
Anm/B

n
m

e(εm−εn)/kBT − 1
(2.59)

In the high frequency range, i.e. hν >> kBT , the above expression reduces to Wien
radiation law in (1.39), whereas for low frequencies, i.e. hν << kBT , it and produces

73It is also called the statistical weight of the state Zj .
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the In the Rayleigh- Jeans formula in (1.46). So Einstein concluded that

Em − En = hν (2.60)

which corresponds to the Bohr’s frequency condition, and that

Anm =
8πhν3

c3
Bn
m (2.61)

Substituting (2.60) and (6.54) into (2.59), gives the Planck’s energy density distribu-
tion. The above relation can be used to ....
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Despite the success of Bohr’s model and its extension by Sommerfeld, it failed to
explain the spectrum of atoms with more than one electron, such as the helium atom,
and the anomalous Zeeman effect. As suspected by Pauli and Heisenberg and Born,
the root of the failure of the Bohr’s theory was the orbit paradigm. This lead to the
development of the matrix mechanics by Heisenberg in 1925 and the wave mechanics
by Schrodinger in 1926 which naturally explain the quantization of the atomic energy
levels as well the fine structure of the spectral lines. Furthermore, as will be discussed
later, both the Heisenberg and the Schrodinger formulations of the quantum theory
turn out to be equivalent.

3 Wave Mechanics [1923− 1927]

3.1 Wave-Particle Duality and Davisson-Germer Experiment [1923− 1927]

In the previous chapter, we have seen that the photoelelectric and Compton effect
provided a clear evidence that light manifests not only as a wave, but also as a stream
of particles, called photons. For an electromagnetic wave with frequency ν, the photon
energy is Eγ = hν = h̄ω.

In 1923, Louis de Broglie, suggested that a particle of mass m, such as the electron,
can be regarded as a wave with frequency and wave number given by74

ω =
E

h̄
; ~k =

~p

h̄
=
m~υ

h̄
(3.1)

which means that to each particle one associates a de Broglie wavelength

λd =
h

p
=

h

mυ
(3.2)

In using p = mυ it was assumed that the particle is non-relativistic. A generalization to
the case of a relativistic particle is straightforward; one just uses p = mυ/

√
1− υ2/c2

for the momentum of the particle in the above equation. In the table below, we show
the de Broglie wavelengths for electrons, and α (Helium nuclei) particles for different
kinetic energies.

Now, if particles such as electrons can manifest not only as a corpuscule but also
as a wave, they should exhibit diffraction effects. Indeed, that what has been shown
in 1927 in a scattering experiment by C. J. Davisson and L. H. Germer 75 at the Bell
Laboratories in USA76. They directed a beam of low energy electrons (Ee = 54 eV )

74de Broglie, Louis, "The Beginnings of Wave Mechanics" in "Wave mechanics the first fifty years"
edited by Price, William; Chissick, Seymour; Ravensdale, Tom . Halsted Press (Wiley) 1973. p. 13.

75C. Davisson and L. Germer, Phys. Rev, Volume 30, 6, 705-740 (1927).
76In the same year, few months after Davisson-Germer experiment, G. P. Thomson (the son of J. J.

Thomson) and his assistant Reid also observed that by passing electrons with kinetic energy 50 keV
through very thin gold foil (they also did similar experiment with Aluminum ), they exhibit diffraction
effect.
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onto a nickel crystal , and measured the intensity of the scattered electron at some
angle that can be varied using a movable detector. They found that there was a peak
in the intensity of the outgoing electron beam at an angle φ = 50(0) and a minimum
at φ = 350. By varying the the kinetic energy of the incident electrons77, the y could
vary the electron wavelength and produce maxima and minima at different locations
for the intensity. This was similar to the diffraction pattern predicted by W. Bragg
for x-ray scattering from a crystal. .A schematic of Davisson-Germer experiment is
shown in Fig. 6. So the existence of peaks in the intensity can be explained as due
to constructive interference of waves scattered from atoms in different planes of the
crystal. The condition for a maximum constructive interference was established by W.
Bragg, and it is given by

2d sin θ = n λ; n = 1, 2, .. (3.3)

where θ is the angle of incidence ... In this experiment, only the first order diffraction
n = 1 is observed. Thus, using the lattice spacing of the atoms in nickel crystal
d = 0.9 A0, and the measured scattering angle φ = 500 = (π − 2θ) (see the fig.
6) where the peak occurs, they calculated the wavelength that could produce such a
maximum and found

λ = 2× 0.92 A0 × sin 650 = 1.67 A0 (3.4)

Now, the momentum of the electron when it leaves can be obtained from the equation
of conservation of energy t

p2
e

2me

= |e|Ue (3.5)

where Ue is the accelerating potential. So, according to de Broglie, the wavelength of
the electron is

λd =
h√

2|e|meVe
=

12.26 A0√
Ue/V olt

(3.6)

Using Ue = 54 V in the above expression gives λd = 1.668 A0, which is in excellent
agreement with the value inferred from observation and provides a convincing evidence
of the wave nature of electrons as postulated by de Broglie.

Clinton Joseph Davisson and George Paget Thomson78 shared the Nobel
Prize in Physics in 1937 for " their experimental discovery of the diffraction of
electrons by crystals"[8].

A modern device that relies on the wave property of electrons is the transmission
electron microscope (TEM). It is similar to the "optical microscope", but has much

77By applying different accelerating voltages from 44 V to 68 V .
78It is interesting to note that J. J. Thomson discovered the electron as a "particle" in 1897, while

his son George Thomson confirmed the wave character of the electron in 1927.
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Figure 9: A schematic of of Davisson-Germer experiment (up) and the intensity of
the outgoing electron as a function of the scattering angle (down). Figure taken from
[18].

Kinetic Energy Electron Neutron α-particle
3× 10−2 eV 71 A0 1.65 A0 0.83 A0

1 eV 12.3 A0 0.28 A0 0.14 A0

10 keV 0.12 A0 3× 10−3 A0 10−3 A0

higher resolving power79. This is because the electrons can be accelerated by an electric
potential to a very kinetic energies, getting a short wavelengths which can be as small
as the x-ray radiation. The speed of these electrons approaches light velocity, and
relativistic effects must be added. If Ue denotes the accelerating electric potential,
then the de Broglie wavelength including the relativistic effects is given by

λd =
h√

2me|e|Ue (1 + eUe/2mec2)
(3.7)

In a 100 k V accelerating potential (i.e electron kinetic energy of 100 keV ), the wave-
length of electron is of the order 0.3 pm. Today, TEM have reached resolution of better

79The first TEM was built in 1931 by Ernst Ruska at the university of Berlin, Germany. He was
awarded the Nobel Prize for Physics in 1986.
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than 0.05 nm, more than 40, 000 times better than a typical optical microscope80.

3.2 Schrodinger Equation [1926]

In 1925, Peter Debye invited Erwin Schrodinger to give a seminar at Zurich univer-
sity on the de Broglie wave-particle duality. After the talk has finished, Debye told
to Schrodinger that this wave-particle duality approach is somehow "childish" and to
deal properly with waves one "had to have a wave equation". Perhaps, this is what
stimulated Schrodinger and lead him in to the discovery of the equation of the de
Broglie waves in 1926, now known as Schrodinger equation81. The original deriva-
tion of Schrodinger equation used the analogy between the Hamiltonian formulation
of classical mechanics and optics, which I give the details in the appendix. Here we
give a more simpler derivation, but non rigorous means .

The energy of a free non-relativistic particle of mass m, momentum ~p is given by

E =
p2

2m
(3.8)

The above equation does not change by multiplying its both sides by a wave function
ψ:

E ψ(~x, t) =
p2

2m
ψ (3.9)

If we assume that the plane wave ψPW (~x, t) = ei(
~k.~x−ωt) is the wave function for a

particle of momentum ~p = h̄~k and energy E = h̄ω, then we have

ih̄
∂

∂t
ψPW (~x, t) = E ψPW (~x, t) (3.10)

−ih̄~∇ ψPW (~x, t) = ~p ψPW (~x, t)

80The resolution, δ, in a perfect optical system can be calculated using Abbe’s equation:

δ =
0.612 λd
n sinα

where n is index of refraction of medium between point source and lens relative to free space, which
is approximately equal to unity, and α is half aperture angle in radians. For TEM, the angle α is very
small, of the order 10−2 radians. Using the expression of λd in (3.6) (if we neglect the relativistic
effects which is a good approximation for Ue < 100kV ), and using the approximation sinα ' α, we
find that

δ =
0.753

α
√
Ue/V olt nm

For an accelerating potential Ue ∼ 100kV , we get a resolution d ' 0.2 nm.
81 Erwin Shcrodinger, Phys. Review, Vol. 28, N0. 6, p (1927). This paper is based on a series of

papers that Schrodinger has written in German in 1926.
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Substituting theses equation in (3.9), we get82

ih̄
∂

∂t
ψPW (~x, t) = − h̄2

2m
∇2 ψPW (~x, t) (3.11)

However, for a particle in a potential U(~x), the wave function will no longer be a
simple plane wave, since the wavelength, determined through the de Broglie relation,
varies with the potential. It turns out that the appropriate wave function is given by

ih̄
∂

∂t
ψ(~x, t) = H ψ(~x, t) (3.12)

where

H =

(
− h̄2

2m
∇2 + U(~x)

)
(3.13)

is the Hamiltonian operator of a particle of mass in a potential U . Equation (3.12)
is known as the time-dependent Schrodinger equation, or the TDSE for short.
Note that because of the presence of "i" in the TDSE, the solution, ψ(~x, t), is generally
a complex function.

If the potential time-independent, we can use separation of variables , and write

ψ(~x, t) = e−iωt φ(~x) (3.14)

which after substituting into (3.12), we obtain(
− h̄2

2m
∇2 + U(~x)

)
ψ(~x, t) = E ψ(~x, t) (3.15)

This equation is called the time-independent Schrodinger equation (TISE).

To test his equation, Schrodinger applied it to the case of a particle in a Coulomb
potential, such as the electron in the hydrogen atom. He computed the hydrogen
spectral series by treating the representing the electron by a wave function moving in
the Coulomb potential created by the proton. He found that the allowed values of
the energy and momentum were the same as those of the Bohr model which was an
evidence that it was the correct wave equation83.

Erwin Schrodinger shared with Paul Dirac the Nobel Prize in Physics in 1933
.

82Note that this is different from a normal wave equation, such as of a vibrating string, or the
electromagnetic wave, given by

∇2ψ − 1

υ2

∂2

∂t2
ψ = 0

where υ is the speed at which the wave travels. In this case, one needs to specify both ψ and ∂ψ/∂t
as a boundary conditions.

83Erwin Schrodinger, Annalen der Physik: 361-377 (1926).
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3.3 Interpretation of the Wave Function [1926]

in 1926, Max Born suggested to interpret the square of the wave function associated
with a particle, |ψ(~x, t)|2≡ ρ, as the probability density to find the particle at location
~x at time t84. In other words, it is the probability density distribution. For instance,
the probability of finding a particle at a position between the points ~x and (~x+ d~x) is
given by

dP (~x) = ψ(~x, t)ψ∗(~x, t) d3~x (3.16)

where d3~x is the element of volume centered around the point ~x. In a two-slit experi-
ment, it was found that this interpretation correctly predicts the probability distribu-
tion of electrons hitting a screen after passing through the two slits.

So, with this probabilistic interpretation of the wave function, the following prop-
erties must be satisfied:

1. φ(~x) and its first derivative must be finite, single valued, and continuous
every where. However, if the potential is not a function but a distributions, such
as δ- distribution, the derivative does not have to be continuous.

2. φ must be square integrable, i.e.
∫
|φ(~x)|d3x = 1, which is equivalent to

saying that for a particle in three dimensional space, there is 100% chance to
find it some where within the whole space. This is called the normalization
condition. However, it is important to note that as long as the integral is a finite
constant N, one can always normalize it to unity by defining the wave function
to be φ/

√
N .

3. If φ1(~x) and φ(~x) are two normalized independent solutions to the TISE, then
the linear combination (c1φ1 + c2φ2) with |c1|2+|c2|2= 1 is also a solution. This
is because the TISE is a linear differential equation.

Now, taking the time derivative of the probability density distribution ρ = ψ∗(~x, t)ψ(~x, t)
of a particle of mass m in a potential U(~x), and using the TDSE (3.12) gives

∂

∂t
ρ =

i

h̄
[(Hψ∗)ψ − ψ∗(H←)] (3.17)

= − ih̄

2m
[(∆ψ∗)ψ − ψ∗∆ψ] +

i

h̄
[Uψ∗ψ − ψ∗Uψ]

= − ih̄

2m
~∇
[
(~∇ψ∗)ψ − ψ∗~∇ψ

]
If we now define the probability current density distribution as

~j = − ih̄

2m

[
ψ∗~∇ψ − (~∇ψ∗)ψ

]
(3.18)

84The term Quantum Mechanics was first coined by Max Born in his 1924 paper, entitled "Uber
quantenmechanik" (On quantum mechanics), published in Zeitschrft fur Physik, 26, 379- 395 (1924).
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we obtain

∂

∂t
ρ+ ~∇~j = 0 (3.19)

which is known as the continuity equation, similar to the equation one encounters
in fluid mechanics or electrodynamics. If we integrate the above equation over a region
of volume V bounded by a surface S = ∂V , we get

d

dt

∫
ρ(~x, t) dV = −

∮
S
~j(~x, t) ~n dS = (3.20)

Here ~n is a unit vector normal to the surface at the point ~x. In the above equation,
changed the order of the integration and the differentiation on the left hand side and
we used the Gauss- Ostrogradsky theorem to obtain the last term on right hand side.
So, Eq (3.20) means that the change in probability within V is equal to the outward
probability flux through the the surface S. If we tak the volume V to be the whole
space, then the ~j(|~x|→ ∞) = 0, and thus we get

d

dt

∫
All−space

|ψ(~x, t)|2d3~x = 0⇒
∫
All−space

|ψ(~x, t)|2d3~x = Constant (3.21)

In other words, the total probability is conserved. So, if the wave function was initially
normalized to one , it remains equal to unity at all time.

With this probabilistic description, we can no longer speak with certainty about
the position of a particle, but, instead, we can compute the probability of finding it
at some particular position. However, given a probability density distribution |ψ|2, we
can calculate the average position of the particle, say of the coordinate < xi >, given
by

< xi >=

∫
xi ρ(~x, t) d3~x∫
ρ(~x, t) d3~x

=

∫
xi |ψnorm(~x, t)]2 d3~x (3.22)

where

ψnom(~x, t) =
ψ(~x, t)∫
|ψ(~x, t)|2 d3~x

(3.23)

is normalized wave function. In general, the expectation value of any function of the
position, f(~x) is

< f(~x) >=

∫
f(~x) |ψnorm(~x, t)]2 d3~x (3.24)

We can use (3.24) to calculate the standard deviation in the coordinate xi ( also called
the variance), denoted by ∆xi, defined as

(∆xi)
2 =< (xi− < xi >)2 >=< x2

i > − < xi >
2 (3.25)
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where we used the fact that < xi < xi >>=< xi >
2. Hence, we can write

(∆xi)
2 =

∫
x2
i ρ(~x, t) d3~x−

[∫
xi ρ(~x, t) d3~x

]2

(3.26)

where ρ(~x, t) is the normalized probability density.

Max born was awarded the Nobel Prize in Physics in 1954 for " his fundamental
research in quantum mechanics, especially for his statistical interpretation of the wave
function".

4 Examples of One Dimensional Potentials

4.1 Free Particle in 1-dimension and Wave Packet

The simplest system is free particle in one dimension, i.e U(x) = 0, for which equation
(3.15) becomes

d2φ(x)

dx2
+ k2φ(x) = 0 (4.1)

with

|k|=
√

2mE

h̄2 (4.2)

The general solution of (4.1) can be written as a combination of plane waves

φ(x) = A ei|k|x +B e−i|k|x (4.3)

Note that there are no boundary conditions on the above wave function, that is why it
represents a "free" particle. The wave function at instant, can be found using (3.14),
which gives

ψ(x, t) = A ei|k|(x−
h̄|k|
2m

t) +B e−i|k|(x+ h̄k
2m

t) (4.4)

note the that A-term corresponds to a wave propagating in the positive direction of
the x-axis, and the B-term is a propagating wave in the opposite direction. So, we can
simply write

ψk(x, t) = Ake
ik(x− h̄k

2m
t) (4.5)

where k can be |k| or −|k|, depending if the wave is moving to the right or to the left,
respectively, and Ak is a constant.

However, there are two problems when representing a free particle by a plane
wave:
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1. Plane waves are not square integrable ( i.e. not renormalizable):∫ ∞
−∞
|ψk(x, t)|2 dx = |Ak|2 (4.6)

2. The speed of a plane wave is

υwave =
h̄k

2m
=

√
E

2m
(4.7)

Whereas, a free particle has a speed

υparticle =

√
2E

m
= υwave (4.8)

So the speed of the particle is different from the speed of the wave function that
it represents.

This means that there can be no free particle with definite momentum. The plane
wave representation of free particle has a definite momenta but it is extended over
the whole space. We can construct a wave function that has a finite spread in space,
however, with a finite spread in momentum. This can be achieved by taking a linear
combination of an infinite number of plane waves, called the wave packet. In general,
a wave packet has the following form

ψ(x, t) =
1√
2π

∫
φ̃(k) ei(kx−ωkt) dk (4.9)

where φ̃(k) is some smooth function peaked at the wave number k = k0, and ωk is the
frequency of oscillation which is a function of k. . At the instant t = 0, we have

ψ(x, 0) =
1√
2π

∫
dk φ̃(k) eikx (4.10)

which means that φ̃(k) is just the Fourier transform of the wave packet at t = 0. The
normalization of φ̃(k) follows from the normalization of ψ(x, 0):∫ ∞

−∞
|ψ(x, 0)|2 dx =

1

2π

∫
φ̃(k1)φ̃(k2) ei(k1−k2)x dk1 dk2 dx = 1 (4.11)

Using the identity ∫ ∞
−∞

ei(k1−k2)x dx = 2π δ(k1 − k2) (4.12)

we obtain ∫
|φ̃(k)|2 dk = 1 (4.13)
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Hence, |φ̃(k)|2 dk can be interpreted as the probability for a particle to have wave
number k in an interval of width dk around some value of k.

By Taylor expanding ωk around k0 and neglecting the quadratic and higher order
terms, we have

ωk = ω0 + ω′0(k − k0) (4.14)

with ω0 = ω(k0), ω′0) = dω
dk

(k0). This gives

ψ(x, t) ' ei(k0x−ω0t)

∫
φ̃(k)√

2π
ei(k−k0)(x−ω′0t) dk (4.15)

≡ ei(k0x−ω0t)F (x− ω′(k0)t)

where F is the envelope function for the plane wave ei(k0x−ω0t). So the wave packet is
traveling with a speed ω′o. This can also be shown by re-writing the above expression
of ψ as

ψ(x, t) ' e−[it(ω0−k0ω′(k0))]

∫
φ̃(k)√

2π
eik(x−ω′(k0)t) dk (4.16)

from which it follows that

|ψ(x, t)|2' |ψ ((x− ω′(k0)t), 0) |2 (4.17)

This means that if the wave packet was initially concentrated at some position x = 0,
at time became concentrated around x = ω′(k0)t. Thus, it moved with a speed 85

υg =
∂ωk
∂k

(k0) (4.19)

which is called the group velocity of the wave packet. On, the other hand, the
individual plane waves that constitute the wave packet have phase velocity

υp =
ωk
k

(4.20)

For a very narrow wave packet that is peaked around k0, the phase speed can be
approximated by υp ' ω0/k0, which is not necessarily the same as the the group

85Yet another way to determine the group velocity, is by noting that for arbitrarily chosen values
of k, the exponential in (4.9) oscillates rapidly, resulting in the vanishing of ψ except where the phase
is constant, i.e. when

∂

∂k
[k (x− ω′(k0)t)] = 0⇒ x = ω′(k0)t (4.18)

which implies that the envelope moves with a speed υg = ω′(k0).
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velocity. But , If the system is dispersionless, i.e. ωk is linear in k, then all the wave
with the same speed and it same as the group velocity. For the case of a free particle,
ωk = h̄k2/2m which yields

υp '
h̄k0

2m
= υwave; υg =

h̄k0

m
=
p0

m
= υparticle (4.21)

Thus, the group velocity represents the classical velocity of the particle.

Now let us consider a wave packet where φ̃(k) has a Gaussian profile centered at
k = k0

φ̃(k) = Ak e
−(k−k0)2/4∆2

k (4.22)

which is a bell-shaped curve. Here Ak is a normalization constant and ∆k is the width
of the Gaussian wave packet in k-space86. Using the normalization condition (4.13) we
get

Ak =
1

(2π∆2
k)

1/4
(4.23)

With this profile, the wave function reads 87

ψ(x, t) =
Ak√
2π

∫ ∞
−∞

e

[
− (k−k0)2

4∆2
k

−i h̄k
2t

2m
+ikx

]
dk (4.24)

=
Ak√
2π
e
i

(
k0x−

h̄k2
0t

2m

) ∫ ∞
−∞

e[−(∆2
x+i h̄t

2m)(k−k0)2+i(k−k0)(x−υ0t)] dk

where we have replaced 1/2∆k by ∆x which has dimension of length, and υ0 = h̄k0/m
is the classical velocity of the center of the wave packet associated with the free particle.

86 If we can compute the average square of the deviation of k from k0, we get

< (∆k)2 >=

∫∞
−∞ (k − k0)2e−(k−k0)2/4∆2

k dk

e−(k−k0)2/4∆2
kdk

= ∆2
k

So, ∆k is the width of the wave packet.
87We made use of the Gaussian integral∫ ∞

−∞
e−αx

2

dx =

√
π

α

In general, for n integer, we have∫ ∞
−∞

xn e−αx
2

dx =
1.3.5.....(2n+ 1)

√
π

2n/2α(n+1)/2
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The above integral can be brought into the form of a Gaussian integral, and we obtain88

ψ(x, t) = e
i

(
k0x−

h̄k2
0t

2m

) √
∆x

(2π)1/4
(
∆2
x + i h̄t

2m

)1/2
e
−
[

(x−υ0t)

4(∆2
x+i h̄t2m )

]
(4.25)

Thus, the probability density is given by

|ψ(x, t)|2=
1√

2π∆x(t)
exp

[
−(x− υ0t)

2∆2
x(t)

]
(4.26)

where

∆x(t) =

(
∆2
x +

h̄2t2

4m2∆2
x

)
(4.27)

So, the maximum of the Gaussian wave packet moves with the group velocity υg =
k0/m = ∂ωk

k0
. Note this expression seems to be not consistent with Eq (4.17). This

is due to the fact that in deriving (4.17) we have considered ωk to be linear in the
wave number, which is not true for the case of free particle where ωk = h̄k2/2m, i.e.
quadratic in the wave number. Another point worth noticing is that the Fourier trans-
form of a Gaussian is also a Gaussian.

The quantity ∆x(t) looks like the width of the Gaussian packet in the position
space. This suggest that it might be related to the average or the variance of of the
particle at time t. Using the expression of |ψ(x, t)|2 above and the definition of the
average a function of a position given in (3.24), we have

< x2(t) > =
1√

2π∆x(t)

∫ ∞
−∞

x2(t) exp

[
−(x− υ0t)

2∆2
x(t)

]
(4.28)

=
1√

2π∆x(t)

[
υ2

0t
2
(
2π∆2

x(t)
)1/2

+

√
π

2

(
2∆2

x(t)
)3/2
]

= υ2
0t

2 + ∆2
x(t)

and

< x(t) > =
1√

2π∆x(t)

∫ ∞
−∞

x(t) exp

[
−(x− υ0t)

2∆2
x(t)

]
(4.29)

=
1√

2π∆x(t)
υ0t
(
2π∆2

x(t)
)1/2

= υ0t

88We have used the fact that

I(a, b) =

∫ ∞
−∞

e−(ax2+ibx)dx = e−b
2/4a

∫ ∞
−∞

e−a(x−i b
2a )2dx =

√
π

a
e−b

2/4a
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Thus, the variance in the position at time t is

∆x(t) ≡< x2(t) > −(< x(t) >)2 = ∆2
x(t) (4.30)

So, the quantity ∆x(t) is the variance of the position of the particle at time t, which
grows linearly with time for t >> tc = 2m∆2

x

h̄
. This means that the probability density

spreads out as the time goes on, and eventually it will not be localized.

4.2 Infinite Square Potential

4.3 Symmetric Finite Potential: Bound and Unbound States

4.4 Particle moving through a Step Potential

In this subsection, we will study a particle initially traveling in one dimension from in
a region of constant potential V1 ≥ 0 to a region with different potential V2 > V1. This
means that there is a potential barrier separating the two regions. We assume that the
particle has a constant energy E > V1 . Let x = 0 be the transition point from one
region to the other. So, the potential reads

V (x) =


V1, x < 0;

V2, x ≥ 0.
(4.31)

So the TISE reads

− h̄2

2m

d2φ(x)

dx2
+ V1φ(x) = 0; x < 0 (4.32)

− h̄2

2m

d2φ(x)

dx2
+ V2φ(x) = 0; x > 0

There are two cases to consider depending if the energy of the particle is larger or
smaller compared to V2.

1. Case I: E > V2

In the region x < 0, the solution has the form

φ<(x) ≡ φ(x < 0) = A1e
ik1x +B1e

−ik1x (4.33)

where A and B are constants to be determined, which correspond represent the
amplitudes of the incident and the reflected waves, respectively, and k1 is the
wave number, given by

k1 =

√
2m(E − V1)

h̄
(4.34)

Similarly, in the region x > 0, the wave function reads

φ>(x) ≡ φ(x > 0) = C1e
ik2x +D1e

−ik2x (4.35)
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with the coefficients C1 and D1 to be determined, and

k2 =

√
2m(E − V2)

h̄
(4.36)

Since in the region x > 0 the particle is always traveling in the x > 0 direction,
then D1 = 0. So the wave function in the x > 0-region is given by

φ> = C1e
ik2x (4.37)

Comparing both expressions of k1 and k2, we note that k2 < k1, and thus in
moving from a region of lower potential (x < 0) to higher potential (x > 0), the
particle wave length increases.

Now, we use the continuity of the wave function and its first derivative89 at the
transition point x = 0, i.e

φ<(x = 0) = φ>(x = 0) (4.38)
dφ<
dx

(x = 0) =
dφ>
dx

(x = 0)

which yield

A1 +B1 = C (4.39)

A1 −B1 =
k2

k1

C1

This is a system of two equation with three unkowns A1, B1 and C1, so we can
solve for B1 and C1 in terms of the coefficient A1 of the incident wave, and we
obtain

B1 =

(
1− k2/k1

1 + k2/k1

)
A1 (4.40)

C1 =

(
2

1 + k2/k1

)
A1

The specific values of A1 and B1 can be determined using the normalization
condition of the wave function in each region. However, for the purpose of this
discussion we will not need their explicit expressions.

89Even though V (x) is a step potential, the derivative of φ(x) is continuous. This can be seen as
follows: (

dφ

dx

)
x=ε

−
(
dφ

dx

)
x=−ε

=

∫ ε

−ε
dx

d

dx

(
dφ

dx

)
= −2m

h̄2

∫ ε

−ε
dx [E − V (x)]φ(x)

where ε is a positive number. Taking the limit ε → 0, the right-hand side of the above equation
vanishes.
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Given the wave functions in the two regions we can calculate the current proba-
bility in each region. In the region x < 0, we have

j< = i
h̄

2m

(
dφ∗<
dx

φ< − φ∗<
dφ<
dx

)
(4.41)

=
h̄k1

m

(
|A1|2−|B1|2

)
= jinc − jref

where jinc and jref are the incident and reflected currents, respectively, given by

jinc =
h̄k1

m
|A1|2 (4.42)

jref =
h̄k1

m
|B1|2

In the region x > 0, we have the transmitted current density

jtrans = i
h̄

2m

(
dφ∗>
dx

φ> − φ∗>
dφ>
dx

)
(4.43)

=
h̄k2

m
|C1|2

We define the refection and transmission coefficients R and T , respectively, as

R := |jref
jinc
|; T := |jtrans

jinc
| (4.44)

Substituting the expression (4.42) and (4.45) in the above equations, we obtain

R :=

(
1− k2/k1

1 + k2/k1

)2

; T :=
4k2/k1

(1 + k2/k1)2 (4.45)

Note that R+ T = 1, which means that the current density probability is con-
served, or equivalently, the number of particles is conserved. It is interesting
to note that, despite that the particle has energy E is larger than the potential
barrier V2, the reflection coefficient is not zero. Classically we expect that there
will be no reflection at all. Furthermore, the expression of the reflection coeffi-
cient has similar form as the one find in the light waves reflected normally at the
boundary between two media, say 1 and 2, with refractive indices n1 = c/υ1 and
n2 = c/υ2, respectively, where υi is the speed of the light in the ith medium90.
This shows the quantum mechanical manifestation of a particle as a wave.

90The reflection coefficient for light incident at right angle at the boundary between two media is

R(light) =
(n1 − n2)2

(n1 + n2)2
=

(1− υ2/υ1)2

(1 + υ2/υ1)2
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2. Case II: V1 < E < V2

Classically, we know what would happen to a stream particles coming in from
the x < 0 region with E < V2: they will bounce against the step and we get a
complete reflection. Let us see if this is also the case in the quantum theory.

In the region x < 0, the expression of the wave function takes the same form as
in (4.33):

φ<(x) = A2e
ik1x +B2e

−ik1x (4.46)

with A2, B2 are constants to be determined by the use of boundary conditions
and normalization of the wave functions. The wave number k1 is given by Eq
(4.34). As we noted in case I, the A and B terms represent the incident and the
reflected waves respectively.

In the x > 0 region, we have (E − V2) is negative, the wave function is given in
terms of exponentials

φ>(x) = C2e
q2x +D2e

−q2x (4.47)

with the wave number q2 is given by

q2 =

√
2m(V2 − E)

h̄
(4.48)

The coefficient C2 must be zero otherwise the wave function is not square inte-
grable in this region. Now, requiring the continuity of the wave function and its
first derivative at x = 0 we get

B2 =
1− iq2/k1

1 + iq2/k1

A2; D2 =
2

1 + iq2/k1

A2 (4.49)

So, the reflection coefficient reads

R =
|B2|2

|A2|2
=
|1− iq2/k1|2

|1 + iq2/k1|2
= 1 (4.50)

So all the particles incident on the potential barrier get reflected, which is consis-
tent with what one expect from classically. However, the ratio B/A is complex,
which means that there is a phase shift on reflection from the barrier, which is
not what one would expect from classical theory. Furthermore, the probability
for a particle to penetrate into the x > 0-region is not zero since |ψ(x > 0)|2 6= 0).
But in this region, the particle does not propagate since the current j> vanishes,
and instead there is an exponentially decaying wave. We can define the depth δx
into this classically forbidden region, to be the distance from x = 0 to the point
in the x > 0 region at which the probability density drops to 1/e, i.e.

|φ>(δx)|2

|φ>(0)|2
= e−2q2δx =

1

e
(4.51)
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which yields

δx =
1

2q2

=
h̄

2
√

2m (V2 − E)
(4.52)

Hence, the penetration decreases for increasing the barrier height (V2 − E).

4.5 Harmonic Oscillator

Consider a particle subject to a potential V (x) and let x0 be the point at which the
particle can be in stable equilibrium. This means that one can Taylor-expand V (x)
around x0 and write

V (x) = V (x0) +
1

2
(x− x0)2 d

2V

dx2
|(x=x0) + .. (4.53)

For small deviations from the equilibrium point we can approximate the potential by
keeping only the the constant and the quadratic terms. Also, one can always choose
coordinates that such that V (x0) = 0. Defining mω2 = d2V

dx2 |(x=x0), the potential reads

V (x) =
1

2
mω2x2 (4.54)

This system represents simple harmonic oscillator (SHO) where the particle the mo-
tion of particle corresponds to harmonic oscillations around the equilibrium point.
Classically, its energy is a continuous function which can take values from E = 0 to
E = 1

2
mω2x2

0.
In Quantum mechanics, this system is described by the Hamiltonian operator

Ĥ = −h̄2 d
2

dx2
+

1

2
mω2x2 (4.55)

So if ψE represents the wave function of the SHO with energy E, the TISE ĤψE = EψE
can be written as

d2ψE
dx2

+
2m

h̄2 m

(
E − 1

2
ω2x2

)
ψE = 0 (4.56)

If we make the following change of variables

y =

√
mω

h̄
x ; ξ =

E

h̄ω
(4.57)

the wave equation will take the form

d2ψE
dy2

+
(
2ξ − y2

)
ψE = 0 (4.58)
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To get an idea about the form of the solution to the above equation, we analyze the
asymptotic behavior of the solution by considering the limiting case ξ → ∞. In this
limit (4.58) becomes

d2ψE
dy2

− y2ψE = 0 , y →∞ (4.59)

which has the solution of the form

ψE ∝ yn e−y
2/2, y →∞ (4.60)

note that we omitted a second solution with a positive sign in the argument of the
exponential since it is not square integrable. With the above asymptotic behavior of
ψE, we look for the general solution of the form

ψE(ξ) = H(ξ) e−y
2/2 (4.61)

where H(ξ) is a functionl of ξ. Inserting Eq (4.61) into Eq (4.58) yields

d2H(y)

dy2
− 2y

dH(y)

dy
+ (2ξ − 1)H(y) = 0 (4.62)

Now, we make the following power law Ansatz for the function H(ξ):

H(y) =
∞∑
n=0

Cny
n (4.63)

By substituting into (4.69) yields

0 =
∞∑
n=0

Cn
[
n(n− 1)yn−2 + (−2n+ 2ξ − 1)yn

]
(4.64)

=
∞∑
n=0

[Cn+2(n+ 2)(n+ 1) + Cn(2ξ − 1− 2n)] yn

Since the above equality has to hold for any y, the coefficients in the bracket must
vanish at all order in n, which gives the recursion relation

Cn+2 = − (2ξ − 1− 2n)

(n+ 2)(n+ 1)
Cn (4.65)

So, given C0 and C1 we can determine all the Cn in (4.63), with the coefficients of even
powers of y being dependent upon a0, and the coefficients of odd powers depending
upon a1. So, in general the solution can be written as

Hn(y) = C0H
(even)
n (y) + C1H

(odd)
n (y) (4.66)

– 62 –



where H(even)
n (y) and H(odd)

n (y) are series in only even and odd powers, respectively.
In order to have a Physically acceptable solutions the series (4.63) must terminate at
a certain power n. So requiring that Cn+2 vanishes for arbitrary Cn implies that

ξ = n+
1

2
(4.67)

or, equivalently,

En = h̄ω(n+
1

2
), n = 0, 1, 2, .. (4.68)

Thus, unlike in the classical theory, the energy of a simple harmonic oscillator is quan-
tized.

Now, setting ξ = n+ 1
2
into equation (4.69), yields

d2Hn(y)

dy2
− 2y

dHn(y)

dy
+ 2nHn(y) = 0 (4.69)

which is the differential equation for the so-called Hermite polynomials. They can
be easily calculated using the Rodrigues formula:

Hn(y) = (−1)ney
2

(
dn

dyn
e−y

2

)
(4.70)

Note that Hn(y) involve even powers only if n is even integer, and odd powers if n
is odd integer. The first few examples of Hermite polynomials are given in the table
below.

H0(y) = 1 (4.71)
H1(y) = 2y

H2(y) = 4y2 − 1

H3(y) = 8y3 − 12y

H4(y) = 16y4 − 48y2 + 12

H5(y) = 32y5 − 160y3 + 120y.

so, the wave function of the harmonic oscillator of energy level n is

ψn(x) =
1√

n! 2nx0

1

π1/4
Hn

(
x

x0

)
e
− x2

2x2
0 (4.72)

where x0 =
√
h̄/mω is a constant that has the dimension of length.

4.6 Quantum Tunneling and the WKB approximation
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5 Matrix Mechanics * [1925]

5.1 Heisenberg’s Re-interpretation of the Position and New Multiplication
Rules

On July 29, 1925, Heisenberg wrote a ground breaking paper, which its translation
to English, entitled "Quantum- theoretical interpretation of kinematic and mechanical
relations" 91, in which he gives a new formulation to quantum mechanics. He believed
that the position and the period of electron in an atom are not measurable, and in-
stead one should seek quantum theoretic relations between observable quantities such
the transition probabilities between stationary states and their associated frequencies.

He considered an oscillator as a simple 1-dim model of an electron bound to an
atom, for which a stationary state n has a frequency ω(n), and coordinate x(n, t).
Since the electron is undergoing periodic motion, we can represent x(n, t) by Fourier
series:

x(n, t) =
α=+∞∑
α=−∞

Xα(n) eiαω(n)t (5.1)

where α is an integer, and the factor Xα(n) represents the amplitude of the αth har-
monic. The fact that coordinate x(n, t) is real, requires that X−α(n) = X∗α(n). The
power radiated by this oscillator is given by the Larmor formula

−dE
dt

=

(
e2

6πε0c3

)
ẍ2 (5.2)

Heisenberg realized that according to the correspondence principle, the αth harmonics
of the classical motion in the state n corresponds to the quantum mechanical transition
from the state n to (n− α), which lead him to re-write (5.1) in terms of the quantum
quantities ω(n, n− α) and X(n, n− α), i.e.

αω(n)→ ω(n, n− α); Xα(n)→ X(α, n− α) (5.3)

So the power radiated in a transition corresponding to αth harmonic ω(n, α) now reads

−dE
dt

=

(
e2

12πε0c3

)
[ω(n, n− α)]4 |X(n, n− α)|2 (5.4)

Furthermore, he replaced the left hand side of the above equation by the spontaneous
transition probability Anm times the emitted energy h̄ω(n,m). So the transition rate
from a state n to state m is

Anm =

(
e2

12πε0c3h̄

)
[ω(n,m)]3 |Xnm|2 (5.5)

91W. Heisenberg, Zeitschrift fur Physik, 33, 879- 893 (1925).
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where we have defined92

x(t) =
∑
m

[x]nm; [x]nm = X(n,m) eiω(n,m)t (5.6)

with complex number xmn corresponding to the component of the transition n → m.
Note that the above formula also holds when En < Em, in which case the transition
m→ n is represented by xnm = x∗mn.

Knowing how to represent x(t) in terms of quantum theoretical quantities ω(n,m)
and X(n,m), what about the quantum equivalent of x2(t)?. Classically , using (5.1),
we have

x2(t) =

[∑
α

Xα(n) eαω(n)t

]
×

[∑
β

Xβ(n) eβω(n)t

]
(5.7)

=

[∑
α

Xα−β(n) e(β−α)ω(n)t

]
×

[∑
β

Xβ(n) eβω(n)t

]
(5.8)

where in the last sum we replaced α by (α − β) since the sum extends from −∞ to
∞, and so all the terms in the summation will be accounted for. So, x2(t) we can be
written in the form

x2(t) =
∑
α

X(2)
α (n) eαω(n)t (5.9)

where

X(2)
α (n) =

∑
β

Xβ(n) X(α−β)(n) (5.10)

and the frequency αω(n) is given by the simple combination

αω(n) = βω(n) + (α− β)ω(n) (5.11)

For the quantum analogue of x2(t) in (5.12) one is tempted to write

x2(t) =

[∑
β

X(n, n− β) eω(n,n−β)t

]
×

[∑
α

X(n, n− α− β) eω(n,n−α−β)t

]
(5.12)

However according the so called Ritz’s combination principle, the combination of
frequencies is given by :

ω(n, n− β) + ω(n− β, n− β − α) = ω(n, n− β − α) (5.13)
ω(n− α, n− β − α) + ω(n, n− α) = ω(n, n− β − α) (5.14)

92It is worth mentioning that this is not the notation used by Heisenberg in his paper. The reason
we changed to the above notation so that it becomes transparent, later, to the reader how matrices
arises in Heisenberg formulation of the quantum theory.
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which satisfy the Bohr’s frequency relation ω(n, n−α) = 1
h

(
En − E(n−α)

)
. This shows

that the combination [ω(n, n− β) + ω(n, n− α− β)] does not result in ω(n, n − α).
Therefore, Heisenberg suggested that the quantum-theoretic x2(t) reads

x2(t) =

[∑
β

X(n, n− β) eω(n,n−β)t

]
×

[∑
α

X(n− α, n− β) eω(n−α,n−β)t

]
(5.15)

=
∑
α

∑
β

X(n, n− β) X(n− β, n− α) eω(n,n−α)t (5.16)

or, equivalently,

x2(n, t) =
∑
m

[x2]nm ; [x2]nm =
∞∑

j=−∞

[x]nj [x]jm (5.17)

Similar form can be found for the quantum analogue of xn(t), and for any given function
f(x). For instance, the quantum.theoretic representation of x3(t) is given by

x3(n, t) =
∑
m

[x3]nm ; [x3]nm =
∑
j,k

[x]nj [x]jk [x]km (5.18)

Furthermore, Heisenberg noticed that if one consider two quantities x(t) =
∑

m [xnm]
and y(t) =

∑
m [ynm], then

x(t)y(t) =
∞∑

m=−∞

[xnm] [ymn] ; y(t)x(t) =
∞∑

m=−∞

[ynm] [xmn] (5.19)

So, unlike in classical theory where x(t)y(t) and y(t)x(t) are always equal, this is not
in general the case in the quantum theory, and one expect that x(t)y(t) 6= y(t)x(t)
for generic x(t) and y(t). This was strange to Heisenberg so that he refers to it as
"difficulty".

5.2 Heisenberg’s Quantum Condition and The non linear Oscillator

In the second section of his paper, Heisenberg Consider the dynamics of the motion of
a system which is classically described by Newton’s second law of the form

ẍ+ f(x) = 0 (5.20)

In the old quantum theory, to determine the quantum-theoretical solution of this sys-
tem, one has to integrate the equation of motion (5.20) and then uses the Bohr-
Sommerfeld quantization condition∮

p dq =

∮
mẋ2 dt = nh (5.21)
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In terms of the classical components of the Fourier series for x(n, t), the above condition
takes the form

nh = 2πm
∞∑

α=−∞

Xα(n)X−α(n)α2ω(n) (5.22)

= 2πm
∞∑

α=−∞

|Xα(n)|2α2ω(n)

where we used the fact that X−α(n) = X∗α(n). Heisenberg felt that the presence of
the integer n in the above condition was arbitrary and argued that one should replace
it by a condition about the transition between stationary states. In other words, he
believed that what matters is the difference between

∮
pdq evaluated between for two

neighboring states n and (n - 1), i.e. [
∮
pdq]n − [

∮
pdq](n − 1). For that he took the

derivative of (5.22) with respect to n and obtained

h = 2πm
∞∑

α=−∞

α
d

dn

[
|Xα(n)|2αω(n)

]
(5.23)

= 4πm
∞∑
α=0

α
d

dn

[
|Xα(n)|2αω(n)

]
Using the generalized Born’s correspondence rule in (2.27), he replaced the above
differentiation by

h = 4πm
∞∑
α=0

[
|X(n+ α, n)|2ω(n+ α, n)− |X(n, n− α)|2ω(n, n− α)

]
(5.24)

This condition relates the amplitudes of different transitions between stationary states,
whereas Bohr-Sommerfeld condition relates the frequencies. By requiring that no ra-
diation should be emitted in the ground state, one can determine the amplitudes a in
(5.24) completely, i.e. with no undetermined constant. So, in principle, using equa-
tions (5.20) and (5.24) one can solve for the amplitudes X(n,m) and the frequencies
ω(n,m). We can also re-write (5.24)as

h = 4πm
∑
m

[|[x]nm|2ω(n,m) (5.25)

where now m in the summation runs over positive integers. The terms in the sum give
positive contribution if the state m has energy higher than the state n, and negative
if m has lower energy. In the case of Bohr model of the atom, the positive terms
correspond to m < n , whereas the negative ones for m > n.
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a an application to his new formalism, studied a non linear oscillator with a
potential V (x) = λ/3x3. The equation of motion reads

ẍ+ ω2
0x+ λx2 = 0 (5.26)

where t λ is a small real number. Classically, the solution of (5.26) can be expressed
as an expansion in terms of powers of the parameter λ, i.e.

x(n, t) = λa0(n) +
∞∑
α=1

λα−1aα(n) cos (α ω(n)t) (5.27)

The coefficients ai and the frequency ω are also to be expanded in powers of λ:

ai(n) =
∞∑
k=0

λk a
(k)
i (n) ; i = 0, 1, 2, .. (5.28)

ω(n) =
∞∑
k=0

λk ω(k)(n)

Substituting (5.27) into the equation of motion (5.20), yields

λ[ω2
0a0(n) +

1

2
a2

1(n) + λ2(a2
0(n) +

1

2
a2

2(n)) + ..]

+
[
(−ω2(n) + ω2

0(n))a1 + λ2(a1(n)a2(n) + 2a0(n)a1(n)) + ..
]

cosωt

+λ[(−4ω2(n) + ω2
0)a2(n) +

1

2
a2

1(n) + λ2(a1(n)a3(n) + 2a0(n)a2(n)) + ..] cos 2ω(n)t

+λ2[(−9ω2(n) + ω2
0)a3(n) + a1(n)a2(n) + λ2(a1(n)a4(n) + 2a0(n)a3(n)) + ..] cos 3ω(n)t+ .. = 0

where the dots correspond to powers of λ higher than two. Now, by equating to
zero the constant term and the terms that multiply cosωt, cos 2ωt, ..ect, one can find a
recursion formulas for the coefficients ai(n) at each order of the expansion parameter λ.

In the quantum case, as we saw in the previous subsection, the position is rep-
resented by x =

∑
αX(n, n− α), and so after substituting into (5.26), the transition

amplitude X(n, n− α) satisfy the equation[
ω2

0 − ω2(n, n− α)
]
X(n, n− α) + λ

∑
β

X(n, n− β)X(n− β, n− α) = 0 (5.29)

where the X(n, n − α) = X∗(n − α, n) because x(n, t) is real. However, no general
solution can be found to the above equation. For this reason Heisenberg suggested to
represent x(n, t) with similar form as of (5.27) but replacing the coefficients ai(n), i =
0, 1, 2, .. by the amplitudes a(n, n− i), and αω(n) by ω(n, n− α):

x(n, t) = λa(n, n) +
∞∑
α=1

λα−1a(n, n− α) cos (ω(n, n− α)t) (5.30)
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where again, as in (5.28), the coefficients a(n, n − α) and the frequencies ω(n, n − α)
can be expanded as

a(n, n− α) =
∞∑
k=0

λk a(k)(n, n− α) ; i = 0, 1, 2, .. (5.31)

ω(n, n− α) =
∞∑
k=0

λk ω(k)(n, n− α)

In order to be able to use the above expansion in terms of cosnines, one can choose
the amplitudes X(n, n− α) to be real, so that one has

X(n, n− α) = X(n− α, n) (5.32)

and

X(n, n) = λa(n, n) ; X(n, n− α) =
λα−1

2
a(n, n− α) ; α > 0 (5.33)

For general value of α, positive or negative, we have

X(n, n− α) =
λ|α|−1

2
a(n, n− α) ; α 6= 0 (5.34)

In terms of a(n, n− α) the quantization condition (5.24) reads

h = πm
∞∑
α=1

λ2α−2
[
a(n+ α, n)2ω(n+ α, n)− a(n, n− α)2ω(n, n− α)

]
(5.35)

Substituting the expression of X(n, n−α) in (5.33) into the equation of motion (5.29),
and keeping terms up to order λ2, we get

• For α = 0:

(5.36)λ{ω2
0a(n, n) +

1

4

[
a2(n+ 1, n) + a2(n, n− 1)

]
+ λ2[a2(n, n) +

1

4

(
a2(n+ 2, n) + a2(n, n− 2)

)
]} = 0

• For α = 1:

(5.37)

[
−ω2(n, n− 1) + ω2

0

]
a(n, n− 1)

+ λ2{a(n, n)a(n, n− 1)1a(n, n− 1)a(n− 1, n− 1)

+
1

2
[a(n, n+ 1)a(n+ 1, n− 1)]} = 0
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• For α = 2:

λ{[−ω2(n, n− 2) + ω2
0]a(n, n− 2) +

1

2
a(n, n− 1)a(n− 1, n− 2)

+ λ2[a(n, n)a(n, n− 2) + a(n, n− 2)a(n− 2, n− 2)

+
1

2
a(n, n+ 1)a(n+ 1, n− 2) +

1

2
a(n, n− 3)a(n− 3, n− 2)]} = 0

(5.38)

• For α = 3:

λ2{[−ω2(n, n− 3) + ω2
0]a(n, n− 3)

+
1

2
[a(n, n− 1)a(n− 1, n− 3) + a(n, n− 2)a(n− 2, n− 3)]

+ λ2[a(n, n)a(n, n− 3) + a(n, n− 3)a(n− 3, n− 3)

+
1

2
a(n, n+ 1)a(n+ 1, n− 3) +

1

2
a(n, n− 4)a(n− 4, n− 3)]} = 0

(5.39)

Let us first consider the lowest order solution to the amplitudes and frequen-
cies by ignoring the terms proportional to λ2, and replacing the a′s and ω′s by
their corresponding zeroth order terms. In this case Eq (5.37) gives (provided that
a(0)(n, n− 1) 6= 0)

ω(0)(n, n− 1) = ω0 ; ∀n (5.40)

By substituting the above equation into (5.41), the quantum condition reads

h = πmω0{[a(0)(n+ 1, n)]2 − [a(0)(n, n− 1)]2} (5.41)

which yields the solution

[a(0)(n, n− 1)]2 =
h

πmω0

(n+ contant) (5.42)

To determine the value of the constant in the above expression Heisenberg used the
requirement that in the ground state there should be no transition to lower lower state,
i.e.

a(0)(0,−1) = 0 (5.43)

This implies that the constant in (5.42) is zero, and we get

a(0)(n, n− 1) = C
√
n (5.44)

where

C =

√
h

πmω0

(5.45)
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With these results, Eq (5.36) gives

a(0)(n, n) = − C2

4ω2
0

(2n+ 1) (5.46)

A similar treatment of Eq (5.38) leads to(
−[ω(0)(n, n− 2)]2 + ω2

0

)
a(0)(n, n− 2) +

1

2
a(0)(n, n− 1)a(0)(n− 1, n− 2) = 0(5.47)

Since the combination rule of frequencies in (5.13) must also hold for the lowest-order
frequencies, we have

ω(0)(n, n− 2) = ω(0)(n, n−) + ω(0)(n− 1, n− 2) = 2ω0 (5.48)

where in the second equality we used (5.40). By repeatedly applying the frequencies
combination rule, we obtain

ω(0)(n, n− α) = αω0 (5.49)

Now,by substituting (5.44) and (5.48) into Eq (5.47), we get

a(0)(n, n− 2) = − C2

6ω2
0

√
n(n− 1) (5.50)

in general, the lowest-order transition amplitude a(0)(n, n− α) will have the form

a(0)(n, n− α) = Aα
Cα

6 ω
2(α−1)
0

√
n!

(n− α)
; α = 1, 2, ... (5.51)

where Aα is a numerical factor which depend on the α.

The total energy of this oscillator is the sum of the kinetic and potential energies93:

W =
1

2
mẋ2 +

1

2
mω2

0x
2 +

λ

3
x3 (5.52)

Now according to Heisenberg formalism, the quantities x2, x3, and ẋ2 in the expression
of W can be commuted using the multiplication rule (5.19), which implies that the
total energy will have the form

W =
∑
α

W (n, n− α) eiω(n,n−α) (5.53)

93This is a conservative system, i.e. the total energy is conserved. This can be seen as follows. By
multiplying the equation of motion (5.26) by ẋ we get

d

dt

[
1

2
mẋ2 +

1

2
mω2

0x
2 +

λ

3
x3

]
Hence, the energy W as defined in (5.52) is conserved.
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However, since the total energy of this system is conserved, i.e. it means it is indepen-
dent the time, the matrix elements with α 6= 0 must vanish,

W (n, n− α) = 0 ; α 6= 0 (5.54)

If we ignore terms of order λ and higher, then this system corresponds to a harmonic
oscillator with energy given by 94

W ≡ W (n, n) =
1

2
mẋ2 +

1

2
mω2

0x
2 (5.55)

=
1

2
m
∑
β

ω2(n, n− β)x(n,−β)x(n− β, n) +
1

2
mω2

0

∑
x(n,−β)x(n− β, n)

where we used the fact that ω(n, n−β) = −ω(n−β, n). The only terms which survive
in the above summation are for β = ±1 (see Eq (5.40)). So using (5.34) and (5.32),
we obtain

W =
1

4
{[a(0)(n, n− 1)]2 + [a(0)(n+ 1, n)]2} (5.56)

which after substituting the expression of a(0)(n, n − 1) in (5.44) (and deducing from
it the expression of a(0)(n+ 1, n)), we find

W =
h

2π
ω0

(
n+

1

2

)
(5.57)

A similar analysis can be carried for higher order in λ. We will not give the
derivation here, however, the interested reader can find the details in [4].

5.3 Born and Jordan’s Matrix Mechanics

Born Realized that Heisenberg multiplication rule in (5.19) was nothing but the rule
for multiplying matrices, which, in general, is non commutative. So, for example,
the quantities [x2]nm represent the elements of the square of the matrix [x] which has
matrix elements [x]nm.

Born considered a dynamical system with one degree of freedom and represented
the classical coordinate q (which in the previous subsections was denoted by x) and
the momentum p by a matrix q and p, respectively,

q =
∑
m

q(n,m)eiωnmt =
∑
m

[qnm] (5.58)

p =
∑
m

p(n,m)eiωnmt =
∑
m

[pnm]

94 With the use of x =
∑
α x(n, n− α), a naive inspection of the contribution of the terms x2 and

ẋ2 to the expression of W in (5.53) seems to suggest that in addition to the matrix element W (n, n)
(which is consistent with energy conservation), the matrix elements W (n, n− 2) and W (n, n+ 2) are
also present. However, in [4], the authors showed explicitly (see the Appendix B in their paper) that
W (n, n± 2) = 0.
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where [qnm]∗ = [qmn], and [pnm]∗ = [pmn]. Now, from the definition p = mẋ, the
momentum matrix element reads

[pmn] = m[ẋ]mn = imω(n,m)[x]nm (5.59)

So the matrix elements of [px] and [xp] read

[px]nm = im
∑
k

ω(n, k)[x]nk[x]km (5.60)

[xp]nm = im
∑
k

ω(k,m)[x]nk[x]km

and so,

[xp− px]nm = im
∑
k

(ω(k,m)− ω(n, k)) [x]nk[x]km (5.61)

= 2im
∑
k

ω(k,m)[x]nk[x]kmtheor

Now let us consider only the the diagonal elements of matrix [xp− px]. We have

[xp− px]nn = −2im
∑
k

ω(n, k)|[x]kn|2 (5.62)

where the property [x]nk = [x]∗kn has been used. Now by comparing the left hand side
of the above equation with the quantum condition (5.35), yields

[xp− px]nn = i
h

2π
= ih̄ (5.63)

Born also convinced him self that the only reasonable value of the off-diagonal
elements of [xp − px] should be zero. But as Born said it in his words "But this was
only a guess, and all my attempts to prove it failed". Indeed, his guess was correct,
and two months after Heisenberg’s paper was sent for publication, he and his assistant
Pascual Jordan wrote a paper in which they demonstrate that [xp− px] is diagonal95.

They first postulate that the quantum-theoretic frequencies ωnm associated with
the transitions between states described by the quantum numbers n and m are required
to satisfy Ritz rule, i.e

ω(i, j) + ω(j, k) + ω(k, i) = 0 (5.64)

which implies that ω(i, j) = −ω(j, i). The reason that they imposed this postulate
is because the Ritz rule explained the relations of the spectral lines in atomic spec-
troscopy, and played a crucial role in Heisenberg’s discovery of the multiplication rule
(5.19). This requirement suggests that there exists quantities Wn such that

ω(n,m) =
2π

h
(Wn −Wm) (5.65)

95M. Born and P. Jordan, "Zur Quantenmechanik", Z. Phys, 34, 858-888, (1925). An English
translation can be found in the reference [3].
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where, at this point, the quantity Wn is unrelated to the energy En of the state n. The
above equation insures that the nm element of any function of q and p, [f(q, p)]nm
oscillates with the same frequency ω(n,m) as [q]nm and [p]nm. This means that f(q, p)
takes the form

f = f(q,p) =
∑
m

f(n,m)eiω(n,m)t ≡
∑
m

[f ]nm (5.66)

where

f(n,m) = f

(∑
k

q(n, k)q(k,m)

)
(5.67)

Then, the derivative with respect to time of the matrix f gives

ḟ =
∑
m

iω(n,m)f(n,m)eiω(n,m)t =
∑
m

[ḟ ]nm (5.68)

Now if ḟ = 0, then ω(n,m)f(n,m) = 0 for all values of (n,m). This is because
ω(n,m) 6= 0 when n 6= m, which is a consequence of Eq (5.64). Thus, we conclude
that if ḟ(q,p) = 0, then f is a diagonal matrix, i.e. [f ]nm = δnm[f ]nn.

For a general function f(qp), then it can be expressed a linear aggregate of terms
of the form

z = Πk
j=1p

sjqrj (5.69)

Then Born and Jordan showed that96(
q
∂z

∂q
− ∂z

∂q
q

)
+

(
p
∂z

∂p
− ∂z

∂p
p

)
= 0 (5.70)

Since the matrix f(qp) is linear in z, the above equation also holds for the matrix f ,
and so (

q
∂f

∂q
− ∂f

∂q
q

)
+

(
p
∂f

∂p
− ∂f

∂p
p

)
= 0 (5.71)

96For that they used the definition of the partial derivative of the product of matrices. For instance
if Y = Πs

m=1xlm , then the partial derivative of the matrix Y with respect to, say, xk is

∂Y

∂xk
=

s∑
r=1

δlkΠs
m=r+1xlmΠm−r−1

m=1 xlm

For example,

∂
(
x2

1x2x1x3

)
∂x1

= x1x2x1x3 + x2x1x3x1 + x3x
2
1x2
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To describe the dynamics, they generalized Heisenberg’s Newtonian approach us-
ing the Hamiltonian formalism where the energy of the system is given by the Hamilton
function

H =
p

2m
+ U(q) (5.72)

and they assumed, as Heisenberg did, that the equations of motion for q and p have
the same form as in the classical theory, where the time evolution of q and p are given
by teh Hamilton’s equations 97

q̇ =
∂H

∂p
=

1

m
p (5.73)

ṗ = −∂H

∂q
= −∂U

∂q

Now, since H is a function of qp, one can take f = H in Eq (5.71) and uses the
Hamilton’s equations to obtain

ṗq − pq̇− q̇p− qṗ = 0 (5.74)

or, equivalently

d

dt
(pq + qp) = 0 (5.75)

which, as we discussed above, implies that (pq + qp) is a diagonal matrix. Therefore,
with the Born’s result of (5.63), we get

[q,p] = i
h

2π
I (5.76)

where I is the unit matrix, and [A,B] := AB − BA, called the commutator of the
matrices A and B . The above expression is a consequence of the correspondence prin-
ciple (2.35), and is one of the most fundamental relations in the quantum mechanics98.
Now, with the use of (5.76), by induction we obtain

[qpn − pnq] = ni
h

2π
pn−1 ; [pqn − qnp] = −ni h

2π
qn−1 (5.77)

Considering the Hamiltonian to have the form

H = H1(p) +H2(q) (5.78)
97Heisenberg, Born and Jordan realized that the problem with classical mechanics i not the form

of the equations of motion (dynamics), but rather the interpretation of the position and momentum
(kinematics).

98In their paper, Born and Jordan refer to the relation (5.76) as "versharft Quantenbedingung ",
which translates to English as "sharpened quantum condition".
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where H1(p) and H2(q) can be represented by power series of p and q, respectively.
Then, using the formulae in (5.77) one finds

Hq− qH = −i h
2π

∂H

∂p
, (5.79)

Hp− pH = i
h

2π

∂H

∂q

which after comparing with the Hamilton’s equations of motion yields

q̇ =
2πi

h
(Hq− qH) ≡ 2πi

h
[H,q] , (5.80)

ṗ =
2πi

h
(Hp− pH) ≡ 2πi

h
[H,p]

This implied that the time derivative of the product pq is given by

d

dt
(pq) =

2πi

h
[p(Hq− qH) + (Hp− pH)q] (5.81)

=
2πi

h
(Hpq− pqH) ≡ 2πi

h
[H,pq]

So, in general, for a matrix f(pq), we have

ḟ =
2πi

h
[H, f ] (5.82)

If we set f = H in the above relation, we get

Ḣ = 0 (5.83)

which according to our previous discussion means that H is a diagonal matrix.

In 1926, Heisenberg joined Born and Jordan and they wrote an important pa-
per, known as the "three men’s paper", which generalized the above results to sys-
tems with more than one degrees of freedom. Namely, for a system with coordinates
{q1,q2, ...qN} and their corresponding canonically-conjugate momenta {p1,p2, ...pN},
the q’ and p’s satisfy the commutation relations

[qi,pj] = ih̄δij ; i, j = 1, 2, ..N (5.84)

They also noted that for any quantum-theoretic quantity, f , one can always write

[W f − fW ]nm = Wn[f ]nm − [f ]nmWm (5.85)

= hω(n,m)[f ]nm =

(
h

2πi

)
˙[f ]nm
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or, equivalently,

˙[f ] =
2iπ

h
[W, f ] (5.86)

where W is a diagonal matrix with elements [Wnm] = δnmWn. Now, in the above
equation if we set f = q and use the Hamilton’s equation of motions (5.73), we get

∂H

∂p
=

2πi

h
[W,q] (5.87)

By taking f = H in (5.82), we can rewrite the above equations as

Wq− qW = Hq− qH (5.88)

or, equivalently

q(n,m) (Hn −Hm) = q(n,m) (Wn −Wm) (5.89)

where we have used the fact that H is a diagonal matrix as we showed above. The
above relation implies that

ω(n,m) =
(Hn −Hm)

h̄
(5.90)

Note that the above relation between (En−Em) and ω is derived based on the Born’s
equation (5.76), unlike in the old quantum theory where it was postulated.

In the fall of 1925, Paul Dirac, still a PhD student, wrote a very important paper
where he gave an algebraic version of quantum mechanics, known as q-number algebra,
which reproduced many of the results obtained by Born, Heisenberg, and Jordan.

5.4 Equivalence between Wave Mechanics and Matrix mechanics

So far we have seen two formulations of the quantum mechanics: Schrodinger wave
mechanics and Heisenberg matrix mechanics. Even though they look different from
one another, both succeeded in explaining the same physical phenomena, such as the
spectral lines of the hydrogen, and the quantization of the energies of the harmonic os-
cillator99. This lead Schrodinger to seek a reconciliation of the two approaches, which
resulted in a paper in March of 1926100.

99One should point out that these two founders of Quantum mechanics was unhappy with the other’s
approach. In a letter Heisenberg wrote to Pauli : "The more I ponder about the physical part of
Schrodinger’s theory, the more disgusting it seems to me.". Similarly, Shcrodinger stated that "I
was discouraged, if not repelled, by what appeared to me rather difficult method of transcendental
algebra, defying any visualization.".

100E. Schrodinger, "Uber das Verhaltnis der Heisenberg-Born- Jordan Quanten-mechanik zu der
meinen", Annalen der Physik (4), 79, 734- 756.
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Schrodinger noted that the relation (5.76) can be realized in terms of operators
where for each coordinate qi the momentum conjugate pi is to be replaced by the
operator K∂/∂qi, with K is a constant to be determined later. For brevity, in what
follows we denote the set of variables (q1, q2, ..., qN) and (p1, p2, ..., pN) by simply q and
p, respectively. He then considered a well-ordered operator F(q, p), function of q’s and
p’s of the the form

F(q, p) = f(q)prpsptg(q)pr′h(q)pr′′ps′′ .. (5.91)

and to this he assigns

F̂ = f(q)K3 ∂3

∂qrqsqt
g(q)K

∂

∂qr′
h(q)K2 ∂3

∂qr′′qs′′
.. (5.92)

where the differential operators act on all the factors on the right. So, the action of F̂
on some function u(q) yields another function of q’s. Now let us chose a set of complete
orthonormal functions in the space of the coordinates:

u1(q)
√
ρ(q), u2(q)

√
ρ(q), u3(q)

√
ρ(q), ...ect (5.93)

So, we have ∫
ρ(q)ua(q)ub(q)dq = δab (5.94)

Here
∫
dq is a short notation for the integration over the whole space of the q’s. The

density function ρ(q) is was introduced to guarantee that ua(q) are orthonormal and
the integrands are self-adjoint. Now to the operator F̂ one associates the following
matrix101

Fab =

∫
ρ(q)ua(q)

[
F̂ub(q)

]
dq (5.95)

In addition, Schrodinger defines another operator F̂ by102

F̂ = (−1)τ ...K2 ∂3

∂qr′′qs′′
h(q)K

∂

∂qr′
K3 ∂3

∂qrqsqt
g(q)f(q)... (5.96)

where τ is the number of derivatives in the operator F̂ . Assuming that the functions
ua(q) and their derivatives vanish at the boundaries of the q-space, the expression (??)
can be written as

Fab =

∫
ub(q)

[
F̂ρ(q)ua(q)

]
dq (5.97)

101In his paper, Schrodinger, denotes the operator associated F(q, p) by F and the new function
obtained upon the action of F on u(q) by [F , ua]. To avoid confusion with the symbol [, ] for the
commutator, I used instead F̂ for operator and denoted its action on u(q) by [F̂u(q)].

102Schrodinger called this operator "gewwallze", which in English means "rolled over operator".
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Now, if Ĝ is another operator, then by using the above equation, we can write∑
b

FabGbc =
∑
b

∫
ub(q)

[
F̂ρ(q)ua(q)

]
dq ×

∫
ρ(q′)ub(q

′)
[
Ĝuc(q′)

]
dq′ (5.98)

=

∫ [
F̂ρ(q)ua(q)

]
[Guc(q)] dq

where in obtaining the last equality we used the relation
∑

b ρ(q1)ub(q1)ub(q) = δ(N)(q1−
q), which is simply the relation of completeness of u′bs, and then integrated over the
variables q1. Now, transforming from F̂ to F̂ we get∑

b

FabGbc =

∫
ρ(q)ua(q)

[
F̂
[
Ĝuc(q)

]]
dq (5.99)

or, equivalently, (
F̂ Ĝ
)ac

=
∑
b

FabGbc (5.100)

This results shows that the quantities Fab and Gab defined by (5.95) satisfy the rule of
matrix multiplication.

So, now we consider the matrix representation of the operators q̂ and p̂. We have

(qi)
ab =

∫
ρ(q)ua(q)[q̂iub(q)]dq =

∫
qiρ(q)ua(q)ub(q)dq (5.101)

(pi)
ab =

∫
ρ(q)ua(q)[p̂iub(q)]dq = K

∫
ρ(q)ua(q)

∂ub(q)

∂qi
dq

Taking K = −ih̄, the commutation relation (p̂iq̂j − q̂j p̂j) corresponds to the matrix

(piqj − qjpj)ab = −ih̄
∫
ρ(q)ua(q)ub(q)dq = −ih̄δab (5.102)

which is exactly the Born-Heisenberg quantization condition(5.76).
Now, if we choose as a set of orthonormal functions, the eigenfunctions of the

Hamiltonian operator103, i.e. Ĥua(q) = Eaua(q), then we have

Hab =

∫
ρ(q)ua(q)[Ĥub(q)]dq = Ebδab (5.103)

where we used the orthonormality of the functions {ua(q)}. So, the matrix Hab is
diagonal and we have

[(qiH)− (Hqi)]ab =

[∑
c

(qi)
acHcb −

∑
c

Hac(qi)
cb

]
(5.104)

= Eb(qi)
ab − Ea(qi)ab

= −ih̄
(
dqi
dt

)ab
103It is very easy to show that the eigenfunctions of Ĥ form a complete set of orthonormal functions.
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or,

−ih̄
(
dqi
dt

)ab
= [Ĥ, q]ab (5.105)

which is equivalent to the Hamilton equations for the matrix (qi)
ab in (5.80) derived

by Born, Heisenberg and Jordan. Similarly, we have for the momentum

−ih̄
(
dpi
dt

)ab
= [Ĥ, p]ab (5.106)
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6 The Mathematical Formalism of Quantum Mechanics

In this subsection, we will introduce the notions of vector space, Hilbert space.
6.1 Pre-Hilbert Space

(a) Linear Vector Space and Kets :

A complex linear vector space104, denoted V(C), is a set of elements called vectors,
which satisfy the following axioms:

(a) There is an operation "+" such that (V ,+) is an abelian group105.

(b) The product of any complex number a, with any vector vi is a vector, i.e.
av ∈ C.

(c) For any complex numbers a, b ∈ C and vectors υ, ω ∈ V , the following must
be satisfied

• a(bυ) = (a× b)υ;
• 1υ = υ;
• a(υ + ω) = aυ + aω;
• (a+ b)υ = aυ + bυ.

where × is the multiplication law of complex numbers, 1 is the identity element
in C. A real vector space has satisfy the same axioms except that a, b are num-
bers in R, not in C.

Throughout these notes, we will use Dirac notation to denote the elements of V
where a vector α is represented by the symbol |α >, called the ket α", and the
vector (−α) by |−α >. However, I will use ~0 to denote the null vector. This
notation, besides it avoids confusing a number with a scalar, proved to be useful
in quantum mechanics.

104In general a vector space is defined over a field, F. A field is a set F equipped with two binary
operations, one called addition ” + ” and the other multiplication ” · ” such that :
(i) (F,+) is abelian group with identity element 0F,
(ii) (F− {0F}, ·) is abelian group with identity element 1F,
(iii) The multiplication ” · ” is distributive on the addition ” + ”,
(iv) 0F 6= 1F.

105A group is a set of elements G = {g1, g2, ..} with a multiplication law ”.” such that the following
axioms are satisfied:
(a) Closure: ∀gi, gj ; gi.gj ∈ G
(b) Associativity: ∀gi, gj , gk; (gi.gj).gk = gi.(gj .gk)

(c) Existence of the identity element : ∃e ∈ G; g.e = e.g = g,∀g ∈ G
(d) Every element has an inverse: ∀gi ∈ G,∃g−1

i ; gi.g
−1
i = g−1

i .gi = e.
If for any two elements gi, gj of a group G , their commutator [gi, gj ] ≡ gigjg

−1
i g−1

j is equal to
identity element, then G is called abelian. For such groups, we denote the multiplication law by
"+", the identity element by ”0”, and the inverse of an element gi by ”− gi”.
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The set of vectors {[v1 >, |v2 >, ..., |vn >} ∈ V are said to be linearly independent,
if
∑n

i=1 αi|vi >= ~0 only if the coefficients α1 = α2 = ... = αn = 0. If there exist
at most N linearly independent vectors, then N is called the dimension of V ,
and we write dimV = N . In this case, a set {|e1 >, |e2 > ..., |eN >} of linearly
independent vectors is called a basis of the vector space. This implies that in a
given a basis, any vector |v > can be written in a form

|v >=
n∑
i=1

ai|ei > (6.1)

where the coefficients ai represent the components of the vector |v > and they are
uniquely determined. These definition generalize to the case of infinite dimen-
sional vector space. For finite dimensional vector spaces one has the following
result:

Theorem 1:

Any n-dimensional vector space over a field K is linearly isomorphic to Kn.

(b) Inner Product space:

An inner product, or sometimes called the scalar product, in vector space is a
map from V × V to C106 which for each ordered pair of vectors |ψ > and |φ >,
associates a number in C, denoted by (., .):

(., .) : V × V → C (6.2)

such that for any vectors |ψ >, |φ > and χ in V and any scalars a and b ∈ C, the
following properties must be satisfied:

(a) (|ψ >, a|φ > +b|χ >) = a (|ψ >, φ >) + b (|ψ >, χ >) (linear in the second
argument);

(b) (|ψ|>, φ >) = (|φ >, |ψ >)∗ (Hermitian symmetric);

(c) (|ψ >, |ψ >) ≥ 0 (non-negative);

(d) (|ψ >, |ψ >) = 0 if and only if |ψ > is a null vector (positive definite).

Note that the inner product is antiinear in C in the first argument, where as
linear in the second argument107. We say that two vectors |ψ > and |φ > are
said to be orthogonal if their inner product vanishes, namely (|ψ >, |ψ >) = 0.
A vector space endowed with an inner product is said to be an inner product

106for real vector space instead of C we have R
107For a vector space over real number, the inner product is linear.
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space or, sometimes it is called pre-Hilbert space.

Another important concept in vector spaces is the notion of normed linear
space. A norm on a vector space is a non-negative real function such that, if
|ψ >, |φ > are vectors, the norm of |ψ >, denoted as ||ψ||, satisfying:

(a) ||ψ||≥ 0; ||ψ||= 0 if and only if |ψ > is a null vector,

(b) ||aψ||= |a|.||ψ||,
(c) ||ψ + φ||≤ ||ψ||+||φ||.

So, given a scalar product, it is natural define the norm of a vector |ψ > by

||ψ||=
√

(|ψ, |ψ >) (6.3)

Moreover, the above definition of ||ψ|| satisfies the so called Cauchy- Schwarz
inequality which states that for any two vectors |ψ > and |φ > we have108

|(|ψ >, |φ >) |≤ ||ψ|| ||φ|| (6.4)

The above inequality is crucial for ||.|| as defined in (6.3) to be a norm.

Theorem 2:

Any finite dimensional vector space can be equipped with a norm.

6.2 Dual Space and Bras

The dual space is the space of complex-linear valued maps from V to C, denoted by
< .| (mathematicians call it 1-form):

< .|: V → C (6.5)

so that for a given (ket) vector |φ > it associates a number < φ|(|ψ >) :≡< φ|ψ >.
The linearity of this mapping means that, for any two vectors |ψ > and |χ >, we have

< φ|(aψ > +b|χ >) = a < φ|ψ > +b < φ|χ > (6.6)

Furthermore, we have

(a < φ|) (ψ >) = a < φ|ψ >, ∀a ∈ V (6.7)
(< φ|+ < α|) (ψ >) = < φ|ψ > + < α|ψ >

Hence, the set of all linear mappings as defined above forms a a vector space, which
we denote by V∗. A vector < ψ| in the dual space is called bra. Moreover, if V is a

108The proof is as follows:
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finite-dimensional, then V∗ is also, and with the same dimension as V .

Now, given a an inner product, we can define a dual correspondence, denoted DC,
between V and V∗:

DC : V → V∗ (6.8)
|ψ > →< ψ|

such that the action of the bra < ψ| on arbitrary ket |φ > is given by

< ψ|φ >= (|ψ >, |φ >) (6.9)

Thus, from the properties of the inner product we deduce that the bra associated with
of the ket |ψ >= a|ψ1 > +b|ψ2 > is

< ψ|= a∗ < ψ1|+b∗ < ψ2| (6.10)

6.3 Hilbert Space

(a) Cauchy Sequence, Convergent Sequence and Complete Space:

Let V be a normed space, and let {|φn >}∞n=1, with n ∈ N, be a sequence of
elements of V . The sequence is called Cauchy sequence if ,

∀ε > 0, ∃N ∈ N, ∀n,m ≥ N, ||φn − φm||< ε (6.11)

A sequence is said to be convergent sequence to |φ >∈ V if

∀ε > 0, ∃N ∈ N, ∀n ≥ N, ||φ− φn||< ε (6.12)

or, equivalently, lim
n→∞

||φ− φn||< ε. Any convergent sequence in a linear normed
space is a Cauchy sequence, whereas the converse is not generally true. Further-
more, every Cauchy sequence is bounded, i.e. there is some |φ >∈ V and some
α > 0 such that ||φn−φ||< α all values of n. However, a bounded sequence in V
need not to be a Cauchy sequence109.

(b) Banach Space:

A normed linear space that in which all Cauchy sequences are convergent is said
to be complete, and it is also called a Banach space.

The following are examples of Banach space:
109For example, {xn = (−1)n} is a bounded but it is not Cauchy sequence.
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• Rn = {|X >= (x1, x2, ..., xn), xi ∈ R, i = 1, 2, ..., n}, ||X||:=
√∑n

i=1 x
2
i .

• Cn = {|X >= (x1, x2, ..., xn), xi ∈ C, i = 1, 2, ..., n}, ||X||:=
√∑n

i=1 |xi|2.

• l2(N) = {|X >= {xn}∞n=1, xn ∈ C :
∑∞

n=1 |xn|2}, ||X||:=
√∑∞

i=1 |xi|2.

• Lp(R) = {|f >= f : R→ C :
∫
R |f(x)|p dx <∞}, ||f ||:=

(∫
R |f(x)|p dx

)1/p.

A finite-dimensional vector space is complete in any possible norm. In infinite
dimension, completeness generally depends on the norm.

(c) Hilbert Space:

Hilbert space, denoted by H, is a complete vector space endowed with an in-
ner product. In other words, a Hilbert space is a Banach space whose norm is
determined by an inner product.

The following are examples of Hilbert space:

• l2(N) = {|X >= {xn}∞n=1, xn ∈ C :
∑∞

n=1 |xn|2}, with

< X|Y >:=
∞∑
i=1

x∗i yi.

• L2(Rd) = {|f >= f : R→ C :
∫
C |f(x1, x2, ..xd)|2 dx <∞}, with

< f |g >:=

∫
C
f ∗(x1, x2, ..xd)g(x1, x2, .., xd) dx1dx2..dxd. (6.13)

Theorem:

Every infinite dimensional Hilbert space is isomorphic to l2(N).

6.4 Linear Operators

Operators in Hilbert space is a map which to each vector associate another vector. In
other word, if Ô is an operator, and a ket |φ > of the Hilbert space V , then we have

Ô|φ >= |φ′ > (6.14)

In particular, the identity operator (or the unit operator), denoted by I, has the
property that for every vector |φ >∈ V :

I|φ >= |φ > (6.15)
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Two operators Ô1 and Ô2 are said to be equal if

Ô1|φ >= Ô2|φ >, ∀|φ >∈ V (6.16)

An operator L̂ is said to be a linear on a vector space if for any vectors |φ1 >
and |φ2 > in V , we have

L̂ (c1|φ1 > +c2|φ2 >) = c1L̂|φ1 > +c2L̂|φ2 > (6.17)

Whereas, an operator Â is said to be anti-linear on a vector space if

Â (c1|φ1 > +c2|φ2 >) = c∗1Â|φ1 > +c∗2Â|φ2 > (6.18)

In quantum mechanics we will be mostly interested in linear operators, and so in these
notes we will consider only linear operators, unless explicitly stated.

The set of linear operators form a group under the operation of addition. Also,
multiplying a linear operator by a complex number is also a linear operator. In fact,
the set of linear operators form a complex vector space in their own. Furthermore, we
can define the product of two linear operators L1 and L2, denoted by L1L2, as

(L1L2) |φ >:= L1 (L2|φ >) (6.19)

This multiplication of operators is associative, that is for any linear operators L1,L2

and L3, we have

(L1L2)L3 = L1 (L2L3) (6.20)

However, the product of operators is not commutative, i.e., in general, A1A2 6= A2A2.
The non-commutativity of two operators A1 and A2 is quantified by their commutator

[A1,A2] := L1A2 −A2A1 (6.21)

which has the following properties

1. It is Linear

[a1A1 + a2A2,B] = a1 [A1,B] + a2 [A2,B] , (6.22)
[A, b1B1 + b2B2] = b1 [A,B1] + b2 [A,B2] ,

2. It is antisymmetric

[A,B] = − [A,B] (6.23)

3. It obeys the Jacobi identity

[A1, [A2,A3]] + [A3, [A1,A2]] + [A2, [A1,A1]] = 0 (6.24)
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where A’s and B′s are not necessarily linear operators, and the a’s and b’s are
arbitrary complex numbers. With these properties, we say that the vector space of
operators with the commutation relation (6.21) is a Lie algebra110. Another property
that the commutator satisfies is the so called Leibniz rule of derivation

[AB, C] = A [B, C] + [A, C]A (6.25)
[A,BC] = B [A, C] + [A,B] C

• The action of Operator on a Bra :

As we saw, by definition an operators map kets in a vector space into other kets.
However, we can also define their action on a bras to produce other bras. For an
operator A, we denote by < φ| by < φ|A the action of A on < φ| which results
in other bra. The new bra < φ|A is specified by it action on an arbitrary ket
|ψ >, which by definition is given by

(< φ|A) (|ψ >) :=< φ|(A|ψ >) ≡< φ|A|ψ > (6.26)

Hence, we can think of A as acting either to the left (on the bra) or to the right
(on the ket).

A special linear operator is the one denoted by |φ >< ψ|, which is defined by its
action on an arbitrary ket |χ >:

(|φ >< ψ|) |χ >:= |φ >< ψ||χ > ∈ V (6.27)

From the above definition it is not difficult to show that the action of |φ >< ψ|
on a bra < ξ| is given by

< ξ|(|φ >< ψ|) :=< ξ|φ >< ψ| ∈ V∗ (6.28)

The operator |φ >< ψ| is called the outer product of |φ > and < ψ >.
110In general, a Lie algebra is a vector space L over a field F together with a multiplication

L× L → L

(A,B) → A�B

such for any A,B, C in L and for all λ ∈ F the following axioms are satisfied

(a) (A+ B)� C = A� C + B � C, and A� (B + B) = A� B +A� C,

(b) λ (A� B) = (λA)� B = A� (λB),

(c) A�B = −B�A (or, equivalentlyA�A = 0 which leads to the antisymmetric property of �),

(d) (A� B)� C + (C � A)� B + (B � C)�A = 0.

The last property is called Jacobi identity. A vector space with a multiplication that satisfy only the
properties (a) and (b) forms an algebra. If in addition to the above axioms A�(B � C) = (A� B)�C,
we have a Lie algebra of an associative algebra.

– 87 –



• Spectrum of an Operator:
If |ψa > is a vector such that the action of an operator Ô on it gives

Ô|ψλ >= λ|ψλ > (6.29)

where λ is, in general, a complex number, then we say |ψλ > is eigenstate (or
eigenket) of Ô with right- eigenvalue λ. Similarly, if there exists a complex
number λ such that the action of Ô on a non zero vector < ψ| of the dual vector
space V∗ gives

< ψλ|Ô = λ < ψλ| (6.30)

then we say that < ψλ| is eigenstate (or eigenbra) of Ô with left- eigenvalue
λ. In a finite dimensional vector space, every right-eigenvalue is also a left -
eigenvalue. However, in infinite dimension vector space this is n general not the
case.

The set of eigenvalues of an operator A is called the spectrum of A. In finite
dimensional vector space, this is a set of discrete points in the complex plane.

• Bounded Operator and Continuous Operator:
An operator is said to be bounded operator for any vector |ψ > in a vector
space V there exists a positive number k such that

||Aψ||≤ k||ψ|| (6.31)

For a given bounded operator A, we define the supremum of A to be the smallest
number k for which the above inequality is satisfied for any vector |ψ > ∈ V ,
and it is denoted by

||A||:= sup {||Aψ||
||ψ||

, |ψ >6= 0} (6.32)

Hence we obtain

||A||≤ ||A||||ψ|| (6.33)

Furthermore, we have

||A+ B||: = sup {||(A+ B)ψ||
||ψ||

, |ψ >6= 0} = sup {||Aψ + Bψ||
||ψ||

, |ψ >6= 0}

≤ {||Aψ||
||ψ||

, |ψ >6= 0}+ {||Bψ||
||ψ||

, |ψ >6= 0} = ||A||+||B|| (6.34)

Now let us consider a convergent sequence {..., ψm, ψm+1, ..., ψn, ...}. If A is a
bounded operator, then {...,Aψm,Aψm+1, ...,Aψn, ...} is a convergent sequence.
This is because

lim
n→∞

||Aψn −Aψ||≤ ||A|| lim
n→∞

||ψn − ψ||= 0 (6.35)

and we say that the bounded operator A is a continuous operator.
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• Inverse Operator:

Let A be an operator. If there exists an operator BR such that ABR = I, then
we say that BR is the right inverse of A. Similarly, if there exists an operator
BL such that BLA = I, then BL is said to be the left inverse of A. However, if
there exist both a left and right inverses of A, then we have

BL = BLI = BL (ABR) = (BLA)BR = BR (6.36)

Therefore, operator of a given operator is unique and it is denoted by A−1, where

AA−1 = A−1A (6.37)

Also note that

(AB)B−1A−1 = A
(
BB−1

)
A−1 (6.38)

= AA−1 = I

where we used the property of associativity of the product of operators. Thus,
the above equation implies that (AB)−1 = B−1A−1.

• Adjoint Operator:

The adjoint of an operator A, denoted by A†, is an operator acting on the dual
space such that (

< ψ|A†
)†

:= A|ψ > (6.39)

From with this definition we note that if A is a linear operator, so is the operator
A†. Furthermore, as a consequence of (6.39), we have the following properties

< φ|A†|ψ > = < ψ|A†|φ >∗ (6.40)
(A)† = A (6.41)(
A†
)−1

=
(
A−1

)† (6.42)

(aA+ bB)† = a∗A† + b∗B† (6.43)
(AB) = B†A† (6.44)

(|φ >< ψ|)† = |ψ >< φ| (6.45)

6.5 Hermitian and Anti-Hermitian

An operator A is said to be Hermitian if A† = A, i.e. for all |φ > and |ψ > in the
vector space, we have

< φ|Â|ψ >=< ψ|Â|φ >∗ (6.46)

where we used (6.40) of the definition of adjoint operator. Thus, if A is hermitian
< ψ|A|ψ > is a real number, for all vectors |ψ >. On the other hand, if every
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expectation value of A is real, then A is hermitian.
We say that a Hermitian operator A is positive definite if

< ψ|Â|ψ > > 0 , ∀ |ψ > (6.47)

and it is said to be non negative if < ψ|Â|ψ > ≥ 0. In quantum mechanics (QM),
Hermitian operator, say A, is associated with an observables, denoted by A, and often
one is interested in the mean value or the expectation value of A. As we shall see,
in QM a sate of the system is represented by a ket vector in a Hilbert space, say |ψ >,
and one define the expectation value of A in this state by

< A >ψ:=< ψ|Â|ψ > (6.48)

For example , the Hamiltonian of a Physical system must be Hermitian since it is
associated with its energy which is an observable quantity. Another quantity that
characterizes an observable A is the root-mean-square deviation, (∆A)ψ, defined
as

(∆A)ψ =< A2 >ψ − < A >2
ψ (6.49)

Thus, the mean -square root deviation of an observable A in the state |ψ > is zero if
|ψ > is an eigenstate of its associated operator Â.

Similarly, an operator is said to be anti-Hermitian if Â† = −Â. Consequently,
for every state |ψ > we can write < ψ|Â|ψ >=

(
< ψ|Â†|ψ >

)∗
= −

(
< ψ|Â|ψ >

)∗
.

Thus, the expectation value of an anti-Hermitian operator must be imaginary. Also,
multiplying a Hermitian operator by an imaginary results in an anti-Hermitian oper-
ator.

Given an arbitrary operator A we can decompose it into a sum of a Hermitian
and anti-Hermitian operator as:

Â =

(
Â+ Â†

2

)
+

(
Â − Â†

2

)
(6.50)

Another property of Hermitian operators is that the product of two Hermitian
operators is a Hermitian operator if they commute.

An important feature of Hermitian operators is that its eigenvalues are all real
and any two eigenvectors are orthogonal to each other if the corresponding if the
corresponding eigenvalues are not equal. To show this let |φa > be a eigenstate of a
Hermitian operator A with a corresponding eigenvalue a, i.e.

Â|φa >= a|φa > (6.51)

Then we have

< φa|Â|φa >= a||φa|| (6.52)
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However since A is Hermitian we can write

< φa|Â|φa >= (Â|φa >)†(|φa >) = a∗||φa|| (6.53)

Comparing (6.52) and (6.53), we get a = a∗, and so the eigenvalue is real.
Now suppose that |φa > and |φb > are two the eigenstates of A with the eigen-

values a and b, respectively:

Â|φa >= a|φa > , A|φb >= b|φa > (6.54)

Since A is Hermitian we can write

(b− a) < φa|φb >= 0 (6.55)

This implies that as long as the eigenvalues a and b are not equal, we have < φa|φb >=
0, that is the corresponding eigenstates are orthogonal to each other.

6.6 Isometric and Unitary Operators

An operator Ω is said to be an isometric operator if

Ω̂†Ω̂ = I (6.56)

It also means that for all |φ > and |ψ > in the vector space, if |ψ >→ Ω̂|ψ >, and
|φ >→ Ω̂|φ >, then we have

(< ψ|Ω̂†)
(

Ω̂|φ >
)

=< ψ|Ω̂†Ω̂|φ >=< ψ|φ > (6.57)

Thus, unitary operator preserves the inner product of any two vectors.

An operator U is said to be unitary if

Û Û † = Û †Û = I (6.58)

or, equivalently Û−1 = Û †. In finite dimensional vector spaces, an isometric operator
is unitary. However, in infinite dimensional vector spaces this is in general not the case.

An important result of unitary operator, which I leave it as an exercise for the
reader to prove it, is that its eigenvalues are pure phases and the eigenstates of two
distinct eigenvalues are orthogonal to one another.

6.7 Projection Operator

LetH be a Hilbert space andM⊂ H be an arbitrary subset ofH. Then the orthogonal
of complement spaceM⊥ ofM is defined as

M⊥ = {|φM⊥ >∈ H : < ψM|φM⊥ >= 0, ∀ |ψM >∈M} (6.59)
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The orthogonal complementM⊥ of a subsetM of a Hilbert space H is Hilbert sub-
space. So, any vector in H can be decomposed in a unique way into a vector |ψM >
inM and a vector |φM⊥ > inM⊥ such that

|ψ >= |ψM > +|φM⊥ > (6.60)

We define the projection operator P̂M on a subspaceM to be such that when
acting on a vector |ψ >∈ H results in a vector in the Hilbert subspaceM, i.e.

P̂M|ψ >= |ψM > (6.61)

As a result, P̂M|ψM >= |ψM > and P̂M|ψM⊥ >= 0. Furthermore, we have the
following

< ψ|P̂M|φ > = < ψ|φM >= (< ψM|+ < ψM⊥|)φM >=< ψM|φM > (6.62)
= < ψM|φ >= (P̂|ψ >)†|φM >=< ψ|P̂†M|φ >

which implies that

P̂†M = P̂M (6.63)

Thus the projector operator P̂M is Hermitian. Similarly, we define P̂M⊥ to be such
that when on a vector |ψ >∈ H results in a vector in the Hilbert subspaceM⊥, i.e.

P̂M⊥|ψ >= |ψM⊥ > (6.64)

and which is also Hermitian. From the definitions of P̂M and P̂M⊥ , we have P̂M +
P̂M⊥ = I. Furthermore, they have the property that

P̂2
M = P̂M, P̂2

M⊥ = P̂M⊥ (6.65)

This means that the projection operators are idempotent operators.

6.8 Matrix Representation

Now, let us consider a finite dimensional vector space V of dimension N , and let the
set of vectors {|e1 >, |e2 >, |e3 >, ...., |eN >} be a basis in V . Then, as we discussed
previously, any vector ψ can be written uniquely as |ψ >=

∑N
i=1 ai|en >. This also

means that in the basis {|ei >} we can represent the state |ψ > by a column vector in
CN with components {ai, i = 1, ..N}:

|ψ >−→


a1

a2
...
an

 =


< e1|ψ >
< e2|ψ >

...
< en|ψ >

 (6.66)

Similarly, a bra vector < ψ|= (|ψ >)† can be represented in CN by a row vector
in CN with components {a∗i , i = 1, ..N}:

< ψ|−→
(
a∗1, a

∗
2, · · · , a∗n

)
=
(
< ψ|e1 >, < ψ|e2 >, · · · , < ψ|en >

)
(6.67)
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Now, consider an operator Â acting on the ket |ψ > such that

Â|ψ >= |ψ′ > (6.68)

where |ψ > and |ψ′ > are represented by column vectors with components {ai} and
{a′i}, respectively. Then, by multiplying both sides of the above equation by the bra
< en| and inserting the identity operator I =

∑
m |em >< em| between Â and |ψ >, we

obtain ∑
m

Ânmam = a′n (6.69)

where

Ânm =< en|Â|em > (6.70)

which is the (nm) element of the matrix [A]. Hence, in a given basis, say {ei}, an
operator Â can be represented by a matrix with elements given in

Â −→ [Â] =


< e1|Â|e1 > < e1|Â|e2 > · · · < e1|Â|en >
< e2|Â|e1 > < e2|Â|e2 > · · · < e2|Â|en >

...
... . . . ...

< en|Â|e1 > < en|Â|e2 > · · · < en|Â|en >

 (6.71)

As particular case, consider A to be Hermitian operator with eigenstates {|φn >}
and real eigenvalues {an}, with n = 1,2 .... If all the eigenvalues are distinct, then, as
we showed earlier, {|φn >, n = 1, 2, ...} form an orthonormal basis. In this basis, we
have

< φn|Â|φm >= am < φn|φm >= δnmam (6.72)

So, the matrix representation of the Hermitian operator A is given by

Â −→ [Â] =


a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an

 (6.73)

Thus, in the basis formed by its eigenstates, a Hermitian operator is represented by a
diagonal matrix with the diagonal elements given by its eigenvalues. Such representa-
tion is often called the A- representation.

The above discussion applies also to the case of an infinite vector space in which
a basis vectors is labeled by some continuous parameter. In such case the discrete
sum is replaced by an integral. For instance, suppose that Â is some operator with
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a continuous set of eigenvalues {a ∈ I} and with corresponding eigenstates {|a >}.
Then, the orthonormality of the eigenstates and the completeness relation read

< a|a′ >= δ(a− a′),
∫
a∈I
|a >< a| da = I (6.74)

where δ(a − a′) is the Dirac delta function111. Thus, an arbitrary state |φ > can be
expanded in the {|a >} basis as

|φ >= I |φ >=

∫
a∈I
|a >< a|φ > da (6.75)

In this continuous basis, the matrix representation of the operator Â is given by

[Â](a, a′) =< a|Â|a′ >= aδ(a− a′) (6.76)

6.9 Tensor Products

111Actually δ(a− a′) is not a function; it is a distribution which maps nice well-behaved functions f
to a some (complex) number given by∫ x2

x1

f(x)δ(x− x0) = f(x0), withx0 ∈ [x1, x2]

.
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7 Principles of Quantum Mechanics

7.1 The Postulates of Quantum Mechanics

(a) Postulate 1: The State of the System

Every physical system has an associated Hilbert space
H of some dimension DH.

Every physical state of a quantum system is described by a ray in H.

by definition, a ray, denoted by Rψ , is a set of vectors which differ from some
vector |ψ > by multiplication by non zero complex number, ie

Rψ = {|φ >, |φ >∼ |ψ >⇒ |ψ >= a|ψ >,wherea ∈ C− {0}} (7.1)

So a ray is an equivalence class of vectors which correspond to the same physical
state; the normalization and phase of a vector are of no physical significance.
Using this equivalence we chose a representative of the ray to be a state vec-
tor |ψ(t) > with unit norm< ψ|ψ >= 1, which completely describe the system112.

(b) Postulate 2: Observables

Every observable A of a physical system is represented by a Hermitian oper-
ator Â on H whose eigenstates form a complete basis.

(c) Postulate 3: Measurement

Suppose the system is in some arbitrary state |ψbefore > in H. If Â is a
Hermitian operator representing some observable A, then

1. Every measurement of the observable A yields only one of the eigenvalues
Â.
2. For a discrete spectrum, with eigenvalues {ai}the probability that the
measurement of A yields a particular eigenvalue an, is given by

P (an) =
< ψbefore|Π̂n|ψbefore >

< ψbefore|ψbefore >
(7.2)

where Π̂n is the projection operator onto the eigenspace En ⊂ H correspond-
ing to the eigenvalue an.

112The state |ψ > is the direction of the ray.
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3. If Â has a continuous spectrum of eigenvalues {a(α)} with α some con-
tinuous parameter, then the probability that the measurement of A yields a
value lying in some interval I of the spectrum is given by

P (A ∈ I) =
< ψbefore|Π̂I |ψbefore >

< ψbefore|ψbefore >
(7.3)

where ΠI is the projection operator onto the eigenspace EI ⊂ H correspond-
ing to the interval I, i.e.

Π̂I =

∫
I
dα|φ(α) >< φ(α)|, (7.4)

with |φ(α) > is the eigenstate corresponding to the eigenvalue a(α).

4. Immediately after the measurement, the system will be in the state

|ψafter >=


Π̂n|ψbefore>√

<ψ|ψ>
if the spectrum is discrete

Π̂I |ψbefore>√
<ψ|ψ>

if the spectrum is continuous

For instance, if an is not degenerate with the eigenstate |φn >, then Π̂n = |φn ><
φn|, and in this case we have

P (an) =
|< φn|ψbefore > |2

< ψbefore|ψbefore >
(7.5)

|ψafter > =
< φn|ψbefore >√
< ψbefore|ψbefore >

|φn >

If an is dn-degenerate with the corresponding eigenstates {|φ(k)
n >, k = 1, 2, ..dn},

then the projection operator is Π̂n =
∑dn

k=1|φ
(k)
n >< φ

(k)
n |. In this case

P (an) =

∑dn
k=1 |< φ

(k)
n |ψbefore > |2

< ψbefore|ψbefore >
(7.6)

|ψafter > =
dn∑
k=1

< φ
(k)
n |ψbefore >√

< ψbefore|ψbefore >
|φ(k)
n >

In the case of a continuous spectrum, we have

P (A ∈ I) =

∫
I |< φ(α)|ψbefore > |2dα
< ψbefore|ψbefore >

(7.7)

|ψafter > =

∫
I

< φ(α)|ψbefore >√
< ψbefore|ψbefore >

|φ(α) > dα
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From the discussion above we can say that an observable A with possible out-
comes {a} (discrete or continuous) has the spectral decomposition113

Â =
∑
a

a Π̂a (7.8)

where a is the eigenvalue of the operator Â representing the observable A and Πa

is the projection onto the eigenspace corresponding to a. Thus, when a measure-
ment of an observable A is made, the system is driven to one of the eigenstate
of A . However, once the measurement is repeated the measurement we obtain
the same value of observable and with same eigenstate with a 100% probability.
This is known as the collapse of the wave function.

(d) Postulate 4: Time Evolution of a System

The time evolution of a state |ψ > of a system is given by the Schrödinger
equation

ih̄
d

dt
|ψ(t) >= Ĥ(t)|ψ(t) > (7.9)

where Ĥ(t) is the Hermitian Hamiltonian operator of the system which de-
scribes the energy of the system.

Note that the equation of the bra < ψ(t)| is

−ih̄ d
dt
< ψ(t)|=< ψ(t)|Ĥ (7.10)

Then, we have

d

dt
(< ψ(t)|ψ(t) >) =

(
d

dt
< ψ(t)|

)
|ψ(t) > + < ψ(t)|

(
d

dt
|ψ(t) >

)
(7.11)

= −h̄ < ψ(t)|Ĥ|ψ(t) > +h̄ < ψ(t)|Ĥ|ψ(t) >= 0

Thus, < ψ(t)|ψ(t) > remains unchanged during the evolution of the state of the
system.

To find the state of a system |ψ(t) > that has evolved from some initial state
|ψ(t0) >, we define an evolution operator Û(t, t0) :

|ψ(t) >= Û(t, t0)|ψ(t0) > (7.12)
113In fact the spectral decomposition applies for any normal operator, i.e operators which satisfy
ÂÂ† = Â†Â. Of course Hermitian operators are normal operators.
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with Û(t0, t0) = I. This allows us to write

|ψ(t) >= Û(t, t1)|ψ(t1) >= Û(t, t1)Û(t1, t0)|ψ(t0) > (7.13)

which implies that

Û(t, t0) = Û(t, t1)Û(t1, t0) (7.14)

Taking t = t0 in the above equation implies that

Û(t0, t1)Û(t1, t0) = I, ∀t0 (7.15)

Since < ψ(t)|ψ(t) > is invariant during the time evolution of the system, we can
write

< ψ(t0)|ψ(t0) >=< ψ(t)|ψ(t) >=< ψ(t0)|Û †(t, t0)Û(t, t0)|ψ(t0) >, ∀|ψ(t0) >(7.16)

Thus,

Û †(t, t0)Û(t, t0) = I (7.17)

So, Û is a unitary operator. Furthermore, the relation (7.15) yields

Û(t0, t) = Û †(t, t0) (7.18)

Now let us consider the evolution of the system from some t to (t+ δt), with ∆t
very small. Then, according to Schrod̈inger equation we have

|ψ(t+ ∆t) >=

(
1− i

h̄
Ĥ∆t

)
|ψ(t) > (7.19)

For an isolated system, the Hamiltonian is time-independent, and in this case we
have

Û(t, t0) = exp

(
−Ĥ(t2 − t1)

h̄

)
(7.20)

Hence, the state of the system at an instant t is

|ψ(t) >= exp

(
−Ĥt)

h̄

)
|ψ(0) > (7.21)

We can always choose a basis formed by the eigenvectors {φk} of Ĥ with eigen-
values Ek, i.e. Ĥ|φk >= Ek|φk >, and write

|ψ(t) >=
∑
k

Ck(t)|φk >, Ĥ =
∑
k

Ek|φk >< φk| (7.22)
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where we take
∑

k |αk|2 = 1 so that |ψ(t) > is normalized to unity. With the use
of (7.22), Schrod̈inger equation reads

dCk(t)

dt
= −iEk

h̄
Ck(t) (7.23)

which has the solution

Ck(t) = exp

(
−iEk

h̄

)
Ck(0) (7.24)

This can be understood if each eigenstate of Ĥ undergoes a phase rotation with
the argument given by its corresponding energy.

7.2 Position and Momentum representations

In the previous chapter, we have seen that any vector of a Hilbert space H can be
expanded as a linear combination of some basis-vectors. In particular, one can expand
the vectors of in terms of the eigenstates of some Hermitian operator since the later
form a complete basis. In this section, we will consider the representation of states
and operators in the position basis, then in the momentum basis.

7.2.1 Position representation

In quantum mechanics , the position of a particle is associated with a Hermitian
operator operator X̂. Its eigenvalues consist of a set of continuous real numbers {x},
with corresponding eigenstates {|x >}:

X̂|x >= x |x > (7.25)

The set {|x >} forms an orthonormal basis, i.e.

< x|x′ >= δ(x− x′),
∫

all space
|x >< x| dx = I (7.26)

So, if the particle is in some state |ψ >, it can be written in the position basis as

|ψ >=

∫
all space

|x >< x|ψ > dx (7.27)

Given two states |φ > and |ψ >, their inner product is

|ψ >=

∫
all space

< φ|x >< x|ψ > dx (7.28)

The expansion coefficient < x|ψ > is called the wave function of the particle at
position x, and it is denoted as

ψ(x) :=< x|ψ > (7.29)
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and with its complex conjugate given by

ψ∗(x) :=< x|ψ >∗=< ψ|x > (7.30)

The wave function can be can be interpreted, as the probability amplitude to find the
particle at position x. That is the probability that a measurement of the position of
the particle yields a value between x and (x+ dx) is

dP (x) = |ψ(x)|2 dx (7.31)

which is in agreement with the interpretation suggested by Born in 1926.

Now that we have give the state representation in the position basis, what about
the representation of operator?. For that consider

< φ|Â|ψ > = < φ|I Â I|ψ > (7.32)

=

∫ +∞

−∞
dx′
∫ ∞
−∞

dx < φ|x′ >< x′|Â|x >< x|ψ >

=

∫ +∞

−∞
dx′
∫ ∞
−∞

dxφ∗(x′)A(x′, x)ψ(x)

where

A(x′, x) =< x′|Â|x > (7.33)

is the matrix element of the operator Â in the position representation.
As a particular case, consider Â to be a function only of the position operator,

i.e. Â = A(X̂). Then

A(x′, x) =< x′|A(X̂)|x >= A(x)δ(x− x′) (7.34)

Substituting into Eq (7.32) and using the property of the Dirac distribution, yields

< φ|A(X̂)|ψ >=

∫ +∞

−∞
dx φ∗(x) A(x) ψ(x) (7.35)

We define an operator T̂ (α) that translates the system a distance α as

T̂ (α) |x >:= |x+ α > (7.36)

Note that for arbitrary α, we have

T̂ (α)T̂ (−α) |x >= T̂ (α) |x− α >= |x > (7.37)

which shows that T̂ (α) is unitary operator, with T̂ †(α) = T̂ (−α). This implies that

< x| T̂ (α) =< x− α| (7.38)
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In general, acting on a state |ψ > in the Hilbert space by T̂ (α) gives a new state
|ψ′ >:

T̂ (α) |ψ >:= |ψ′ > (7.39)

Writing |ψ > and |ψ′ > in the position representation yields∫
dyψ′(y) |y > =

∫
dy′ψ(y′) U(α) |xy > (7.40)

=

∫
dy′ψ(y′) |y′ + α > =

∫
dyψ(y − α) |y >

Multiplying both sides of the above equation by the bra < x|, gives114

ψ′(x) = ψ(x− α) (7.41)

Since the translation operator is unitary, it can be written as115

T̂ (α) = e−iK̂α (7.42)

with K̂ being a Hermitian operator. In this way of writing the translation operator,
K̂ is called the "generator" of the translation operator. If we denote by [k > the
eigenstate of K̂, then

T̂ (α)|k >= e−ik̂α|k > (7.43)

Now, the components of T̂ (α)|k > in the position basis read

< y|T̂ (α)|k > = e−ik̂α < y|k > (7.44)

= e−ik̂α ψk(y)

where we defined < y|k >= ψk(y). Using the fact that < y|T̂ (α) =< y−α|, the above
equation yields

ψk(y − α) = e−ik̂α ψk(y) (7.45)
114This result could also be obtained by simply using (7.38) as

ψ′(x) = < x|T̂ (α)|ψ >
= < x− a|T̂ (α)|ψ >
= ψ(x− α)

115This can be generalized to the case of three dimension as

T̂ (~α) = e−i
~̂K.~α
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Setting y = 0 and and re-naming α as x, we get

ψk(x) = e−ik̂x ψk(0) (7.46)

Hence, ψk(x) represents a plane wave with a wave number k, which according to de
Broglie it is related to the momentum p̂ of the associated particle by ~p = h̄~p. This
implies that

P̂ = h̄K̂ (7.47)

or, equivalently,

− i
h̄
P̂ =

∂

∂α
T̂ (α)|α=0 (7.48)

With the above expression of P̂ , we can write

< x′|P̂ |x > = ih̄
∂

∂α
< x′|T̂ (α)|x > |α=0 (7.49)

= ih̄
∂

∂α
δ(x+ a− x′)|α=0

which is equivalent to

< x′|P̂ |x >= ih̄ δ′(x− x′) (7.50)

Here, for ease of notation, δ′(x) denotes the derivative of δ(x) with respect to x. To
find the momentum representation of P̂ , we consider the quantity < x|P̂ |ψ >, with
|ψ > some arbitrary state. We have

< x|P̂ |ψ > =

∫
< x|P̂ |x′ >< x′|ψ > dx′ (7.51)

= −ih̄
∫ +∞

−∞
δ′(x− x′) ψ(x′)dx′

Using the property that116
∫ +∞
−∞ f(x)δ′(x− x0)dx = −f ′(x0), we obtain

< x|P̂ |ψ >= −ih̄ ∂
∂x
ψ(x) (7.52)

116This can be shown as follows:∫ +∞

−∞
f(x)δ′(x− x0)dx = −

∫ +∞

−∞
f ′(x)δ(x− x0)dx+ f(x)δ(x− x0)|+∞−∞

where we used integration by parts. Now, since δ(−∞) = δ(+∞) = 0, and assuming that f(x) is
finite, the second term vanishes. Hence, we get∫ +∞

−∞
f(x)δ′(x− x0)dx = −f ′(x0).
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So, in the position basis117, the momentum operator can be represented by (−ih̄∂/∂x).

7.2.2 Momentum representation

Since the momentum operator is Hermitian, its eigenstates form a complete set of basis
vector |p >, with

P̂ |p >= p|p > (7.55)

with

< p|p′ >= δ(p− p′),
∫

all momenta
|p >< p| dp = I (7.56)

Multiplying both sides of (7.55) by the bra < x|, yields the differential equation

−i ∂
∂x

< x|p >= p < x|p > (7.57)

which has as a solution < x|p >= c(p)ei
p
h̄
x, where c (p) is an arbitrary constant. We

will see that c is fixed by the normalization of the eigenstates |p >. For that let us
calculate the inner product between two moment eigenstates |p > and |p′ >

< p′|p > =

∫
dx < p′|x >< x|p > = c2(p)

∫
ei

(p′−p)
h̄

xdx (7.58)

= 2πc(p)2δ(p′ − p)

where we used the fact that
∫
dxeikx = 2πδ(x). So to normalize the inner product, we

choose c = 1/
√

2π, i.e

< x|p >=
1√
2πh̄

ei
p
h̄
x (7.59)

with

< p′|p >= δ(p′ − p) (7.60)

117In this representation, the commutator [X̂, P̂ ] can be calculated as follows:

< x|
[
X̂, P̂

]
|ψ > = < x|X̂P̂ |ψ > − < x|P̂ X̂|ψ > (7.53)

= x

(
−ih̄ ∂

∂x

)
< x|ψ > −

(
−ih̄ ∂

∂x

)
(x < x|ψ >)

= i < x|ψ >

Since this equality holds for any state |ψ >, we conclude that[
X̂, P̂

]
= ih̄ (7.54)

which is the Born-Heisenberg quantization rule. It is also important to note that the canonical
quantization rule

[
X̂, P̂

]
= ih̄ holds for any representation chosen.
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If the system is some state |ψ >, the wave function in the |p > representation is

ψ̃(p) =< p|ψ > (7.61)

which can be interpreted as amplitude for the particle to have momentum p. So, for
two arbitrary states |ψ > and |φ >, the inner product can be written in momentum
representation as

< φ|ψ >=

∫
dp < φ|p >< p|ψ > =

∫
dpφ̃∗(p)ψ̃(p) (7.62)

In particular, if |ψ > is a normalized state, then∫
dp|ψ̃|2(p) = 1 (7.63)

Moreover, the probability that the measurement of of the momentum of the system
yields a value between p1 and p2 is given by

P{p ∈ [p1, p2]} =

∫ p2

p1

dp|ψ̃|2(p) (7.64)

The momentum space wave function ψ̃(p) can be re-written as

ψ̃(p) =

∫
< p|x >< x|ψ > dx =

1√
2πh̄

e−i
p
h̄
x ψ(x) dx (7.65)

On the other hand, the wave function ψ(x) can expressed as

ψ(x) =

∫
< x|p >< p|ψ > dx =

1√
2πh̄

ei
p
h̄
x ψ̃(p) dp (7.66)

Thus, by comparing the expressions (7.65) and (7.66), we see that ψ̃(p) and ψ(x) are
Fourier transforms of each other.

Just as we found the representation of P̂ in the |x > basis, we can derive the
representation of the position operator X̂ in the momentum basis. For that, let |ψ >
an arbitrary state and consider

< p|X̂|ψ > =

∫
< p|x′ >< x′|X̂|ψ > dx′ (7.67)

=
1√
2πh̄

∫
x′e−i

px′
h̄ ψ(x′) dx′

= (ih̄)
1√
2πh̄

∂

∂p

[∫
e−i

px′
h̄ ψ(x′) dx′

]
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or, equivalently,

< x|P̂ |ψ >= ih̄
∂

∂p
˜ψ(p) (7.68)

Hence, in the momentum basis, the position operator can be represented by −ih̄∂/∂p.

For the case of three dimensional space, the expressions (7.26), (7.52), (7.59),
(7.60), and (7.68) become

< ~r′|~r > = δ(3)(~r′ − ~r)

∫
all space

|~r >< ~r| d3~r = I

< ~r| ~̂P |ψ > = −ih̄~∇ ψ(x)

< ~r|~p > =
1

(2πh̄)3/2
ei

~p
h̄
.~r

< ~p|~r > =
1

(2πh̄)3/2
e−i

~p
h̄
.~r

< ~p′|~p > = δ(3)(~p′ − ~p)

∫
all momenta

|~p >< ~p| d3~p = I

< ~r| ~̂P |ψ > = ih̄~∇~p ψ̃(~p)

(7.69)

(7.70)

(7.71)

(7.72)

(7.73)

(7.74)

(7.75)

(7.76)

where ~∇ = (∂/∂x, ∂/∂y, ∂/∂z) and ~∇~p = (∂/∂px, ∂/∂py, ∂/∂pz) are the gradient
operator in the the position and momentum space, respectively. Here the states labeled
by a vector quantity, such as |~r > is the tensor product of |x >, |y >, and |z >. For
instance,∫

|~r >< ~r| d3~r : =

∫
dxdydz (|x > ⊗|y > ⊗|z >) (< x|⊗ < y|⊗ < z||)

=

∫
dxdydz(|x >< x|)⊗ (|y >< y|)⊗ (|z >< z|) = IxIyIz
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For momentum space wave function in three dimension, we have

< ~p|ψ > =

∫
< ~p|~r >< ~r|ψ > d3~r (7.77)

=

∫
< px|x >< py|y >< pz|z >< ~r|ψ > d3~r

=
1

(2πh̄)3/2

∫
e−i

~p
h̄
.~r ψ(~r) d3~r

7.3 Compatible Operators and Simultaneous Measurement

In classical physics, one can make simultaneous measurement of two observables, say
position and momentum, or the x and the y components of the orbital angular momen-
tum. however, as we saw in the third postulate above, right after the measurement the
wave function collapse. So, in quantum theory it matters which measurement is made
first. In other words, the first measurement might destroy some of the information
regarding the second observable. However, there is a situation when the order of the
measurements does not matter. That is when the state of the system is a common an
eigenstate to the operators associated with observables to be measured.

Suppose that {|φi >, i = 1, 2, ..} are eigenstates of both Hermitian operators Â
and B̂, which represent the observables A and B. Let ai and bi are the eigenvalues of
Â and B̂, respectively, i.e.

Â|φi >= ai|φi >, B̂|φi >= bi|φi > (7.78)

This implies that [
Â, B̂

]
|φi >= (biai − aibi)|φi >= 0, ∀|φi > (7.79)

Since the eigenstate of Hermitian operators form a basis of a Hilbert space H,
then any state in H can be written as a linear combination of {|φi >, i = 1, 2, ..}.
Thus, [

Â, B̂
]
|ψi >= 0, ∀|ψ> ∈ H =⇒

[
Â, B̂

]
= 0 (7.80)

If there exist a complete set of linearly independent states that are eigenstates of,
two or more Hermitian operators, then their corresponding observables are said to be
compatible.

Now, suppose that Â and B̂ are two commuting Hermitian operators and the
question is: "Do they share a complete set of linearly independent states?. The answer
turns out to be "yes" they do. Here I will give a proof for the special case where at
least one of the operators, say Â, is non-degenerate, i.e. it has a set of eigenstates
{|ai >} with distinct eigenvalues ai. Acting with the operator product B̂Â on |ai >
gives

B̂Â|ai >= aiB̂|ai > (7.81)
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The action of ÂB̂ on |ai > gives

ÂB̂|ai >= aiB̂|ai > (7.82)

where we have used the assumption that Â and B̂ commute. The above equation
means that B|ai > is also an eigenstate of Â with eigenvalue ai. But since Â is non-
degenerate, B|ai > must be related to the eigenstate |ai > by a multiplicative complex
number, i.e.

B|ai >= C|ai >, C ∈ C (7.83)

However, this equation shows that |ai > is an eigenstate of B with eigenvalue C. Be-
cause B is Hermitian, the constant C is real. Since every eigenstate ofA is an eigenstate
of B, this means that the set {|ai >} forms a complete basis for both of them118. Now
that |ai > is an eigenstate of B, but with eigenvalue bi, we can label the common (i.e.
simultaneous) eigenstates of the two operators by |ai, bi >.

7.4 Heisenberg Uncertainty Relation

Let Â and B̂ be two Hermitian operators and let |ψ > be a normalized state. We
would like to calculate the product of the variances of the observables A and B in the
state |ψ >. For that let us define the Hermitian operators

∆Â : = Â − < A > (7.84)
∆B̂ : = B̂ − < B >

Operating |ψ > with the uncertainty operators ∆Â and ∆B̂, yield new states

|φA >= ∆Â |ψ >, |φB >= ∆B̂ |ψ > (7.85)

with

< φA|φA > = < ψ|(Â − < A >)2|ψ >= (∆A)2 (7.86)
< φB|φB > = < ψ|(B̂ − < B >)2|ψ >= (∆B)2

Using Schwartz inequality given in (6.4), we have

(∆A)2(∆B)2 ≥ |< ∆Â∆B̂ > |2 (7.87)

Next, we rewrite the product ∆Â∆B̂ as a sum of of a commutator and anti-
commutator:

∆Â∆B̂ =
1

2

[
∆Â,∆B̂

]
+

1

2
{∆Â,∆B̂} (7.88)

118For this special case where Â is non-degenerate, there is only one such common basis.
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Howerver,([
∆Â,∆B̂

])†
= −

[
∆Â,∆B̂

]
,
(
{∆Â,∆B̂}

)†
=
(
{∆Â,∆B̂}

)
(7.89)

As a result, the expectation value of the commutator is an imaginary number,
whereas the one of the anti-commutator is a real. Thus, we have

(∆A)2(∆B)2 ≥ 1

4
|<
[
∆Â,∆B̂

]
> |2+

1

4
|< {∆Â,∆B̂} > |2 (7.90)

Since the last term is greater or equal to zero, we conclude that

(∆A)2(∆B)2 ≥ 1

4
|<
[
∆Â,∆B̂

]
> |2 (7.91)

Applying the above inequality to the operators X̂ and P̂ , and using the commu-
tation relation [X̂, P̂ ] = ih̄, we find

∆x∆p ≥ h̄

2
(7.92)

which is the celebrated Heisenberg uncertainty relation. What this inequality is
saying is that if the position wave function ψ(x), that is the probability amplitude for
the particle to be found at position x, has a narrow distribution, then the probability
amplitude ψ̃(p) for the momentum will have a spread out distribution and vice versa.

7.5 Schrodinger, Heisenberg and Interaction Picture *

The first and the third postulates of quantum mechanics assumes that the state of the
system depends on time and it’s evolution is given by Schrod̈inger equation. However,
this is not the only way to describe the evolution of the quantum system. This is can
be seen from the fact that observables are expectations values of the corresponding
Hermitian operators in some state of the system. So, if the system is in some state
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|ψ(t) >, then the expectation value of an observable A is119

< A > = < ψ(t)|Â|ψ(t) >= Tr
[
|ψ(t) >< ψ(t)|Â

]
(7.93)

= Tr
[
Û(t)|ψ(0) >< ψ(0)|Û †(t)Â

]
= Tr

[
|ψ(0) >< ψ(0)|Û †(t)ÂÛ(t)

]

where in the third equality we used the cyclic property of the trace.

119The expression of < A > as a trace can be shown as follows. In some basis {αi}, the trace of the
operator

[
|ψ(t) >< ψ(t)|Â

]
reads Tr

[
|ψ(t) >< ψ(t)|Â

]
=
∑
i< αi|ψ(t) >< ψ(t)|Â|αi >. Since Â is

hermitian operator, its eigenstates {|φj >} form an orthonormal basis, and we can write |ψ(t) >=∑
j Cj(t)|φj >. So,

Tr
[
|ψ(t) >< ψ(t)|Â

]
=
∑
i,j,k

Cj(t)C
∗
k(t) < αi|φj >< φk|Â|αi >

=
∑
i,j,k

Cj(t)C
∗
k(t)ak < αi|φj >< φk|αi > =< ψ(t)|Â|ψ(t) >
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8 Harmonic Oscillator Using Ladder Operators

8.1 Raising and Lowering Operators

As we discussed in section 3, a particle of mass m oscillating with a frequency ω can
be described by the Hamiltonian of a simple harmonic oscillator given by

Ĥ =
P̂ 2

2m
+

1

2
mω2X̂2 (8.1)

It can be re-written as follows

Ĥ = h̄ω

1

2

(√
mω

h̄
X̂

)2

+
1

2

(√
1

mωh̄
P̂

)2
 (8.2)

= h̄ω


(√

mω
h̄
X̂ − i

√
1

mωh̄
P̂
)

√
2

(√
mω
h̄
X̂ + i

√
1

mωh̄
P̂
)

√
2

− i

2h̄
[X̂, P̂ ]


This suggests that we define the following operators

â =
1√
2

(√
mω

h̄
X̂ + i

√
1

mωh̄
P̂

)
(8.3)

â† =
1√
2

(√
mω

h̄
X̂ − i

√
1

mωh̄
P̂

)
so that the Hamiltonian reads

H = h̄ω

(
â†â+

1

2

)
(8.4)

Using the expressions of â and â† in (8.3), we have[
â, â†

]
= 1 (8.5)

Furthermore, they satisfy the following commutation relations with the hamiltonian,[
Ĥ, â

]
= −h̄ω (8.6)[

Ĥ, â†
]

= +h̄ω

We denote the eigenstate of the H by |n > with its corresponding energy En, i.e.120

H|n >= En|n > (8.7)
120The reason for denoting the eigenstate of the Hamiltonian by just one label representing its energy

is because there is no other combination of position and momentum operators that commute with H
except functions of H.

– 110 –



Applying H on the states â|n > and â†|n > yields

Ĥâ|n > =
(
â̂H + [Ĥ, â]

)
|n >= (En − h̄ω) â|n > (8.8)

Ĥâ†|n > =
(
â†Ĥ + [Ĥ, â†]

)
|n >= (En + h̄ω) â†|n >

Thus the operators â and â† lower and raise the energy of a state by h̄ω, respectively.
Hence we will refer to them as the lowering and raising operators or sometime
people called them the ladder operators.

8.2 Energy Spectrum and Eigenstates

For an arbitrary normalized state |ψ >, the expectation of H is

< ψ|Ĥ|ψ > =
1

2
h̄ω + h̄ω < ψ|â†â|ψ > (8.9)

=
1

2
h̄ω + h̄ω||aψ||2≥ 1

2
h̄ω

Thus all the eigenvalues of H are greater than or equal to h̄ω/2, i.e

En ≥
1

2
h̄ω, ∀n. (8.10)

Since the operator â lowers the energy of |n > by h̄ω, it means that ak|n > is a
state with energy (En−kh̄ω). However, as we noted above, the energy of a state can not
be lower than h̄ω/2. Hence, for each n, there exists an integer kn such that âkn|n >= 0.
This means that the spectrum of Ĥ must contain a state which is annihilated by â.
Such a state is called the ground state of the system. and it is denoted by |0 >. So,
we have

â|0 >= 0 (8.11)

Putting |ψ >= |0 > in (8.9) and using the fact that Ĥ|0 >= E0|0 >, yields

E0 =
h̄ω

2
(8.12)

The higher energy states can be obtained by the multiple application of the raising
operator on the ground state, i. e.

|n >= Nn(â†)n|0 > (8.13)

where Nn is a normalization constant. By acting with Ĥ on both side of the above
equation, we find that

En = h̄ω

(
n+

1

2

)
, n = 0, 1, 2, .. (8.14)
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Since Ĥ is Hermitian and its energy eigenvalues {En, n = 0, 1, ..} are non-degenerate,
their corresponding eigenstates are mutually orthogonal. They also be normalized by
requiring that

1 = |Nn|2< 0|ân(â†)n|> (8.15)
= |Nn|2< 0|â(n−1)

(
ââ†
)

(â†)(n−1)|0 >

=
|Nn|2

|Nn−1|2
< n− 1|ââ†|n− 1 >

Using the commutation relation between â and â† given in Eq (8.5), we can write

1 =
|Nn|2

|Nn−1|2
< n− 1|

(
Ĥ
h̄ω

+
1

2

)
|n− 1 > (8.16)

from which it follows that

|Nn|=
1√
n
|Nn−1|=

1√
n(n− 1)

|Nn−2|= .... =
1√

n(n− 1)...1
|N0| (8.17)

Since the ground state |0 > was assumed to be normalized, i.e. N0 = 1, then we get121

|n >=
1√
n!

(â†)n|0 > (8.18)

8.3 The Wave Function of the Harmonic Oscillator

First, we will determine the wave function of the ground state. For that we use Eq
(8.11), which in the position basis {|x >} reads

< x|â|0 >=
1√

2mh̄ω
< x|

(
mωX̂ + iP̂

)
|0 >= 0 (8.19)

In the position basis {|x >}, the position and the momentum operators of a system in
some state |ψ > are given by

< x|X̂|ψ >= xψ(x), < x|P̂ |ψ >= −ih̄ ∂
∂x
ψ(x) (8.20)

121Actually, the most general solution to (8.17) is of the form

1√
n!
eiθ

where θ is an arbitrary phase. However, two states that differ by an multiplicative complex number,
in particular a phase belong to the same ray, and hence yield the same physics. thus, one can choose
the eigenstates of Ĥ whose relative are all zero.
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where ψ(x) =< x|ψ > is the wave function of the system. Thus, the wave function
ground state ψ0(x) is obeys of the differential equation(

∂

∂x
+
mω

h̄
x

)
ψ0(x) = 0 (8.21)

which has the solution ψ0(x) ∝ exp{−mω
2h̄
x2}. Normalizing ψ0(x) gives

ψ0(x) =
(mω
πh̄

)1/4

exp
(
−mω

2h̄
x2
)

(8.22)

and so the wave the wave function of the ground state is Gaussian.

In the |x > representation, the raising and lowering operators take the following
simple differential form

â =
1√
2

(
z +

∂

∂z

)
, â† =

1√
2

(
z − ∂

∂z

)
(8.23)

where we defined a dimensionless coordinate z = x
√
mω/h̄. So, the wave function of

the energy states |n >, is given by

ψn(x) =
1√
n!
< x|(â†)n|0 >=

1√
n! 2n

(
z − ∂

∂z

)n
ψ0(z) (8.24)

This also provides an alternative definition of the Hermite polynomials122(
z − ∂

∂z

)n
e−z

2/2 = Hn(z)e−z
2/2 (8.25)

122 Using the definitions of the ladder operators we can derive a recurrence relation between these
polynomial as follows. First, we use the fact that

< z|
(
â†
)n+1 |0 >=

1√
n+ 1

< z|â†|n >

or, equivalently,

ψn+1(z) =
1

2
√
n+ 1

(
z − ∂

∂z

)
ψn(z)

This gives

Hn+1(z) = 2zHn(z)− dHn(z)

dz

On the other hand, we have

ψn−1(z) =
1√
n
< z|â|n >=

1

2
√
n

(
z +

∂

∂z

)
ψn(z)

which gives

dHn(z)

dz
= 2nHn−1(z)
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so that

ψn(x) =
1√
n! 2n

1

π1/4
Hn(z)e−z

2/2 (8.26)

Note that the harmonic wave functions are also eigenstates of the parity operator P̂

P̂ψn(y) := ψn(−y) = (−1)nψn(y) (8.27)

This should not be surprising since the parity operator commute with the Hamiltonian
of the simple harmonic oscillator.

8.4 The Matrix Representation of the Harmonic Oscillator

Applying the annihilation and creation operators on the states {|n >} given in (8.18),
we find that

â|n >=
√
n |n− 1 >, â†|n >=

√
n+ 1 |n+ 1 > (8.28)

Thus, in the |n > basis, â and â† have the following matrix representations:

[â†] =



0 0 0 0 0 · · · · · · 0
1 0 0 0 0 · · · · · · 0

0
√

2 0 0 0 · · · · · · 0

0 0
√

3 0 0 · · · · · · 0

0 0 0
√

4 0 · · · · · · 0
...

...
...

...
...

...
...

...


, [â] =



0 1 0 0 0 · · · · · · 0

0 0
√

2 0 0 · · · · · · 0

0 0 0
√

3 0 · · · · · · 0

0 0 0 0
√

4 · · · · · · 0

0 0 0 0 0
√

5 · · · 0
...
...

...
...

...
...

...
...


(8.29)

Note that the matrices [â] and â† are Hermitian conjugate to each other, as expected.
The Hamiltonian operator is represented by a diagonal matrix since |n > are its eigen-
states, and it is given by

[Ĥ] = h̄ω


1/2 0 0 0 · · · 0
0 3/2 0 0 · · · 0
0 0 5/2 0 · · · 0
...

...
...

...
...

...

 (8.30)

The matrix element representing the position operator X̂ is given by

< n|X̂|m > =

√
h̄

2mω

(
< n|â†|m > + < n|â|m >

)
(8.31)

=

√
h̄

2mω

(√
n δn,m+1 +

√
n+ 1 δn,m−1

)
Substituting the expression of the derivative of Hn(y) into the relation of Hn+1, yields

Hn+1(z) = 2zHn(z)− 2nHn−1(z)

– 114 –



Thus, X̂ can be represented by the matrix123

[X̂] =



0 1 0 0 0 0 · · · · · ·
1 0

√
2 0 0 0 · · · · · ·

0
√

2 0
√

3 0 0 · · · · · ·
0 0

√
3 0

√
4 0 · · · · · ·

0 0 0
√

4 0
√

5 · · · · · ·
...

...
...

...
...

...
...

...


(8.32)

For the operator X̂2, the matrix element reads

< n|X̂2|m > =
h̄

2mω

(
< n|â†â†|m > + < n|ââ|m > +

2

h̄ω
< n|Ĥ|m >

)
(8.33)

=
h̄

2mω

(√
n(n− 1) δn,m+2 +

√
(n+ 1)(n+ 2) δn,m−2 +

(2n+ 1)

h̄ω
δnm

)
So, the matrix representation of X̂2 is124

[X̂2] =
h̄

2mω



1 0
√

2 0 0 · · · · · ·
0 3 0

√
6 0 · · · · · ·√

2 0 5 0
√

12 · · · · · ·
0
√

6 0 7 0 · · · · · ·
0 0

√
12 0 9 · · · · · ·

...
...

...
...

...
...

...


(8.34)

Note that the diagonal element [X̂2]nn represents the expectation values of x2, in the
state |n >. So, from the above equation we have

< X̂2 >n=
(2n+ 1)

2mω2
h̄ω =

En
mω2

(8.35)

Thus, the expectation value of the potential of the harmonic oscillator in this state is

< V (X̂) >n=
1

2
mω2 < X̂2 >=

En
2

(8.36)

A similar analysis can be carried out for the momentum operator P̂ and the ki-
netic energy operator T̂ = P̂ 2/2m. I will leave to you as an exercise to show that
< T̂ >n=< V (X̂) >= En/2

125.

8.5 Coherent States

123We could obtain [X̂] by simply using [X̂] =
√

h̄
2mω

(
[â] + [â†]

)
.

124It can also be obtained by matrix multiplication of [X̂] with itself.
125The same relationship also holds for a classical harmonic oscillator when one takes the average

over a full period of oscillation.
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9 Theory of Angular Momentum

9.1 Angular Momentum Algebra

The orbital angular momentum of a single particle of mass m, located at a position ~r
with respect to a reference point P0 at ~r0 is defined by

~L = (~r − ~r0)× ~p (9.1)

where ~p = m~υ is the momentum vector of the particle. For simplicity we choose the
origin of system coordinates at P0 so that the angular momentum vector takes the
simple form

~L = ~r × ~p (9.2)

In terms of components, we have

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx. (9.3)

which can be written in a compact form as

Li =
3∑

j,k=1

εijkxjpk, i = 1, 2, 3 (9.4)

with the index 1 corresponds to the x component, 2 to the y component and 3 to the z
component. The symbol εijk is the totally antisymmetric tensor, called the Levi-Civita
tensor, defined as

εijk =


0, if two or more indices are equal,

1, if ijk are an even permutation of 123,

−1, if ijk are an odd permutation of 123.

(9.5)

In quantum mechanics, to find angular momentum operator, one replaces the position
and the momentum by their corresponding operators, i.e.

L̂i =
3∑

j,k=1

εijkX̂jP̂k, i = 1, 2, 3 (9.6)

So, in the position representation (9.6) reads

L̂i = −ih̄
3∑

j,k=1

εijkxj
∂

∂xk
, i = 1, 2, 3 (9.7)
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or, more explicitly,

L̂x = −ih̄
(
y
∂

∂z
− z ∂

∂y

)
L̂y = −ih̄

(
z
∂

∂x
− x ∂

∂z

)
L̂z = −ih̄

(
x
∂

∂y
− y ∂

∂x

)
(9.8)

Note that L̂i is Hermitian since(
L̂i

)†
=

3∑
j,k=1

εijk

(
P̂k

)† (
X̂j

)†
=

3∑
j,k=1

εijkP̂kX̂j (9.9)

=
3∑

j,k=1

εijkX̂jP̂k − ih̄
3∑

j,k=1

εijkδij

= L̂i

where the term
∑3

j,k=1 εijkδij = since the Levi-Cevita tensor vanishes whenever two

indices are equal. Hence, the components of ~̂L corresponds to observables. So, the
question now is can one measure all the components of the angular momentum si-
multaneously?. The answer turns out to be "NO" and that is because they do not
commute with each other. For example, we have

[Lx, Ly] = [Ŷ P̂z − ẐP̂y, ẐP̂x − X̂P̂z] (9.10)
= Ŷ P̂x[P̂z, Ẑ] + P̂yX̂[Ẑ, P̂z]

= i
(
X̂P̂y − Ŷ P̂x

)
= ih̄L̂z

Similarly, we can calculate the other commutators and find

[Ly, Lz] = ih̄L̂x, [Lz, Lx] = ih̄L̂y (9.11)

which shows that the commutations relations between different components of the
angular momentum operator can be obtained by a simple cyclic permutation of x, y,
and z. In compact notation, we can write126

[Li, Lj] = ih̄
∑
k

εijkL̂k (9.12)

126In fact, we can also express the left hand side of (9.12) in terms of the Levi-Cevita tensor and
write ∑

i,j

εijkL̂iL̂j = ih̄L̂k

which is just the cross product of the operator angular momentum with itself. So, in quantum
mechanics, the cross product of an operator with itself is not necessarily zero.
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It is important to note that the above commutation relations have been derived with-
out referring to a specific representation for the position and momentum operators.
Using the above result, we can calculate the commutator of the square of the angular
momentum operator, L̂2 , with one of its component, L̂i, i.e.[

L̂2, L̂i

]
=
∑
j

[
L̂jL̂j, L̂i

]
=
∑
j

L̂j

[
L̂j, L̂i

]
+
∑
j

[
L̂j, L̂i

]
L̂j (9.13)

= i
∑
j,k

εjik

(
L̂jL̂k + L̂kL̂j

)
However, the term in bracket is completely symmetric under the exchange of the j and
k indices, and so its multiplication by the totally antisymmetric tensor εijk vanishes
when summing over the indices j and k. Therefore, we obtain

[L̂2, L̂i] = 0 (9.14)

In general, a Hermitian operator ~̂J =
(
Ĵ1, Ĵ2, Ĵ3

)
is said to be an angular momentum

if it satisfies the following commutation relations

[Ji, Jj] = i
∑
k

εijkĴk (9.15)

which defines the algebra of angular momentum. Furthermore, as we will show below,
angular momentum is intimately related to the group of rotational transformations.
Similar to the orbital angular momentum, the square of the angular momentum oper-
ator, Ĵ2, commutes with all the components Ĵi, i.e.

[Ĵ2, Ĵi] = 0 (9.16)

9.2 Quantization of Angular momentum

The commutation relations between the components of the angular momentum in
(9.15) have a far-reaching consequences. As we will see it leads to the quantization of
the angular momentum.

The fact that [Ĵ2, Ĵi] = 0, and the Ĵi do not commute between themselves, implies
that one can form set of two commuting operators formed by Ĵ2 and one of the com-
ponents of the angular momentum. We choose this set to be {Ĵ2, Ĵ3}, and denote the
common eigenstates by |λ,m > with

Ĵ2|λ,m > = λ h̄2|λ,m >, (9.17)
Ĵ3|λ,m > = m h̄|λ,m >
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Here λ and m are dimensionless real numbers. The explicit appearance of h̄2 and h̄ is
to match the dimension the Ĵ2 and Ĵz, respectively. Now, the average of the operator
(Ĵ2 − Ĵz) in the state |λ,m > reads

< λ,m|Ĵ2 − Ĵ2
z |λ,m >= (λ−m2)h̄2 (9.18)

where we assumed that |λ,m > are orthornormal. However, the left hand side of the
equation above can be written as

< λ,m|Ĵ2 − Ĵ2
z |λ,m > = < λ,m|Ĵ2

x |λ,m > + < λ,m|Ĵ2
y |λ,m > (9.19)

= ||Ĵx|λ,m > ||2+||Ĵy|λ,m > ||2≥ 0

which implies that the the operator (Ĵ2 − Ĵ2
3 ) is positive definite, and hence

λ ≥ m2 (9.20)

We introduce the ladder operators, defined as

Ĵ± = Ĵ1 ± iĴ2 (9.21)

Note that these operators are the adjoints of one another. By expressing Ĵx and Ĵy in
terms of Ĵ±, we can rewriting Ĵ2 in the following equivalent forms

Ĵ2 =
1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+ + Ĵ2

z ) (9.22)

= Ĵ+Ĵ− + Ĵ2
z − h̄Ĵz (9.23)

= Ĵ−Ĵ+ + Ĵ2
z + h̄Ĵz (9.24)

With the use of the commutation relations between the Ĵi in (9.15), we find that

[Ĵz, Ĵ±] = ±h̄ Ĵ±, [Ĵ+, Ĵ−] = 2h̄Ĵz (9.25)

Now, applying Ĵz on the states Ĵ±|λ,m > gives

ĴzĴ±|λ,m > = [Ĵz, Ĵ±]|λ,m > +Ĵ±Ĵz|λ,m > (9.26)
= ±h̄Ĵ±|λ,m > +mh̄Ĵ±|λ,m >

= (m± 1)h̄ |λ,m >

Thus, Ĵ±|λ,m > is eigenstates of Ĵz with eigenvalues (m ± 1), without changing the
the value of λ. Therefore, by repeatedly applying Ĵ+ to eigenstates of Ĵz leads to a
tower of states with larger values of m. However, this sequence of states has to stop at
some point otherwise the bound in Eq (9.20) gets violated. That is there should be a
state for some value m = m+ such that the state is annihilated by Ĵ+, i.e.
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Ĵ+|λ,m+ >= 0 (9.27)

This implies that

0 = < λ,m+|Ĵ−Ĵ+|λ,m+ >

= < λ,m+|(Ĵ2 − Ĵ2
z − h̄Ĵz)|λ,m+ >

= h̄2(λ−m2
+ −m+) (9.28)

Similarly, by successive application of Ĵ− one can obtain arbitrarily small negative
value m which will violate the upper bound on m2, and so there must be some value
m = m− for which the state |λ,m− > is annihilated by Ĵ−, i.e.

Ĵ−|λ,m− >= 0 (9.29)

which implies that

0 = < λ,m−|Ĵ+Ĵ−|λ,m− >
= < λ,m−|(Ĵ2 − Ĵ2

z − h̄Ĵz)|λ,m− >
= h̄2(λ−m2

− +m−) (9.30)

Now, by a successive application of Ĵ+ on the state |λ,m− > one must end up at the
state |λ,m+ >, otherwise the sequence would increase indefinitely. Therefore, we have

m+ −m− = n (9.31)

where n is a positive integer which represents the number of times that the operator
Ĵ+ has been applied in order to reach the state |λ,m+ >. Moreover, by combining Eq
(9.28) and Eq (9.30), we can eliminate λ and get an equation in terms of m+ and m−:

(m+ +m−)(m+ −m− + 1) = 0 (9.32)

Since the term in the second parenthesis is positive definite, it follows thatm+ = −m−.
Defining j = m+, and using Eq (9.31) gives

j =
n

2
(9.33)

which shows that j can be either integer or half integer:
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j = {0, 1

2
, 1,

3

2
, ....} (9.34)

Substituting the relation m+ = −m− ≡ j into Eq (9.28), yields

λ = j(j + 1) (9.35)

We shall from now change the label λ of the eigenstates of Ĵz and Ĵz by j. Thus, the
action of the angular momentum operators on a state |j,m > are given by

Ĵ2|j,m > = j(j + 1)h̄2|j,m > (9.36)
Ĵz|j,m > = mh̄|j,m > (9.37)
Ĵ±|j,m > =

√
j(j + 1)± (m± 1)h̄|j,m± 1 > (9.38)

Note that for each j, the quantum number m takes the values

m = {−j,−j + 1,−j + 2, ..., j − 1, j.} (9.39)

Therefore, there are (2j+1) states for a given j. One can show that the space of states,
defined by

H(j) = { |ψ >=

+j∑
m=−j

am |j,m >, where am ∈ C} (9.40)

is a Hilbert space of dimension (2j + 1) and with {|j,m >,m = −j,−j + 1, ..., j}
forming an orthonormal basis.

9.3 Angular Momentum and Rotations in R3

A rotation in 3-dimension (not necessarily in the position space) is characterized by
an axis of rotation, defined by a unit vector ~n, and an angle of rotation. We will
denote it by R~n(θ), or sometimes by R(~θ), where ~θ = θ ~n. Moreover, the set of these
rotations forms a non-abelian group, called SO(3), parametrized by three independent
parameters. So, a rotation R(~θ) transform a vector ~V into a new vector

~V ′ = R(~θ) ~V (9.41)

In cartesian coordinates, the above transformation can be expressed as

V ′i =
3∑
j=1

R(~θ)ij Vj (9.42)
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The rotation transformation leave the scalar product between any two vectors un-
changed, and so we can write

3∑
i=1

V ′i V
′
i =

∑
i,j,k

R(~θ)ijR(~θ)ik VjVk =
3∑
i=1

ViVi =
∑
j,k

δjkVjVk (9.43)

from which it follows that ∑
i

R(~θ)ijR(~θ)ik = δjk (9.44)

Using the fact that R(~θ)ik = [R(~θ)T ]ki, the above equation reads in matrix form as

R(~θ)TR(~θ) = I3×3 (9.45)

Taking the determinant of both sides of the equation, yields

detR(~θ) = ±1 (9.46)

The set of transformations that have detR(~θ) = −1, do not form a group since the
identity transformation has det(I) = +1, and are called improper rotations. This set
of transformation represents an inversion or a combination of rotation and inversion.
Thus, the group SO(3) is the group of proper rotations defined as127

SO(3) := {R, RTR = I, and det(R) = 1} (9.47)

For instance, the transformation describing the rotation around the x axis, defined by
the unit vector ~e1, by an angle α is given by

R~e1(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 . (9.48)

Similarly, rotations around the y and z axis defined by the unit vectors ~e2 and ~e3,
respectively, are given by

R~e2(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 , R~e3(γ) =

 cos γ − sin γ 0
− sin γ cos γ 0

0 0 1

 (9.49)

127The Letters "SO" in the group SO(3) stands for "special orthogonal". It is special because
detR(~θ) = +1, and orthogonal because R(~θ)TR(~θ) = I3×3. It is a very simple exercise to check that
the set of matrices as defined in (9.47) for a group under the operation of matrix multiplication.
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The expression of a rotation about an arbitrary axis defined by a unit vector ~n can be
found as follows. Any vector ~V can be decomposed into two vectors; one parallel to
the axis of rotation, ~V‖ and the second one ~V⊥, that is perpendicular to it, with

~V‖ = (~V .~n)~n, ~V⊥ = ~V − (~V .~n)~n (9.50)

Then, the rotation of ~V by an angle ψ around the direction ~n can be written as

R~n
~V = R~n

~V‖ +R~n
~V⊥ (9.51)

= ~V‖ + cosψ~V⊥ + sinψ(~n× ~V )

= cosψ~V + (1− cosψ) (~V .~n)~n+ sinψ ~n× ~V

In the second equality above we used the fact that ~V‖ remains unchanged under the
action of R~n since it is parallel to the axis of rotation. In terms of components, the
above equation reads

3∑
j=1

R~n(ψ)ij ~Vj =
3∑
j=1

[cosψ δij + (1− cosψ)ninj − sinψnkεijknk]Vj (9.52)

where the εijk comes from the definition of the scalar product. Since the above relation
holds for any vector ~V , then it implies that

R~n(ψ)ij = cosψ δij + (1− cosψ) ninj − sinψ εijknk (9.53)

This is known as Rodrigues’ rotation formula128.

128Another way of deriving the Rodrigues is as follows. First, we note that R~n(ψ)ij is an element
of a tensor of rank two. Thus, given at our disposal the symmetric tensor δij of rank 2, the totally
antisymmetric tensor εijk of rank 3, and the vector ni, we can express R~n(ψ)ij in the form

R~n(ψ)ij = A(ψ) δij +B(ψ) ninj + C(ψ) εijk nk

Second, we use the property that the action of a rotation about ~n does not affect ~n or any vector
parallel to it, i.e.

R~n(ψ) ~n = ~n

which after substituting the above expression of R~n(ψ)ij yields

A(ψ) +B(ψ) = 1

Finally, we consider ~n = ~k, for which R~k(ψ)11 = cosψ and R~k(ψ)12 = − sinψ. This leads to

A(ψ) = cosψ, C(ψ) = − sinψ, B(ψ) = 1− cosψ

Hence, we obtain the expression of R~n(ψ)ij given in (9.53).
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Let us now consider an infinitesimal rotation associated with an angle δψ << 1 by
Taylor expanding R~n(ψ)ij in terms of δψ and keeping only lowest order. We obtain

R( ~δψ)ij = δij − δψ εijk nk + .. (9.54)

Defining δψk = δψ nk, we write the rotation matrix R( ~δψ) in the form

R( ~δψ) = I− i
∑
k

δψk Mk + ... (9.55)

where {Mk, k = 1, 2, 3} are matrices 3 × 3, and they are called the generators of the
transformation along the direction ~ek129, with elements given by

Mk
ij = −iεkij, k = 1, 2, 3. (9.56)

So, in matrix form, the generators of rotations along the x, y, and z axis read

M1 = i

 0 −1 0
1 0 0
0 0 0

 , M2 = i

 0 0 1
0 0 0
−1 0 0

 M3 =

 0 0 0
0 0 −1
0 1 0

 (9.57)

DefiningMi = Ji
h̄
, it is straightforward to check that

[J i, J j] = iεijk J
k. (9.58)

Thus, the generators of a rotation satisfy the algebra of angular momentum.

According to (9.56), under an infinitesimal rotation R( ~δψ), an arbitrary differentiable
function F (xi) of the the coordinate xi, transforms as

F (x′i) ' F (xi − δψk εkij xj) = F (xi)− δψk εkij xj
∂F

∂xi
(9.59)

' F (xi)− δψk
1

2
εkij

(
xi
∂

xj
− xj

∂

xi

)
F (xi)

from which we infer that the generator of this rotation in the space of functions of
coordinates is represented by the operator

Mk = − i
2
εkij

(
xi
∂

xj
− xj

∂

xi

)
, k = 1, 2, 3 (9.60)

which, after rescaling by an h̄, correspond to the same expressions of the orbital angu-
lar momentum given in (9.8). Hence, in the position representation, the generators of

129This is similar to the momentum operator which, as we saw before, is the generator of the
translation.
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rotation correspond to the orbital angular momenta.

Now, to go from infinitesimal transformation to a full rotation we make use of the
identity

lim
N→∞

(
1− iψA

N

)N
= e−iψ

~A (9.61)

for some arbitrary matrix A. Therefore, a rotation with a finite angle ψ can be repre-
sented by an exponential

R(~ψ) = e−
i
h̄
~ψ ~J (9.62)

where J i are the angular momentum operators which in the position space correspond
to the orbital angular momentum.

9.4 Representation of Rotation in Hilbert State
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11 Approximation Methods

Exact solution to the Schrödinger’s equation exists only for a few idealized sys-
tems. Thus, in general cases, one must resort to approximate methods. A variety of
methods have been developed and each has its area and range of applicability. In this
chapter, we will consider approximation methods for stationary, i.e, corresponding to
time-independent Hamiltonians.

11.1 Time Independent Perturbation Theory

This method is most suitable when the Hamiltonian of the system, Ĥ, is close to a
Hamiltonian Ĥ0 that can be solved exactly. In this case, we can write

Ĥ = Ĥ0 + δĤ (11.1)

where δĤ is very small compared to Ĥ0. As a result, the effect of δĤ on the spectrum
of Ĥ0 will be small, and hence δĤ is called perturbation. We can introduce a parameter
λ which is much smaller than one, and write δĤ in the form

δĤ = λV̂ (11.2)

Thus, the eigenvalue problem of the system becomes(
Ĥ0 + λV̂

)
|Ψn >= En|Ψn > (11.3)

There are two cases to consider depending on whether the spectrum of Ĥ0 is degenerate
or non-degenerate.

11.1.1 Non Degenerate Spectrum

If Ĥ0 has no degenerate eigenvalues, we can write

Ĥ0|φn >= E(0)
n |φn > (11.4)

where the exact eigenvalues E(0)
n and the exact eigenstates |φn > are known. Thus, we

expand |Ψn > and En in power series of the parameter λ 130:

En = E(0)
n + λE(1)

n + λ2E(2)
n + .. (11.5)

|Ψn > = |φn > +λ|Ψ(1)
n > +λ2|Ψ(2)

n > +...

The aim of perturbation theory is to find E
(1)
n , E

(2)
n , ..., and |Ψ(1)

n >, |Ψ(2)
n >, .... For

λ << 1, the first few terms provide a reliable description of the system. Hence, we will
be concerned only with the first two terms in the above expansion. Then, we obtain(
Ĥ0 + λŴ

) (
|φn > +λ|Ψ(1)

n > +λ2|Ψ(2)
n >

)
=
(
E(0)
n + λE(1)

n + λ2E(2)
n

) (
|φn > +λ|Ψ(1)

n > +λ2|Ψ(2)
n >

)
130Even if the parameter of parameter of the perturbation is sufficiently small, it does not necessarily

mean that the above expansion exists.
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By matching the powers of λ on both sides of this equation we obtain

λ0 → Ĥ0|φn >= E(0)
n |φn > (11.6)

λ1 → Ĥ0|ψ(1)
n > +V̂ |φn >= E(0)

n |ψ(1)
n > +E(1)

n |φn > (11.7)
λ2 → Ĥ0|ψ(2)

n > +V̂ |ψ(1)
n >= E(0)

n |ψ(2)
n > +E(1)

n |ψ(1)
n > +E(2)

n |φn > (11.8)

Similarly, we can expand the normalization equation < ψn|ψn > in powers of λ, and
require that all terms of the same power in λ cancel independently, giving

λ0 → < φn|φn >= 1 (11.9)
λ1 → < ψ(1)

n |φn > + < φn|ψ(1)
n >= 0 (11.10)

λ2 → < ψ(2)
n |φn > + < ψ(1)

n |ψ(1)
n > + < φn|ψ(2)

n >= 0 (11.11)

Without lose of generality, we can choose the phase of the full eigenstates |ψn > to be
such that < φn|ψn > is real-valued. In terms of powers of λ, we have

< φn|ψn >= 1 + λ < φn|ψ(1)
n > +λ < φn|ψ(2)

n > +.. (11.12)

In order for the right hand side to be real for any real λ requires that each term be
independently real-valued, i.e

< φn|ψ(k)
n >=< ψ(k)

n |φn > (11.13)

To obtain the jth correction to the nth energy eigenvalue, we multiply the equation in
the jth power of λ by < φn| and solve for E(j)

n , giving

E(j)
n = < φn|V̂ |ψ(j)

n > −
j−1∑
k=1

E(k)
n < φn|ψ(j−k)

n > (11.14)

where in the summation j > k, and the quantity < φn|ψ(m
n > is obtained from the

normalization condition (12), and it is given by

< φn|ψ(m)
n >= −1

2

j−1∑
k=1

< ψ(m−k)
n |ψ(m

n > (11.15)

which must be solved iteratively. The jth corrections to the nth eigenstate can be
obtained by expanding |ψn > in the basis |φn >,

|ψn > =
∑
m

< φm|ψn > |φm > (11.16)

= |φn >
∑
j=1

λj < φn|ψ(j)
n > +

∑
m 6=0

|φm >
∑
j=1

λj < φm|ψ(j)
n >

where < φm|ψ(j)
n > can be obtained from the normalization condition of the state

|ψn >, which gives

< φm|ψ(j)
n >= −< φm|V |ψ(j−1)

n >

E
(0)
m − E(0)

n

+

j−1∑
k=1

E
(k)
n < φm|ψ(j−k)

n >

E
(0)
m − E(0)

n

(11.17)
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Let us introduce the notation Vmn ≡< φn|V |φn > and Emn ≡ E
(0)
n − E(0)

n . Then
we have

• First order approximation

En = E(0)
n + E(1)

n (11.18)
= E(0)

n + λ < φn|V |φn >= E(0)
n + λVnn

and

|ψn > = |φn > +λ
∑
m6=0

|φm >< φm|ψ(1)
n > (11.19)

= |φn > −λ
∑
m 6=n

Vmn
Emn
|φm >

• Second order approximation
Setting j = 2 in equations (14), (16), and (17), we get

En = E(0)
n + E(1)

n + E(2)
n (11.20)

= E(0)
n + λVnn − λ2

∑
m6=n

|Vmn|2

Emn

and

|ψn > =

(
1− λ2

2

∑
m 6=n

|Vmn|2

E2
mn

)
|φn > + (11.21)

∑
m 6=0

|φm >

[
−λ

∑
m6=n

Vmn
Emn

+ λ2

(∑
m′ 6=n

Vmm′Vm′n
EmnEm′n

− VmnVnn
E2
mn

)]

There is another way to derive the expressions of the energy eigenvalues for the
unperturbed Hamiltonian. We write the Schrodinger equation as

(H0 + λV ) |ψn >= En|ψn >⇒ (λV −∆n) |ψn >=
(
E(0)
n −H0

)
|ψn > (11.22)

where ∆n = En − E(0)
n Let us introduce the projector operator

Qn = 1− |φn >< φn|=
∑
m6=n

|φm >< φm| (11.23)

and note that < φn|(λV −∆n) |ψn >= 0. Thus we can have(
E(0)
n −H0

)
|ψn >= Qn (λV −∆n) |ψn > (11.24)

With the presence of the projector operator, It is now safe to write

|ψn >= Gn (λV −∆n) |ψn > (11.25)
(11.26)
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where

Gn =
1

E
(0)
n −H0

Qn (11.27)

However, in the limit λ → 0, the above equation gives |ψn >= 0 instead of |ψn >∝
|φn >. This is because the above solution is just a particular solution and one needs to
add to that the solution to the homogeneous equation. The later are the unperturbed
states. Thus, the general solution reads

|ψn >= Gn (λV −∆n) |ψn > +fn(λ)|φn > (11.28)

where f(λ)is an arbitrary function with well define limit as λ → 0. We fn(λ) = 1 for
any λ, and have

|ψn >= |φn > +Gn (λV −∆n) |ψn > (11.29)

which results in < ψn|ψn >6= 1. However, this should not be a problem because we
can always renormalize the states (wave function renormalization). With this choice
we have

< ψn|φn >= 1 (11.30)

Combining the above equation with the fact that the state (λV −∆n) |ψn > is per-
pendicular on |φn >, we deduce that

∆n = λ < φn|V |ψn > (11.31)

We expands the states |ψn > and the shifts in the energies in powers of λ,

|ψn > = |φn > +
∑
j=1

λj|ψ(j)
n > (11.32)

∆n =
∑
j=1

λj∆(j)
n

Thus, we have

E(j)
n = E(0)

n + λVnn +
∑
j=2

λj < φn|V |ψ(j−1)
n > (11.33)

and

|ψn > = |φn > −λ
∑
m 6=n

< φm|V |φn >
Emn

|m > −
∑
j=1

λj+1
∑
m 6=n

< φm|V |ψ(j)
n >

Emn
|m >(11.34)

+
∑
j=1

∑
k=1

∑
m6=n

λj+k∆(k)
n

< φm|ψ(j) >

Emn
|m >

= |φn > −λ
∑
m 6=n

< φm|V |φn >
Emn

|m > +

∑
j=2

λj
∑
m6=n

(j−1)∑
k=1

∆(k)
n

< φm|ψ(j−k) >

Emn
− < φm|V |ψ(j−1)

n >

Emn

 |m >
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By stetting j = 2 in the above equations, we find that the energy and the state of the
system at the second order in perturbation theory, are given by

En = E(0)
n + λVnn − λ2

∑
m 6=n

|Vmn|2

Emn
(11.35)

|ψn > = |φn > +
∑
m 6=0

|φm >

[
−λ

∑
m 6=n

Vmn
Emn

+ λ2

(∑
m′ 6=n

Vmm′Vm′n
EmnEm′n

− VmnVnn
E2
mn

)]

We can define a state |ψn >N= Z1/2
N |φn > such that <N ψ|ψn >N= 1. This implies

that

Z−1
N =

[
< φn|+λ < ψ(1)

n |+λ2 < ψ(2)
n |+...

] [
|φn > +λ|ψ(1)

n > +λ2|ψ(2)
n > +...

]
(11.36)

= 1 +
∑
j,k=1

λj+k < ψ(k)
n |ψ(j)

n >

where we used the fact that < φn|ψn >= 1. If we truncate the expansion to the second
order in in power of λ, we get

Z−1 =

(
1 + λ2

∑
m6=n

|Vmn|2

E2
mn

)
(11.37)

=

(
1− λ2

∑
m6=n

|Vmn|2

E2
mn

)−1

Thus, to the second order in perturbation theory, the normalized state reads

|ψn > =

(
1− λ2

2

∑
m6=n

|Vmn|2

E2
mn

)
|φn > + (11.38)

∑
m6=0

|φm >

[
−λ

∑
m 6=n

Vmn
Emn

+ λ2

(∑
m′ 6=n

Vmm′Vm′n
EmnEm′n

− VmnVnn
E2
mn

)]

11.1.2 Degenerate Spectrum

11.2 variational Methods

11.3 Time-Dependent Perturbation Theory
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12 Formal Theory of Scattering

12.1 Møller Operator

The solution to the time dependent Schrodinger equation

ih̄
∂

∂t
|ψ(t) > = Ĥ|ψ(t) > (12.1)

is given by

|ψ(t) > = e−i
Ĥ
h̄ |ψ(0) >≡ U(t)|ψ(0) > (12.2)

where |ψ(0) > is an arbitrary initial eigenstate of Ĥ = Ĥ0 + V , with the potential V
is supposed to represent the interaction of the projectile with the target, where as Ĥ0

describes the time development of the projectile state outside the interaction region.
In general, Ĥ0 may include part of the interaction, but through out this chapter we
will assume that Ĥ0 is simply the kinetic energy operator. We denote by |φa(t) > the
free wave packet state at time t, and which satisfy the equation

ih̄
∂

∂t
|φa(t) > = Ĥ0|φa(t) > (12.3)

The index a denotes an arbitrary initial distribution of momenta in the wave packet.
The solution of Eq.(12.3) can be written in terms of an arbitrary initial eigenstate of
Ĥ0, |φa(0) > as:

|φa(t) > = e−i
Ĥ0
h̄ |φa(0) >≡ U0(t)|φa(0) > (12.4)

A reasonable requirement that (12.2) is a scattering state will be to demand that
long before the scattering process |ψ(t) > behaves as a free wave packet |φa(t) >.
Formally, we require that

lim|||ψ(+)
a (t) > −|φa(t) > ||→ 0 (12.5)

t→ −∞ (12.6)

or, equivalently

lim ||U(t)|ψ(+)
a (0) > −U0(t)|φa(0) > ||→ 0 (12.7)

t→ −∞ (12.8)

Since U(t) is a unitary operator, we can write the asymptotic condition

|ψ(+)
a (0) > −Ω+|φa(0) > (12.9)

where

Ω+ = Ω+(Ĥ, Ĥ0) = lim U †(t)U0(t) ≡ limW (t) (12.10)
t→ −∞ (12.11)
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which is called the M∅ller Operator. In order to show the existence of this operator,
we have to prove that limW (t)|φa(0) > exists for any |ψa(0) > in the Hilbert space H.
For that, let t2 < t1 < 0 and consider

||(W (t2)−W (t1)) |φa > || = ||
∫ t2

t1

dt
dW

dt
|φa >|| (12.12)

≤
∫ t2

t1

dt||dtdW
dt
|φa > ||

=

∫ t2

t1

dt||U † 1
h̄

(
Ĥ − Ĥ0

)
φa > ||

=

∫ t2

t1

dt1h̄||V φa > ||

The existence of the integral for t2 → −∞ means that the norm ||̇ has to fall off at least
as 1/t1+ε, with ε > 0. We will show the convergence of (??existence) for a Gaussian
momentum distribution in the wave packet. The reason is the fact that any |φa >∈ H
can be arbitrarily well approximated by a finite superposition of Gaussians131. For
Gaussian wave packet, the wave function is bounded by

|ψG(r, t)|≤ constant

(∆2 + t2/µ2)3/2
(12.13)

where µ is the mass of the particle (or the reduced mass for a system of two particles),
and ∆ is the width of the wave packet. If we assume that the potential is square
integrable, it follows that

||V |φG(t) > ||2≤
(∫

d3x|V |2
)
× Sup(x)||φG(t) > ||2=

constant

(c2 + t2)3/2
(12.14)

Thus, we proved that for a square integrable potential, i.e V (x) ∈ L2(R3), the M∅ller
Operator exists. It can actually be shown [? ] that for a potential, V (r), with a range
R, the operator Ω+ exists

|V (r)|≤ constant

r1+ε
; ε > 0 (12.15)

for r ≥ R, i.e V (r) falls off for larger r faster than the Coulomb potential.

12.2 Properties of the Møller Operator

• Let us consider lim||W (t)|φ > ||= ||Ω+|φ > ||
t → −∞. Since W (t) is unitary, it follows that ||Ω+|φ > ||= |||φ > ||, or
equivalently

< φ|φ >=< Ω+φ|Ω+φ >=< φ|Ω†+Ω+|φ > (12.16)
131The proof of this statement is given in the appendix
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Since |φ > is an arbitrary state, then we deduce that

Ω†+Ω+ = 1 (12.17)

This shows that Ω+ is an isometry operator, i.e, it preserves the norm; however,
it is not a unitary operator, because the left inverse does not exist in general.
Only in a finite dimensional space an isometry is necessary unitary. In other
words, an isometry can be a unitary mapping from the Hilbert space H onto a
subspace of H.

• An important property of the M∅ller Operator is the inter-wining relation:

HΩ+(H,H0) = Ω+(H,H0)H0 (12.18)

To prove this relation consider

U(τ)Ω+(H,H0) = lim U(τ)U †(t)U0(t) (12.19)
t→ −∞

= lim U †(t− τ)U0(t− τ)U0(τ) (12.20)
t→ −∞

= lim U †(t′)U0(t′)U0(τ) (12.21)
t′ → −∞

= ΩH,H0U0(τ) (12.22)

where t′ = t − τ . If we differentiate this result with respect to τ and set τ = 0,
we obtain the inter-wining relation in Eq (??inter).
Another way to see the inter-wining relation is to re-write it using the fact that
Ω†+= 1 as follow

Ω†+HΩ+ = H0 (12.23)

This means that Ω+ can not be unitary unless H has no bound state, in which
case H and H0 would have the same spectrum.
As a consequence of the inter-wining relation we have U(t)Ω+|φa(0) >= Ω+U0(t)|φa(0) >,
or equivalently

|ψ(+)
a (t) >= Ω+|φa(t) > (12.24)

which shows that the wave operators relate the free and the interacting states at
all time, not just the initial time.
Another important result that follows from the inter-wining relation is that the
ranges of the wave operators are orthogonal to the bound states of Ĥ. To see
this let |Ea > be a bound state of Ĥ with energy |E0 > be an energy eigenstate
of Ĥ0, with energy E0 ≥ 0. It follows that

0 = < Eb|
(
Ĥ − Ĥ0Ω+

)
|E0 > (12.25)

= (E0 − Eb) < Eb|Ω+|E0 >
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Since (E0 − Eb) is positive we conclude that

< Eb|Ω+|E0 >= 0 (12.26)

This means that the scattering eigenstates of Ĥ are necessarily orthogonal to the
bound states. Thus, if we define H+ to be the subspace of H spanned by the
states of the form Ω+|φ >; |φ >∈ H0, and Hb to be the subspace spanned by the
bound states of the Hamiltonian Ĥ, then H = Hb ⊕H+

• The next property of the wave operator is the chain rule. Let three Hamiltonian
operators, H1, H2 and H3, such that non of them has a bound state. If we
assume that Ω+(H1,H2) and Ω+(H2,H3) exist, the Ω+(H1,H3) also exists and
is equal to

Ω+(H1,H3) = Ω+(H1,H2)Ω+(H2,H3) (12.27)

To prove this relation we note that

||{U+
1 U3 − Ω+(H1, H2)Ω+(H2, H3)}|φ > || (12.28)

= ||{U+
1 U2U

+
2 U3 − Ω+(H1, H2)Ω+(H2, H3)}|φ > ||

= ||{U+
1 U2

[
U+

2 U3 − Ω+(H2, H3) + Ω+(H2, H3)
]
− Ω+(H1, H2)Ω+(H2, H3)}|φ > ||

≤ ||{U+
2 U3 − Ω+(H2, H3)}|φ > ||+

||{U+
1 U2 − Ω+(H1, H2)Ω+(H2, H3)}|φ > ||

However, in the limit t → −∞, the right-hand side vanishes provided that
Ω+(H1, H2) and Ω+(H2, H3) exist. In this case we obtain the chain rule rela-
tion in Eq(?? chain).
In deriving Eq(??chain) we assumed that there are no bound states. When there
are bound states the chain rule holds if we generalize the definition of the Møller
Operator as

Ω+(Hi, Hj) = lim U †i UjP
(c)
j (12.29)

t→ −∞ (12.30)

where Uk ≡ exp iHkt
h̄

and P(c)
j is the projector operator on the subspace orthogonal

to the bound states Ĥj.

As a simple application of the chain rule, consider Ĥ3 = Ĥ1 ≡ Ĥ0 and Ĥ2 = Ĥ.
Then, it follows that

Ω+(H0,H)Ω+(H,H0) = I (12.31)

which implies that the subspace H+ is perpendicular to Hb. Now, if we consider
Ĥ3 = Ĥ1 ≡ Ĥ and Ĥ2 = Ĥ0, then the chain rule gives

Ω+(H,H0)Ω+(H0,H) = P(c) ≡ P+ (12.32)

Here P+ is the projector operator into the subspace R+ ≡ Ran (Ω+) ⊂ H. This
equation means that any vector that is orthogonal to the bound states is necessary
in the range of Ω+(H,H0), that is H⊥b ⊂ H+. Therefore, from Eq(??orth) and
Eq (??sub) we deduce that H+ = H⊥b
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12.3 Møller Operator and the Resolvant of Ĥ

Let us first prove the following statement:

lim f(t) = −lim
∫ −∞

0

dt′εeεt
′
f(t′) (12.33)

t→ −∞ (12.34)

The integral on the right hand side of Eq(??integral) can be written as

−
∫ −∞

0

dt′εeεt
′
f(t′) = −

∫ −∞
0

d

dt′

(
eεt
′
f(t′)

)
(12.35)

= f(0) +−
∫ −∞

0

dt′eεt
′ f(t′)

dt′

The limit and the integral in Eq(??integral) can be interchanged if both converge
separately. Thus, we have

lim(−ε)
∫ −∞

0

dt′eεt
′
f(t′) = f(−∞) (12.36)

ε→ 0 (12.37)

So this result states that the limit t→ −∞ can be replaced by a limit ε→ 0. Now we
consider the operator

Ω+ ≡ lim W (t) = −lim
∫ −∞

0

εeεtW (t)dt (12.38)

t→ −∞

= −lim
∫ −∞

0

εeεte
i
h̄
Hte

i
h̄
H0tdt

ε→ 0

= −lim
∫ −∞

0

εe
i
h̄
Hte

−i
h̄

(H0+iε)tdt

ε→ 0 (12.39)

Applying Ω+ on plane wave |p > yields

Ω+|p > = −lim ε

∫ −∞
0

dte
i
h̄

(H−Ep−iε)t|p > (12.40)

ε→ 0

= lim iε
h̄

(Ep + iε−H)
|p >

ε→ 0

≡ iεĜ(Ep + iε)|p >≡ Ĝ(+)(Ep)|p >

ε→ 0
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where G(z) = 1

(z−Ĥ)
is the resolvant of Ĥ. Similarly, we define G0(z) = 1

(z−Ĥ0)
to be

the resolvant of the free Hamiltonian.
Let us consider the relation

Ĝ0(z)
[
Ĝ−1

0 (z)− Ĝ−1(z)
]
Ĝ(z) = Ĝ0(z)V̂ Ĝ(z) (12.41)

from which it follows

Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂ Ĝ(z) (12.42)

called the Hilbert identity or the second resolvant equation. If now we consider

Ĝ(z)
[
Ĝ−1

0 (z)− Ĝ−1(z)
]
Ĝ0(z) = Ĝ(z)V̂ Ĝ0(z) (12.43)

then, we get

Ĝ(z) = Ĝ0(z) + Ĝ(z)V̂ Ĝ0(z) (12.44)

By comparing Eq (??) and Eq (12.44), we find that

Ĝ0(z)V̂ Ĝ(z) = Ĝ0(z)V̂ Ĝ0(z) (12.45)

Now, let us apply the Møller operator on a free wave packet |φ > and use Eq (12.40)
to write

|ψ(+) >≡ Ω+|φ > =

∫
d3pΩ+|p >< p|φ > (12.46)

= lim

∫
d3piεĜ(zp)|p >< p|φ >

ε→ 0

= lim

∫
d3piεĜ0(zp)V̂ Ĝ(zp)|p >< p|φ >

ε→ 0

By using the relation in Eq (12.45), and the fact that

lim iε Ĝ0(zp)|p >= lim
iε

Ep + iε− Ep

|p >= |p > (12.47)

ε→ 0 ε→ 0

we obtain

Ω+ = 1 + lim

∫
d3p′Ĝ0(Ep′ + iε)V̂ Ĝ|p′ >< p′| (12.48)

ε→ 0
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or in a short notation, I will write it as

Ω+ = 1+ lim Ĝ0(E + iε)V̂ Ĝ (12.49)
ε→ 0

If we define the state |p >(+):= Ω+|p >, we can write

|p >(+)= |p > +lim Ĝ0(Ep + iε)V̂ |p >(+) (12.50)
ε→ 0

which is just the Lippmann-Schwinger equation in the momentum representation.

12.4 The Transition Operator

Let us multiply Ω+|φ >≡ |ψ(+) > with V̂ and define |ψ(+) >:= T̂ |φ >. Then, it follows
that

T̂ |φ > =

[
V̂ + lim

∫
d3p V̂ Ĝ(zp)V̂ |p >< p|

]
φ > (12.51)

ε→ 0

or, as operator equation we can write

T̂ = V̂ + lim

∫
d3p V̂ Ĝ(zp)V̂ |p >< p| (12.52)

ε→ 0

≡ V̂ + lim V̂ Ĝ(zp)V̂

ε→ 0

where T̂ is called the T-matrix or the transition operator. When this expression is
multiplied on the left by G(+)

0 (z) and moreover relation Eq(12.42) substituted, then
we find 132

Ĝ0(z)T̂ (z) = Ĝ(z)V̂ (12.54)

By substituting (12.52) into (12.53), we obtain

T̂ (z) = V̂ + V̂ Ĝ0(z)T̂ (z) (12.55)

132similarly, when expression (12.51) is multiplied on the right by Ĝ0(z) and moreover relation
(12.44) substituted, then we find

T̂ (z)Ĝ0(z) = V̂ Ĝ(z) (12.53)
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which is the Lippmann-Schwinger Equation for the transition operator. In the
momentum representation, (12.55) reads

< p′|T̂ |p >=< p′|V̂ |p > +

∫
d3k < p′|V̂ |k > 1

Ep + iε− k2

2µ

< k|V̂ |p > (12.56)

Now, let us consider the matrix element of the free-resolvant operator Ĝ0(z) in
the momentum representation:

< p′|Ĝ0|p > =
δ(3)(p′ − p)

Ep + iε− p′2

2µ

(12.57)

= δ(3)(p′ − p)

[
P

(
1

Ep + iε− p′2

2µ

)
− iπδ(Ep −

p′2

2µ
)

]

where P stands for the principal value133. This we can wrte

Ĝ0(Ep + i0+) = PĜ0(Ep)− iπδ(Ep − Ĥ0) (12.58)

which separates the real and the imaginary parts of the non-interacting resolvant op-
erator. Using Eq(12.58) in the Lippmann-Schwinger expression in Eq(12.55) gives

T̂ (E + i0+) = V̂ + V̂
[
PĜ0(E)− iπδ(E − Ĥ0)

]
T̂ (E + i0+) (12.59)

This is equivalent to the following pair of equations

K̂(E) = V̂ + V̂ PĜ0(E)K̂(E) (12.60)
T̂ (E + i0+) = K̂(E)− iπK̂(E)δ(E − Ĥ0)T̂ (E + i0+)

The operator K̂(E) is called the K− operator and its elements are the K-matrix
elements. The equation for the K-matrix has the advantage that the integral is real.

12.5 The Case of System with Bound States

Let us assume that the Hamiltonian of the system, Ĥ, has a bound state |ψb > at
E = Eb. Then the Schrödinger equation reads(

Ĥ0 − Eb
)
|ψb >= −V |ψb > (12.61)

Since Eb is negative, there is no regular solution for the case V = 0 and we can write

|ψb >=
1

Eb − Ĥ0

V |ψb > (12.62)

133By definition 1
x+iε = P( 1

x )− iπδ(x).
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which is the homogenous Lippmann-Schwinger equation for |ψb >. Evaluating the
Green’s function for E = Eb < 0, we find that the wave function for the bound state,
ψb(x) ≡< x|ψb > has the correct exponential behavior, namely

ψb(x) ∝
∫
d3x′

e−
√

2µEb(|x|−|x′|)

|x|−|x′|
V (x′)ψb(x

′) (12.63)

So, if the Hamiltonian has bound states and continuous spectrum, then we can write
the spectral decomposition of Ĝ(±)(z) as 134

1

E ± iε− Ĥ
=
∑
b

|ψb >
1

E ± iε− Ĥ
< ψb|+

∫
d3p|ψp >

(±) 1

E ± iε− Ĥ

(±)

< ψp|(12.64)

where the asymptotic state |ψ >(−) is defined as

lim ||U(t)|ψ(−)
a (0) > −U0(t)|φa(0) > ||→ 0 (12.65)

t→ +∞ (12.66)

Note that the resolvant Ĝ(z) has poles at the binding energies Eb. Inserting the spectral
decomposition of Ĝ(z) into Eq(12.52), we obtain

< p′|T̂ |p > = < p′|V̂ |p > +
∑
b

< p′|V̂ |ψb >< ψb|V̂ |p >

E − Eb
(12.67)

+

∫
d3k

< p′|T̂ (+)|k >< k|T̂ (−)|p >

E ± iε− Ek

If E is positive, then there are no bound states and the discrete sum over b vanishes.
On the other hand, if E < 0 is allowed, then < p′|T̂ |p > has poles at E = Eb, and the
residue is separable135. The residue can be written as:

< p′|V̂ |ψb > = < p′|(Ĥ − Ĥ0)|ψb >= (E − Ep) < p′|ψb > (12.68)
= (E − Ep)ψb(p

′)

where ψb(p′) is the wave function corresponding to the energy E = Eb. Thus, if
E < 0 is close to Eb, then the T -matrix is dominated by pole term and the residue
is characterized by the corresponding bound state wave function. So the matrix ele-
ment < p′|T̂ |p > has poles for the bound states and a cut for the continuous spectrum.

12.6 Unitarity Relations

Let us consider the difference between T̂ (+) and T̂ (−) as obtained from Eq (??Tplus)
under the assumption that V̂ is hermetian:

< p′|
[
T̂ (+)(E)− T̂ (−)(E)

]
|p >=

∫
d3k < p′|T̂ (+)(E)|k >

[
1

E − Ek + iε
− c.c

]
(12.69)

134The superscript ± refers to ±iε in Ĝ(E ± iε).
135A function f(q1, q2) is said separable if f(q1, q2) = f1(q1)f2(q2).
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Using the Cauchy principal value, we obtain

< p′|
[
T̂ (+)(E)− T̂ (−)(E)

]
|p >= −2πi

∫
d3k < p′|T̂ (+)(Ek)|k > δ(E − Ek) < k|T̂ (+)(Ek)|p >(12.70)

or, equivalently,

< p′|
[
T̂ (+)(E)− T̂ (−)(E)

]
|p >= −2iπµ

∫
dkk

∫
dΩk < p′|T̂ (+)(Ek)|k > δ(p− k) < k|T̂ (+)(Ek)|p >(12.71)

where in the last relation we used δ(ax) = δ(x)/a, δ(f(x)) =
∑

i δ(x− ai)/f ′(ai),
where ai’s are the roots of the equation f(x) = 0, and E = p2/2µ. Eq (12.71) is called
the off-shell unitary relation since in general |p|6= |p′|6= |k|. For elastic scattering,
i.e, |p|= |p′|, Eq (??off-shell-unit) simplifies to

< p′|
[
T̂ (+)(E)− T̂ (−)(E)

]
|p >= −2iπµp

∫
dΩk < p′|T̂ (+)(Ep)|k >< k|T̂ (+)(Ep)|p >(12.72)

which is called the on-shell unitary relation. If we restrict our selves to the forward
direction, i.e, p′ = p, or equivalently θ = 0, with θ being the angle between p′ and p
we obtain

Im< p|T̂ (+)(E)|p > = −πµp
∫
dΩk|< p|T̂ (+)(E)|k > |2 (12.73)

This is referred as the optical theorem, which is a non-linear relation between the
imaginary part of T̂ in the forward direction and its absolute value integrated over all
angles.

12.7 The Ŝ Operator

In order to completely characterize the scattering process, we need to have the behavior
of |ψa >(+) for large positive t, i.e,

|ψa(t) >(+)= e−iĤt|ψa >(+)= e−iĤtΩ+|φa > (12.74)

Long after the scattering, the state |ψa(t) >(+) should behave as a free state. Thus,
we shall consider the amplitude < φb(t)ψa(t) >

(+) for large time t. Here φb(t) >(+) is
a free state. We define

Sab := lim < φb(t)|ψa(t) >(+) (12.75)
t→ −∞

= lim < e−iĤ0tφb|e−iĤtψa >(+)

t→ −∞
= lim < eiĤte−iĤ0tφb|ψa >(+)

t→ −∞
≡ lim < Ω−φb|ψa >(+)≡(−)< ψb|ψa >(+)
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where we defined

Ω− := limeiĤte−iĤ0t (12.76)
t→ −∞

and

|ψb >(−):= Ω−|φb > (12.77)

which characterizes the outgoing state. The existence of the operator Ω− can be
shown in a similar way as we proved it for Ω+. Thus the probability transition from
an incoming state is given by

Pa→b = |Sab|2= |(−)< ψb|ψa >(+) |2= |(−)< φb|Ŝ|φa >(+) |2 (12.78)

where the Ŝ operator is defined by

Ŝ := Ω†−Ω+ (12.79)

The existence of Ω†− and Ω+ means that a scattering state |ψ >= Ω+|φin >= Ω−|φout >,
from which it follows that

|φout >= Ŝ|φin > (12.80)

The scattering operator Ŝ contains all informations of experimental interest about
scattering process. In fact, we will later find that, through the "magic" of analytic
continuation, that the S-matrix contains all the information about the bound states
as well. The scattering operator Ŝ has the following properties:

• Ŝ is unitary :
Let us consider

S+S = Ω†+Ω−Ω†−Ω+ = Ω†+P−Ω+ (12.81)
S+S = Ω†−Ω+Ω†+Ω− = Ω†−P+Ω−

where P± are the projectors into the subspaces R± ∈ H. If Ω± have the same
range, i.e, P+ = P− = P(c), then

P−Ω(+) = Ω(+) (12.82)
P+Ω(−) = Ω(−)

which leads to

Ŝ†Ŝ = ŜŜ† = I (12.83)

Now consider the probability of scattering into all possible final states∫
d3p|< p|Ŝ|φa > |2 =

∫
d3p < p|Ŝ|φa >∗< p|Ŝ|φa > (12.84)

=

∫
d3p < φa|Ŝ†|p >< p|Ŝ|φa >

= < φa|Ŝ†Ŝ|φa >= |||φa > ||
Thus, the unitarity of Ŝ is just the conservation of probability, i.e, what goes in,
must go out.
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• Ŝ† commutes with Ĥ0:
Let us consider

ŜĤ0 = Ω†(−)Ω(+)Ĥ0 = Ω†(−)ĤΩ(+) (12.85)

= Ĥ0Ω†(−)Ω(+) = ĤŜ

which shows that [Ŝ, Ĥ0] = 0. Consequently, we have

Ĥ0Ŝ|p >= EpŜ|p > (12.86)

which means that |p > as well Ŝ|p > are eigenstates of Ĥ0 and with the same
energy. As consequence of this property, the expectation value of the free Hamil-
tonian between the post-scattering (final ) and the pre-scattering (initial ) states
are equal.

Ĥ0 has a complete spectrum of non-renormalizable eigenstates |p >, and thus Ŝ can
be represented in these states., and we have

0 =< p′|
[
Ĥ0, Ŝ

]
|p > = < p′|Ĥ0Ŝ|p > − < p′|ŜĤ0|p > (12.87)

= (Ep′ − Ep) < p′|Ŝ|p >

from which it follows that

< p′|Ŝ|p >6= 0; iff Ep′ = Ep (12.88)

which means that Sp′p is defined off-shell.

12.8 Relating the S- Matrix and the T-Matrix

The S-matrix element < ψ−b |ψ+
a > can be written as

Sba = < φb|ψ(+)
a > + < Ĝ(Eb − iε)V̂ φb|ψ(+)

a > (12.89)
= < φb|ψ(+)

a > + < φb|V̂ Ĝ(Eb − iε)|ψ(+)
a >

= < φb|ψ(+)
a > +

1

Eb − Ea + iε
< φb|V̂ |ψ(+)

a >

where we used the fact that

Ĝ†(Eb − iε)|ψ(+)
a > =

(
1

Eb − iε− Ĥ

)†
|ψ(+)
a > (12.90)

=
1

Eb − Ea − iε
|ψ(+)
a >

By using Eq.12.50, we can write

< φb|ψ(+)
a > = δab+ < φb|Ĝ0(Eb − iε)V̂ |ψ(+)

a > (12.91)

= δab +
1

Eb − Ea − iε
< φb|V̂ |ψ(+)

a >
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Thus,

Sba = δab +

[
1

Eb − Ea + iε
− 1

Eb − Ea − iε

]
< φb|V̂ |ψ(+)

a > (12.92)

and which, after using the Cauchy principal value, becomes

Sba = δab − 2πτ
(+)
ba (12.93)

where

τ
(+)
ba = δ (Ea − Eb) < φb|T̂ |ψ(+)

a > (12.94)

= δ (Ea − Eb)T (+)
ba

The operator τ (+) describes the scattering process, and hence will appear in the differ-
ential cross-section.

The transition matrix T (+) can be expressed in terms of the K-operator (see Eq.
12.60) as

T (+)(E) =
1

1 + iπδ(E − Ĥ0)K̂(E)
(12.95)

Inserting the above expression of T̂ in Eq. 12.93, we find 136

Ŝ =
1− iπK̂(E)δ(E −H0)

1 + iπK̂(E)δ(E −H0)
(12.96)

which shows that the scattering operator can be obtained directly from the K-matrix.
We also note that, since K̂ is hermitian, the scattering operator is unitary.

12.9 A heuristic Derivation of the Cross Section

Suppose that the system is in a box with periodic boundary conditions. For a cubic
box of size L, the momentum operator has eigenstates137

< x|p >=
1√
V
eip.x; p =

2π

L
(nx, ny, nz) (12.97)

If the system is in a box, the S-matrix does not exist, because we can not define
asymptotic state. Instead, we define

ST := eiĤ0
T
2 e−iĤ

T
2 e−iĤ

T
2 eiĤ0

T
2 (12.98)

and take T →∞ limit as we the let the volume V goes to infinity.

136This expression of Ŝ shows that the scattering operator is a Cayley transform of K̂(E)δ(E−H0).
137with the conventional discrete normalization:....
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Consider the scattering in the non-forward direction, i.e, p 6= p:

< p′|
(
ŜT − 1

)
|p >= −2πiδT

(
E ′p − Ep

)
T (Box) (p′,p)× (2π)3

V
(12.99)

Here (2π)3

V
is a normalization factor, inserted so that

lim T (Box) (p′,p)→ T (Box) (p′,p) ≡< p′|T̂ (+)(E)|p > (12.100)
V, T →∞

and δT is an approximation of the δ-function with a width of order 1/T , i.e,

δT
(
E ′p − Ep

)
=

1

2π

∫ T
2

−T
2

dtei(Ep′−Ep) =
1

π

sin (Ep′ − Ep) T
2(

E ′p − Ep

) (12.101)

The transition probability is given by

Pp′,p =
(2π)8

V 2
. [δT (Ep′ − Ep)]2 .|T (Box) (p′,p) |2 (12.102)

As T →∞, [δT (Ep′ − Ep)]2 → T
2π
δ (Ep′ − Ep). and hence

Pp′,p =
(2π)7

V 2

T

p̄
µ δ (p′ − p) |T (p′,p) |2 (12.103)

Recall that the density of states in momentum space is dn = V
(2π)3d3p′ = V

(2π)3p′
2dp′dΩ,

and thus, the probability of transition to a state in solid angle dΩ is

P(p̄) =

∫
Pp′,pdn =

(2π)7

V 2

T

p̄
µ

∫
dp′p′

2
δ (p′ − p) V

(2π)3dΩ|T (p′,p) |2 (12.104)

= (2π)4 .
T

V
.p̄. µ|T (p′,p) |2dΩ

where p′ = p. The transition rate is given by

Γ =
P(p̄)

T
= (2π)4 .

p̄

V
. µ|T (p′,p) |2dΩ (12.105)

To find the cross section, we must divide the transition rate by the incident flux
associated with the state |p >' |p̄ >, given by

jinc =
p̄/µ

V
(12.106)

Thus, the differential cross-section reads

dσ

dΩ
= |(2π)2µ T (p′,p) |2≡ |f (p′,p) |2 (12.107)
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13 Interpretation of Quantum Mechanics *

13.1 Mixed States and the Density Matrix

13.2 Measurement and Interpretation

13.3 Schrodinger’s Cat

13.4 Einstein-Podolsky-Rosen (EPR) Argument
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14 Exercices

• Exercise 1

The wave function of the bound state of a particle of mass m in the one-
dimensional attractive delta-function potential V (x) = −α δ(x) can be written
as φ(x) = N e−a|x|, where N is the normalization constant.

(a) Find the constant a and the energy eigenvalue E in terms of α and m.

(b) Find the variances in position and momentum in terms of α and m. Compare
the product ∆x ∆p to the reduced Planck constant.

• Exercise 2

• Exercise 3

• Exercise 4

• Exercise 5

Consider a particle of mass moving in one dimension starting from far negative
x-axis toward the positive direction in a triple-delta potential:

U(x) = α [δ(x− a) + δ(x− b) + δ(x− c)] (14.1)

where α, a, b, and c are real constants. Assume that the particle has energy
E >> mα/2h̄2.

What are the relative positions of the potential spikes (a, b, c) that maximize
the reflection coefficients.

– 147 –



15 Answers

• Exercise 1

(a)

(b)

• Exercise 2

• Exercise 3

• Exercise 4

• Exercise 5

The relative positions of the potential spikes (a, b, c) that maximize the reflection
coefficient are:

(b− a) =
2πn

k
; (c− a) =

2πm

k

where n, and m are integers.
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16 Exams with Solutions
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United Arab Emirates University

Midterm Exam

Quantum Physics (PHYS 525)

Semester: Fall 2016

Date: 10/25/2016
Time: 3:00 - 4:00 pm

Student Name/ID:

Abstract:

1. This exam consists of of Two Problems.

2. There is one BONUS question in Problem 2.

3. You need to solve both problems.

4. Please SHOW YOUR WORK.

I am not telling you it is going to be easy−
I am telling you it is going to be worth it !.

Art Williams
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Problem One [ 10 points] (Measurement of Spin-1/2 Particle)

Consider a spin 1/2 particle (e.g. electron), with a magnetic moment.
At time t = 0, the state of the particle os |ψ(t = 0) >= |+ >.

1. If the observable Sx is measured at time t = 0, what are the
possible results and the probabilities of those results ?

2. If instead of performing the above measurement, the system is allowed
to evolve in a uniform magnetic field ~B = B0 ŷ. Calculate the state of
the system at time t = T using the Sz basis138.

3. Suppose at time t = T , the observable Sx is measured, what is the
probability that a value +h̄/2 will be found ?

138i.e. express your answer in terms of the states |+ > and |− >.
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Answer Problem 1

1. The eigenvalues of the operator Ŝx are +h̄/2 and −h̄/2 with the corre-
sponding eigenstates |+ >x= (|+ > +|− >) /

√
2 and |− >x= (|+ > −|− >) /

√
2,

respectively139. So the outcome of the measurement of the observable Sx
will be either +h̄/2 or −h̄/2. The probability for each measurement is

P (+h̄/2) = |x< +|+ > |2= 1

2

P (−h̄/2) = |x< −|+ > |2= 1

2

2. The Hamiltonian of this system is

H = ~µ. ~B =
e

m
~S. ~B ≡ ω0Ŝy

where ω0 = eB0/m and which has the unit of frequency. So the eigenstates
of the above Hamiltonian are |+ >y and |− >y which can be expressed in
terms of the states |± > as140

|+ >y =
1√
2

(|+ > +i|− >)

|− >y =
1√
2

(|+ > −i|− >)

From the the expressions above, we infer that the state |+ > reads in the
basis |± >y (which are the eigenstates of the Hamiltonian) as

|+ >=
1√
2

(|+ >y +|− >y)

139This can be shown easily from the definition Sx = h̄
2 σ̂x, where σ̂x =

[
0 1
1 0

]
.

140You can show this from the definition Sy = h̄
2 σ̂y, where σ̂y =

[
0 −i
i 0

]
.
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Answer Problem 1 (Continued):

Thus, at the instant T, the state |ψ(t = 0) > evolves into the state

|ψ(T ) > =
1√
2
e−i

ω0
2 T (|+ >y +

1√
2
e+i

ω0
2 T |− >y

= cos
(ω0

2
T
)

(|+ >+ sin
(ω0

2
T
)
|− >

3. The idea is similar to question 1, that is the probability is given by the
square of the component of |ψ(T ) > along the state |+ >x, i.e

P (+h̄/2)(T ) = |x< +|ψ(T ) > |2

= | 1√
2

(< +|+ < −|)
(

cos
(ω0

2
T
)

(|+ >+ sin
(ω0

2
T
)
|− >

)
|2

=
1

2

(
1 + 2 cos

(ω0

2
T
)

sin
(ω0

2
T
))

=
1

2
(1 + sin (ω0T ))
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Problem Two [ 20 points] (Harmonic Oscillators from A to Z)

We have seen in class that the Hamiltonian of a particle in a one-
dimensional simple Harmonic oscillator potential can be expressed in term
of the creation and annihilation operators â† and â, respectively, as:

Ĥ0 = h̄ω(a†a+
1

2
)

with {|n >, n = 0, 1, ..} are the nth eigenstates of the above Hamiltonian.

• Part A

A.1. Show that the energy levels of a simple harmonic oscillator
are given by

En = h̄ω(n+
1

2
)

A.2. Calculate the expectation value of the operators x̂ in a state
|n >.

A.3. Calculate the expectation value of x̂2 and p̂2 in a state |n >.

A.4. Show that the expectation value of Ĥ0 in an arbitrary nor-
malized state |ψ > is always greater or equal than the energy of the
ground state.

A.5. A coherent state is defined as

|z >= e−
|z|2

2

∞∑
n=0

zn√
n!
|n >

where z is a complex number. Show that |z > is an eigenstate of the
annihilation operator and find its corresponding eigenvalue.
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• Part B

Now we consider two independent simple harmonic oscillators with
the same frequency ω. This is equivalent of a one simple harmonic
oscillator in two dimensions141, described by the Hamiltonian

Ĥ =
p̂2
x

2
+
mω2

2
x2 +

p̂2
y

2
+
mω2

2
y2

B.1. What are the energies of the first three lowest-lying
states?

B.2. Make a table where you show the quantum numbers(nx, ny)
and the degeneracy for the first five lowest-lying states? Can you de-
duce the degeneracy of state |nx, ny >?

Bonus Question : [2 points]

For a three dimensional harmonic oscillator, derive the de-

generacy of state of energy |nx, ny, nz > ?

141It is also known as the isotropic 2-dimensional simple harmonic oscillator.
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Answer Problem 2

• Part A

A.1. By just applying the definition of how the annihilation and
the creation operators act on a state |n >, we get

Ĥ|n > =
h̄

2

(
â†
√
n|n− 1 > +|n >

)
=
h̄

2

(√
n
√
n|n > +|n >

)
=
h̄

2

(√
n+ 1

)
|n >

Thus, the energy levels of the a simple harmonic are given by

En = h̄ω(n+
1

2
)

A.2. the expectation of the position operator is

< x̂ > = < n|x̂|n >=

√
h̄

2mω

(
< n|â†|n > + < n|â|n >

)
=

√
h̄

2mω

(√
n+ 1 < n||n+ 1 > +

√
n < n||n− 1 >

)
= 0

From the orthogonality of |n − 1 >, |n >, and |n + 1 >, we deduce
that142

< x >= 0

A.3. To evaluate < x̂2 > and < p̂2 >, we first express of the operator
x̂2 and p̂2 in terms of the annihilation and creation operators:

x̂2 =
h̄

2mω

(
â2 + â†

2

+ ââ† + â†â
)

=
h̄

2mω

(
â2 + â†

2

+ 2â†â+ 1
)

p̂2 = −mh̄ω
2

(
â2 + â†

2 − ââ† − â†â
)

= −mh̄ω
2

(
â2 + â†

2 − 2â†â− 1
)

142This result can be deduced by symmetry argument since the Hamiltonian of the simple harmonics
is invariant under the transformation x→ −x.
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Answer Problem 2 (Continued):

Since the operator the expectation values of the operators a2 and â†2

are zero, we have

< x̂2 > =
h̄

2mω
< n|2â†â+ 1|n >

< p̂2 > =
mh̄ω

2
< n|2â†â+ 1|n >

Therefore we obtain

< x̂2 >=
h̄

2mω
(2n+ 1)

< p̂2 >=
mh̄ω

2
(2n+ 1)

A.4. Since |n >, n = 0, 1, ... form a basis, any state |ψ > can be
written as a linear combination of these states, i.e.

|ψ >=
∞∑
n=0

cn|n >

For normalized state we have
∑

n |cn|2 = 1. then, the expectation
value of Ĥ0 in a normalized state |ψ > reads

< ψ|Ĥ0|ψ > =
∑
n,m

c∗mcn < m|Ĥ0|n > = h̄ω
∑
n,m

c∗mcn

(
n+

1

2

)
δnm

=
h̄ω

2

∑
n

|cn|2 +
∑
n

|cn|2n

The first sum is equal to unity, and so the first term is just the energy
of the ground state. The second term is greater or equal to zero. This
implies that

< ψ|Ĥ0|ψ >≥
h̄

2
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Answer Problem 2 (Continued):

A.5. The action of the annihilation operator on the state |z > is
given by

â|z > = e−
|z|2

2

∞∑
n=0

zn√
n!
â |n > = e−

|z|2
2

∞∑
n=0

zn√
n!

√
n |n− 1 >

= e−
|z|2

2

∞∑
n=1

zn√
(n− 1)!

|n− 1 > = e−
|z|2

2

∞∑
n=0

zn+1

√
n!
|n >

which implies that

â|z >= z|z > −→ |z > is an eigenstate of â

• Part B

B.1. As given in the problem above, the Hamiltonian of the
system can be written as

H = Hx +Hy

where Ĥx and Ĥx are the Hamiltonian of the simple harmonic oscil-
lators. Since the two set of observables x̂, p̂x and ŷ, p̂y commute, then
eigenstates of H are the simultaneous eigenstates of Hx and Hy, i.e.
|nx, ny >, where

Ĥ|nx, ny >= Enx + Eny = h̄ω

(
nx +

1

2

)
+ h̄ω

(
ny +

1

2

)
Thus, the energy eigenstates of the Hamiltonian of a simple har-
monic oscillator in two dimensions (or equivalently two independent
1-dimensional simple harmonic oscillators) are given by
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Answer Problem 2 (Continued):

En = h̄ω (n+ 1) , n = nx + ny

B.2. In the table below dn denotes the degeneracy of the nth

energy level.

Level (n) States (nx, ny) Energy of the Level (En) Degeneracy (dn)
0 (0,0) h̄ω 1 = 0 + 1
1 (1,0), (0,1) 2h̄ω 2 = 1 + 1
2 (2,0), (1,1), (0,2) 3h̄ω 3 = 2 + 1
3 (3,0), (2,1), (1, 2), (0,3) 4h̄ω 4 = 3 + 1
4 (4,0), (3,1), (2, 2), (1, 3), (0,4) 5h̄ω 5 = 4 + 1

Table 1: Nonlinear Model Results

To deduce the degeneracy of the nth level, we notice that the de-
generacy of each level in the table above is equal to the level number
plus one. Thus,

dn = n + 1

We can also "derive" the degeneracy of the nth level without resort-
ing into the table above. So for that we fix En, which equivalently
amounts to fixing n, and count how many states have the same n.
In other words, how many ways we can partition n into two non-
negative integers?. The set of states are (nx, ny);n = nx + ny :=
(0, n), (1, n), .....(n − 1, 1), (n, 0). Thus the degeneracy of the nth

level is

dn = 1 + 1 + 1 + ......+ 1︸ ︷︷ ︸
n +1 terms.

= n+ 1
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Answer Problem 2 (Continued):

Bonus Question :

In three dimensions, the energy state of an isotropic harmonic os-
cillator is labeled by three integers nx, ny, and nz, with energy

Enx,ny,nz = h̄ω

(
nx +

1

2

)
+ h̄ω

(
ny +

1

2

)
+ h̄ω

(
ny +

1

2

)
Thus, the energy of a level n is given by

En = h̄ω

(
n+

3

2

)
, n = nx + ny + nz

The number of states with with the same energy level n, can be ob-
tained as follows. For each fixed nx, the number of states correspond
to the degeneracy of a 2-dimensional isotropic harmonic oscillator,
that we derived in the previous question:

d(nx=fixed)
n = (ny + 1) = (n− nx + 1)

Thus, to find degeneracy of the 3-dimensional isotropic harmonic os-
cillator at energy level n, we sum over all possible allowed values of
nx, i.e.

dn =
n∑

nx=0

(n− nx + 1) = (n+ 1)
n∑

nx=0

1−
n∑

nx=0

nx

= (n+ 1)2 − n(n+ 1)

2

from which we obtain

dn =
(n + 1)(n + 2)

2
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Problem One [ 10 points] (System of Two Spin 1/2 Particles)

1. The hamiltonian describing the interaction of two unperturbed
spin 1/2 particles143 is given by144

Ĥ0 =
A

h̄2 Ŝ(1).Ŝ(2)

where A is a constant with dimension of energy. Let Ĵ = Ŝ(1) + Ŝ(2) be
the total angular momentum operator of the system.

1.1. Argue that with this perturbation term it is convenient to
work in the basis {|j,M >} of the total angular momentum instead of the
basis {|j1, j2;m1,m2 >}.

1.2. Show that the above Hamiltonian can be written as

Ĥ0 = A

(
Ĵ2

2h̄2 −
3

4

)
and that it has the eigenvalues −3A/4 and A/4 with degeneracies 1 and
3, respectively.

2. Now we add to Ĥ0 the perturbation term

δĤ =
∆

h̄

(
Ŝ(1) − Ŝ(2)

)
.B, ∆ < 1

with B is a magnetic field applied to the system, which we take to be along
the z-axis.

Determine the energies of this system and show that the degeneracy of
the unperturbed state of energy A/4 gets reduced145.

143For example, this could be a system of electron-positron (like the bound state of Positronium),
or an electron-proton (like in the hydrogen atom).

144Here I denote a vector quantity by boldface character.
145For the degeneracy It will be enough you draw energy levels diagram showing the amount by

which the relevant state is lifted.
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Answer For Problem One

1.
1.1. We note that Ĥ0 commutes with Ĵ2, Jz, Ŝ

2
(1) and Ŝ2

(2), where
as it does not commute with any of the components of Ŝ(1) and Ŝ(2). This
means that the eigenstates of Ĥ0 can be labelled with the quantum num-
bers J,M associated with the total angular momentum operator Ĵ and its
component along the z-axis, respectively. Thus, it is convenient to work
in the basis {|j,M >}.

1.2. Using the simple relation Ĵ2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1.Ŝ2, we can
write

Ĥ0 =
A

2h̄2

(
Ĵ2 − Ŝ2

1 − Ŝ2
2

)
Since spin 1/2 particles Ŝ2

1 = Ŝ2
1 = 3/4 Id, the above hamiltonian reads

Ĥ0 = A

(
Ĵ2

2h̄2 −
3

4

)

Thus, the eigenstates and the corresponding eigenvalues of this system are
given by

Ĥ0|j,M >=
A

2

[
j(j + 1)− 3

2

]
where the possible values of j are 0 and 1. Hence, we have146


Singlet ≡ 1S0 : Ĥ0|0, 0 >= −3A

4 |0, 0 > ⇒ E|0,0> = −3A
4

Triplet ≡ 3S1 : Ĥ0|1,M >= A
4 |1,M >,⇒ E|1,M> = A

4

We notice that the state j = 1 has three fold degeneracy.
146Recall the spectroscopic notation 2j+1Xj .
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Answer For Problem One (Continued):

2. It is easy to see that δĤ commutes with Ŝ2
(1), Ŝ

2
(2), Ŝ

(z)
(1) and Ŝ(z)

(2) ,
but does not commute with Ĵ2. We need to express the state |0, 0 > in
terms of the states |1/2, 1/2;m1,m2 >≡ |m1,m2 >, with mi = ±1/2
which I will represent them by the symbols ↑ and ↓, respectively. We have
shown in class147 that

|1, 1 > = |↑; ↑>

|1, 0 > =
1√
2

(|↑; ↓> +|↓; ↑>)

|1,−1 > = |↓; ↓>

|0, 0 > =
1√
2

(|↑; ↓> −|↓; ↑>)

Below, we will calculate the correction to the energies for the singlet and
the triplets to the lowest order in perturbation theory.

• Singlet State (1S0):

δE
(1)
|0,0> =

B∆

h̄
< 0, 0|Ŝ(z)

(1) − Ŝ
(z)
(2) |0, 0 >

We first evaluate Ŝ(z)
(1) − Ŝ

(z)
(2) |0, 0 > using the expression of |0, 0 > in

terms of the spin 1/2 states given above. We have[
Ŝ

(z)
(1) − Ŝ

(z)
(2)

]
|0, 0 > =

1√
2
Ŝ

(z)
(1) (|↑; ↓> −|↓; ↑>)− 1√

2
Ŝ

(z)
(2) (|↑; ↓> −|↓; ↑>)

=
h̄√
2

(|↑; ↓> +|↓; ↑>) = h̄|1, 0 > (16.-2)

Since the states |0, 0 > and 1, 0 > are orthogonal148, it follows that

δE
(1)
|0,0> = 0

147It was also part of a homework. Otherwise, you can also re-derive it easily:).
148Since they the eigenstates |j,M > form an orthonormal basis
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Answer For Problem One (Continued):

• Triplet State (3S1):
We already showed that this state is degenerate, and hence we need
to apply the procedure that we learnt in class for degenerate per-
turbation theory. For that we need to evaluate the matrix elements
< 1,M ′|δĤ|1,M >, with M and M ′ takes the values in the set
{1, 0,−1}. Using the expressions of |1,M > in terms of the spin-1/2
states, have[

Ŝ
(z)
(1) − Ŝ

(z)
(2)

]
|1, 1 > =

[
Ŝ

(z)
(1) − Ŝ

(z)
(2)

]
|↑, ↑>= 0, (16.-1)[

Ŝ
(z)
(1) − Ŝ

(z)
(2)

]
|1,−1 > =

[
Ŝ

(z)
(1) − Ŝ

(z)
(2)

]
|↓, ↓>= 0, (16.0)

and[
Ŝ

(z)
(1) − Ŝ

(z)
(2)

]
|1, 0 > =

1√
2
Ŝ

(z)
(1) (|↑; ↓> +|↓; ↑>)− 1√

2
Ŝ

(z)
(2) (|↑; ↓> +|↓; ↑>)

=
h̄√
2

(|↑; ↓> −|↓; ↑>) = h̄|0, 0 > (16.1)

Since < 1,M ′|1,M >= δMM ′, it follows that the first-order energy
corrections for the states |1,M > vanish.

Hence, to see the effect of the perturbation on these states we need
to go to higher order, i.e. the second order of perturbation, given by

δE
(2)
|0,0> = < 0, 0|δĤ|0, 0 >(1)

δE
(2)
|1,M> = < 1,M |δĤ|1,M >(1)

where the |0, 0 >(1) and |1,M >(1) are the first order corrected states
to |0, 0 > and |1,M >, respectively.

– 165 –



Answer For Problem One (Continued)

With the help of the formula given in the Appendix we we have

|0, 0 >(1) =
∑

M=0,±

< 1,M |δĤ|0, 0 >
E|0,0> − E|1,M>

|1,M >

|1, 1 >(1) =
< 0, 0|δĤ|1, 1 >
E|1,1> − E|0,0>

|0, 0 >

|1,−1 >(1) =
< 0, 0|δĤ|1,−1 >

E|1,−1> − E|0,0>
|0, 0 >

|1, 0 >(1) =
< 0, 0|δĤ|1, 0 >
E|1,0> − E|0,0>

|0, 0 >

With the use of equations (16.-1), (16.0) and (16.1), we obtain

|0, 0 >(1) = −B∆

A
|1, 0 >

|1, 1 >(1) = 0, |1,−1 >(1)= 0, |1, 0 >(1)=
B∆

A
|0, 0 >

We note that there is no second order energy shift for the states
|1, 1 > and |1,−1 >, whereas the states |0, 0 > and |1, 0 > receive
correction given by

δE
(2)
|0,0> = < 0, 0|δĤ|0, 0 >(1)= −B∆

A
< 0, 0|δĤ|1, 0 >

δE
(2)
|1,0> = < 1, 0|δĤ|1, 0 >(1)=

B∆

A
< 1, 0|δĤ|0, 0 >

Using Eq (16.-2), we get

δE
(2)
|0,0> = −(B∆)2

A

δE
(2)
|1,0> = +

(B∆)2

A
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Problem Two [ 10 points] (Perturbed Harmonic Oscillator)

1. Estimate the energy of the ground state of a 1-dimensional simple
harmonic oscillator using the trial function

ψα(x) =

{
C cosαx, −π/2 < αx < π/2

0, elsewhere

where α is the variational parameter, and C is a normalization constant.

2. We add to the simple oscillator a small perturbation so that

Ĥ = Ĥ0 + δV̂

where δV̂ is Hermitian. Suppose that δV̂ = λx̂4, with λ << 1. Using
perturbation theory find the correction to the energy of the nth-level of
the simple harmonic oscillator up to the first order in the parameter λ.

3. Suppose that δV̂ = δ x̂, with δ a real number smaller than unity.
3.1. Compute the energy of the non-zero correction to the energy

of the ground state of the simple harmonic oscillator to the lowest order
in perturbation.

3.2. Show that the energy levels of this system can be solved exactly,
and then Compare your result you obtained in B.2.1.

3.3. Can you think of a physical phenomenon for which the system
is subject to a linear perturbation ? What does the parameter δ represent?

4. Now let us act on the unperturbed simple harmonic by a time de-
pendent force149

F (t) =
F0

ω

τ

τ 2 + t2

and we assume that at t → −∞ the oscillator was in ground state. Us-
ing the time-dependent perturbation theory to first order, calculate the
probability that the oscillator is found in the first excited state at t→ +∞.

149Note that this a force, not a potential.
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Answer For Problem Two

1. We need first to compute the average energy

H(α) :=
< ψα(x)|Ĥ|ψα(x) >

< ψα|ψα >
and then find its minimum value. For our system, we have

H(α) =
1

< ψα|ψα >
×
[
− h̄2

2m
< ψα|

d2

dx2
|ψα > +

1

2
mω2 < ψα|x2|ψα >

]

=
1

< ψα|ψα >
×

[
− h̄2

2m

∫ π
2α

− π
2α

ψ∗α(x)
d2

dx2
ψα(x) +

1

2
mω2

∫ π
2α

− π
2α

ψ∗α(x) x2ψα(x)

]

For our trial wave function ψα(x) in the range |αx|< π/2, we have

H(α) =
1∫ π

2α

− π
2α

cos2 (αx) dx
×

(
h̄2α2

2m

∫ π
2α

− π
2α

cos2 (αx) dx+
1

2
mω2

∫ π
2α

− π
2α

x2 cos2 (αx) dx

)

=
h̄2α2

2m
+
αmω2

2π

∫ π
2α

− π
2α

x2 dx− 1

α3

(
∂2

∂β2

∫ π
2

−π2
cos 2βθ dθ

)
β=2


which yields

H(α) =
h̄2α2

2m
+
mω2

(
π2 − 6

)
12α2

Setting the derivative of H(α) with respect to the parameter α to zero we
find that it is minimum at the value

α2
∗ =

(
π2 − 6

12

)1/2
mω

h̄

Substituting this value into the above expression of H(α) we obtain

H(α∗) =

(
π2 − 6

12

)1/2

h̄ω ' 0.57 h̄ω

which is a about 12% larger than the exact value h̄ω/2 for the ground state.
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Answer For Problem Two (Continued)

2. To first order in (non-degenrate) perturbation theory, the correction
of the energy of the nth level is given by

δEn = < n|δV̂ |n >= λ < n|δx̂4|n >= λ < n|
(
â+ â†

)4 |n >

= λ

(
h̄

2mω

)2

< n|â2â†2 + ââ†ââ† + ââ†â†â+ â†âââ† + â†ââ†â+ â†2â2|n >

where the average of the terms â4 and â†4 vanish150. The action of the the
different products of the annihilation and creation operators on the state
|n > can be calculated in straight forward way using the definition of the
lowering and raising operators given in the appendix, and you find

â2â†2|n > = (n+ 1) (n+ 2) |n >
ââ†ââ†|n > = (n+ 1)2 |n >
â†âââ†|n > = n (n+ 1) |n >
ââ†â†â|n > = n (n+ 1) |n >
â†ââ†â|n > = n2|n >
â†2â2|n > = n (n− 1) |n >

Substituting in the above expression of δEn we obtain

δEn = 3λ

(
h̄

2mω

)2 (
2n2 + 2n+ 1

)
3.

3.1. Using the explicit expression of the position operator in terms
of the annihilation and creation operators, we can easily show that

< m|x̂|n >=

√
h̄

2mω

(√
n+ 1δm,n+1 +

√
nδm,n+1

)
150Since < n|â4|n > ∝ < n|n− 4 >= 0 and < n|â4|n > ∝ < n|n+ 4 >= 0.
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Answer For Problem Two (Continued)

This implies that at the first-order of perturbation theory the correction
to the energy of any unperturbed state vanishes. So, we need to consider
the the second-order correction, given by

δE(2)
n = λ(0) < n|x̂|n >(1)= λ2

∑
m6=n

|< n|x|m > |2

E
(0)
n − E(0)

m

=
λ2

2mω2

∑
m 6=n

(m+ 1)δn,m+1 +mδn,m−1

n−m

which gives

δE(2)
n = − λ2

2mω2

3.2. This system can be solved exactly as follows:

Ĥ = − h̄2

2m

d2

dx2
+

1

2
mω2x2 + λx

= − h̄2

2m

d2

dx2
+

1

2
mω2

(
x+

λ

mω2

)2

− λ2

2mω2

Now by make the change of variable z = x− λ
2mω2 , the above Hamiltonian

reads

Ĥ = − h̄2

2m

d2

dz2
+

1

2
mω2z2 − λ2

2mω2

Hence,
(
Ĥ + λ2

2mω2

)
is the energy operator of a simple harmonic oscillator

with the same frequency as the unperturbed one. Therefore.

En = h̄ω

(
n+

1

2

)
− λ2

2mω2

Notice that the above result is the same as the one we derived using the
lowest order perturbation theory. Thus, we except that all correction at
order higher than the second order vanish.
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Answer For Problem Two

3.3. We saw in class a system that exhibit similar phenomenon,
which is the Stark Effect, where δ is proportional to the applied elec-
tric field.

4. In one dimension (this case), the force is the minus of the deriva-
tive of the potential with respect to x, which implies that the perturbation
operator reads

V̂ (x, t) = −F0

ω

τ

τ 2 + t2
x̂

The ground state, denoted by |0 >, energy is E0 = h̄ω/2 and the one of
the first excited state, denoted by |1 >, is E1 = 3h̄ω/2, and so transition
frequency is

ω10 =
E1 − E0

h̄
= ω

Hence, for this system, the transition probability amplitude to the first
excited state (see the appendix) is given by

c
(1)
0→1(∞) =

i

h̄

F0τ

ω
< 1|x̂|0 >

∫ +∞

−∞

eiωt

τ 2 + t2
dt

=
i

h̄

F0τ

ω

√
h̄

2mω

∫ +∞

−∞

eiωt

τ 2 + t2
dt (16.2)

where in the second equality we used the fact that x̂|0 >=
√
h̄/2mω â†|0 >=√

h̄/2mω |1 > and < 1|1 > is normalized to unity. The time integral
above can performed using the residue theorem. For that we chose the
closed contour to be the real axis plus the half circle in the upper plane
enclosing the pole t = iτ with its radius R taken to infinity:
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lim
R→∞

∮
eiωz

(z + iτ)(z − iτ)
dz =

∫ +∞

−∞

eiωt

τ 2 + t2
dt+ lim

R→∞

∫
half circle in upper plane

eiωz

(z + iτ)(z − iτ)
dz

=

∫ +∞

−∞

eiωt

τ 2 + t2
dt

The left hand side of the above equation is equal to 2πi times the residue
at the pole z = iτ , which yields

∫ +∞

−∞

eiωt

τ 2 + t2
dt = 2πi

e−ω

2iτ
=
πe−ω

τ

Substituting the value of this integral into Eq. (16.2), we obtan

c
(1)
0→1(∞) =

i

h̄

F0τ

ω

√
h̄

2mω

πe−ω

τ

Thus, the transition probability amplitude for the oscillator is in the first
excited state reads

P (0→ 1) = |c(1)
0→1(∞)|2= π2F 2

0

2mh̄ω3
e−2ωτ

– 172 –



Problem Three [ 6 points] (Landau Levels)

Consider an electron moving on the x-y plane in a constant magnetic
field B directed along the z-axis. As we have seen in class, the Hamiltonian
of such system is given by151

Ĥ =
Π̂2
x + Π̂2

y

2m

where Π̂i = p̂i− eÂi, and Âi’s are the components of the vector potential.

1. Calculate the commutator
[
Π̂x, Π̂y

]
.

2. Deduce that the operators â = 1√
2eh̄B

(
Π̂x + iΠ̂y

)
, and â† = 1√

2eh̄B

(
Π̂x − iΠ̂y

)
satisfy the commutation relation [â, â†] = 1.

3. Show that this system is equivalent to a simple harmonic oscillator
with frequency ω = eB/m.
3. Let us choose the so-called the symmetric gauge A = (−By/2, Bx/2, 0).

3.1. Show that the ground state wave function is a solution to the
differential equation152 (

∂̄ +
eB

4h̄
z

)
ψ(z, z̄) = 0,

3.2. Show that a wave function of the form

ψ(z, z̄) = Φ(z)e−eBzz̄/4h̄

is a solution to the above differential equation.

151This is part of a problem first treated in 1930 by Lev Landau (Nobel Prize in Physics in
1962) which turns out to be the setup for one of the most profound phenomena in condensed matter
physics called the Quantum Hall Effect.

152Here the partial derivative is in the complex plane, defined as

∂ ≡ ∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
, ∂̄ ≡ ∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

where z = x + iy is a complex number, and z̄ its complex conjugate. The above derivatives satisfy
the following identities ∂z̄ = ∂̄z = 0, and ∂z = ∂̄z̄ = 1.
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Answer For Problem Three

1.

[Πx,Πy] = [px − eAx , py − eAy] = −e[px, Ay] + e[py, Ax]

= ieh̄

(
∂Ay

∂x
− ∂Ax

∂y

)
= ieh̄ (∇×A)z = ieh̄B

where in the second equality we used the fact that [pi, f(xi)] = −ih̄∂f(xi)/∂xi.

2.

[â, â†] =
1

2eh̄B
[Πx + i Πy,Πx − i Πy]

= −2i

(
1

2eh̄B

)
[Πx,Πy] = 1

3. We will express
(

Π̂2
x + Π̂2

y

)
in terms of â and â† as follows:

(
Π̂2
x + Π̂2

y

)
= (Πx − i Πy) (Πx + i Πy)− i[Πx,Πy]

= 2eh̄Bâ†â− i (ieh̄B)

= 2eh̄B

(
â†â+

1

2

)
Thus, the Hamiltonian of this system can be written as

Ĥ = h̄
eB

m

(
â†â+

1

2

)
which is represents a simple harmonic oscillator with a frequency ω =
eB/m, i.e. the cyclotron frequency.
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Answer For Problem Three (Continued)

BONUS [6 points]:

B.1. By definition, the operator â annihilates the ground state of a
simple harmonic oscillator. Hence, the corresponding wave function satisfy
the equation153

< x|â|0 >= 0 =⇒ 1√
2eh̄B

[− ih̄∂x − eAx + i (−ih̄∂y − eAy) ] ψ(x, y) = 0

where ψ(x, y) is the ground state wave function. In the symmetric gauge,
the above equation reads

[ (∂x + i∂y) +
eB

2h̄
(x+ iy) ] ψ(x, y) = 0

or, equivalently, in terms of the complex variable z can be written as154

(
∂̄ +

eB

4h̄
z

)
ψ(z, z̄) = 0, ∂̄ :=

∂

∂z̄

B.2.

(
∂̄ +

eB

4h̄
z

)
Φ(z)e−eBzz̄/4h̄ = Φ(z)∂̄

(
e−eBzz̄/4h̄

)
+
eB

4h̄
z Φ(z)e−eBzz̄/4h̄

= Φ(z)

(
−eB

4h̄
z

)
e−eBzz̄/4h̄ +

eB

4h̄
z Φ(z)e−eBzz̄/4h̄

= 0

153For the ease of the notation I will denote ∂
∂xi

by ∂i.
154A point in a plane with coordinates (x, y), can be equivalently represented by a complex number,
z = x + iy. The technical word used in mathematics for such one to one correspondence is called
isomorphism.
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Problem Four [ 4 points] (Exciting the Hydrogen Atom)

Consider a hydrogen atom in a uniform (does not depend on position)
but time dependent electric field along the z-direction, such that

δV (t) =

{
0, for t < 0

|e|zE0 exp (−t/τ), for t ≥ 0

where |e| is the magnitude of the electron’s electric charge, and E0 is a
constant. At time t = 0, the atom is in the ground 1s state.

Show that to lowest order in perturbation theory, the probability that
as t→∞, the atom is in the 2p state is given by

P1s→2p =
215

310

(|e|E0a0)
2

(Eep − E1s)
2 + (h̄/τ)2

where a0 is the Bohr radius.
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Answer For Problem Four

The transition probability amplitude for this system at instant t is

c
(1)
1s→2p(t) = − i

h̄

∫ t

0

< 210|δV̂ (t)|100 > eiωt
′
dt′, ω =

E2p − E1s

h̄

Using the wave functions given in the appendix, the matrix element inside
the integral reads

< 210|δV̂ (t)|100 >= |e|E0 exp (−t/τ) < 210|r cos θ|100 >

=
|e|E0 exp (−t/τ)

4πa4
0

√
2

[∫ 2π

0

dφ

] [∫ π

0

cos2 θ sin θ dθ

] [∫ ∞
0

r4 exp (−3r/2a0) dr

]
With the use of the integrals given in the appendix, we obtain

< 210|δV̂ (t)|100 >=
215/2

35
|e|E0a0 exp (−t/τ)

So,

c
(1)
1s→2p(t) = − i

h̄

215/2

35
|e|E0a0

∫ t

0

e−
t′
τ +iωt′ dt′ == − i

h̄

215/2

35
|e|E0a0

[
eiωt−

t′
τ −1

iω − 1/τ

]
Therefore, the transition probability is given by

P1s→2p = |c(1)
1s→2p(∞)|2= 215

310

(|e|E0a0)
2

(Eep − E1s)
2 + (h̄/τ)2
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Appendix

• Simple Harmonic Oscillator

x̂ =

√
h̄

2mω

(
â† + â

)
, p̂ = i

√
mωh̄

2

(
â† − â

)
â|n > =

√
n |n− 1 >, â†|n >=

√
n+ 1 |n+ 1 >

• Angular Momentum

Ĵ± = Ĵx ± iĴy

Ĵ± |j,m > = h̄
√
j(j + 1)−m(m± 1) |j,m± 1 >

• Time-independent Perturbation: Non-Degenerate Case

|n > = |n0 > +
∑
k 6=n

|k0 >
Vkn

E0
n − E0

k

+ ....

∆n ≡ En − E0
n = Vnn +

∑
k 6=n

|Vkn|2

E0
n − E0

k

+ ....

• Time-dependent Perturbation

C0
n(t) = δni

C(1)
n (t) = − i

h̄

∫ t

0

eiωni Vni(t
′) dt′; ωni =

En − Ei

h̄

• Hydrogen Atom

state 1 s : ψ100 =
(
πa3

0

)−1/2
exp (−r/a0)

state 2 p : ψ210 =
(
8πa3

0

)−1/2
cos θ

r

2a0
exp (−r/2a0)

• Integrals ∫ ∞
0

r4 exp (−3r/2a0)dr =

(
2a0

3

)5

4!∫
cos2 θ dθ =

2

3
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17.1 Specific intensity and Flux

The intensity, flux, energy density, and radiation pressure are very impor-
tant concepts in studying the emission and absorption of radiation. Below,
we give their definitions.

1. Specific Intensity (Iν):

the specific intensity, also called the surface brightness, is the rate
of energy flowing through an infinitesimal element of surface of area
dA155, around a point of position ~r, per unit frequency interval dν, per
unit solid angle dΩ in the direction of radiation propagation vector
~Ω, and per unit time interval dt. It can be expressed mathematically
as

Iν(~r, ~Ω, t) =
dEν

dA cos θdtdνdΩ

[
W.m−2.Hz−1.sr−1

]
(17.1)

where θ is the angle between the vector normal to the surface dA
and ~Ω, as shown in the figure below. So, dA cos θ is the area of
the projection of the surface d ~A on the plane perpendicular to the
direction ~Ω. The specific intensity gives the amount of energy in
the direction of the propagation of the radiation ray. It is almost a
complete description of of the radiant energy. As we will see quantities
like the flux, and the radiant energy density, radiation pressure can
be all obtained from the specific intensity. The only thing that Iν
does not include is the information about the polarization.

We can transform from "per unit frequency" to "per unit wavelength"
by noting that, for a frequency -dependent quantity, Qν, we can write

Qν|dν|= Qλ|dλ| (17.2)

from which it follows that

Qλ =
c

λ2
Qν (17.3)

where we used the relation λ = c/ν between the wave length and
frequency. So, specific intensity in "per unit wavelength" reads

Iλ =
c

λ2
Iν dν

[
W.m−2.m−1.sr−1

]
(17.4)
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Figure 10

Consider two infinitesimal elements of surfaces dA1 and dA2 at a
distance r apart. Let a ray of radiation passing through dA1 and
dA2 at their centers p1 and p1, respectively. if there is no radiation
reflection or absorption, i.e. in free space, the radiant energy passing
through both surfaces must be the same. Thus, we have

(Iν)1 cos θ1dA1dtdνdΩ1 = (Iν)2 cos θ2dA2dtdνdΩ2 (17.5)

where dΩ1 is the subtended by dA2
156 as seen from p1, and dΩ2 is the

subtended by dA1 as seen from p2. Then,

dΩ1 =
dA2 cos θ2

r2
; dΩ2 =

dA1 cos θ2

r2
(17.6)

Substituting the expressions of the solid angles into (17.5), yields

(Iν)1 = (Iν)2 (17.7)

So, in the absence of sources and sinks, the surface brightness of an
object is independent of its distance from the detector157.

The total intensity can be obtained by integrating over the frequency
(or, equivalently over wavelengths if one uses Iλ):

I =

∫ ∞
0

Iν dν =

∫ ∞
0

Iλ dλ
[
W.m−2.m−1.sr−1

]
(17.8)

155dA could be the physical surface of a detector, the source, or an imaginary surface anywhere along
the ray of radiation.

156Yes, it’s dA2.
157 In cosmology, this is not true, since there will be a red shift in the frequency of the emitted

radiation. We neglect this effect here.
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It is often useful to average the specific intensity over the solid angle,
and define the define the mean intensity , Jν, as

Jν =

∫
Ω Iν dΩ∫

Ω
=

1

4π

∫
Ω

Iν dΩ (17.9)

or, equivalently,

Jν =
1

4π

∫ 2π

0

∫ 1

−1

Iν(µ, φ) dµ dφ (17.10)

where we introduced the variable µ = cos θ. In particular, if the
radiation is independent of the azimuthal angle φ but not θ, then

Jν =
1

2

∫ 1

−1

Iν(µ, φ) dµ (17.11)

Obviously, if Iν is independent of both φ and θ, i.e. isotropic, then
we have

J (isotropic)
ν = I(isotropic)

ν (17.12)

2. Radiation Flux Density (Fν):

The radiation flux density, or simply radiation flux, is the rate of
energy flowing across unit area (e.g. at a detector), from all directions,
per unit time, and per unit frequency. Mathematically it reads

Fν =

∫
Ω dEν

dAdtdν
=

∫
Iν cos θdΩ

[
W.m−2.Hz−1

]
(17.13)

This is the quantity that is measured in the detector158. Equation
(17.13) can expressed as

Fν =

∫ 2π

0

∫ 1

−1

Iν(µ, φ) µ dµ dφ
[
W.m−2.Hz−1

]
(17.14)

158 In astronomy, the unit W.m−2.Hz−1 is much too big for the measured flux density. Instead a
new unit called Jansky and denoted by Jy was introduced, where 1 Jy = 10−26 W.m−2.Hz−1. For
example, the measured flux of the cosmic microwave background radiation (CMB) is 0.23 Jy. The
unit was named after Karl Jansky, an American physicist and radio engineer who in August 1931 first
discovered radio waves emanating from the Milky Way.
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In the case where the intensity is independent of the azimuthal angle,
we have

Fν = 2π

∫ 1

−1

Iν(µ) µ dµ (17.15)

Often, the radiation impinges an area from above or below. Hence,
it is convenient to divide the contributions to the flux into:

(a) Upward-directed (i.e., emitted) from a surface (0 ≤ θ ≤ π/2):

F (+)
ν =

∫ 2π

0

∫ π/2

0

Iν cos θ dθdφ (17.16)

and (a) Downward-directed (i.e., incident) on a surface (π/2 ≤ θ ≤
0):

F (−)
ν =

∫ 0

2π

∫ π/2

0

Iν cos θ dθdφ (17.17)

with the net flux being

Fν = F (+)
ν − F (−)

ν (17.18)

If the specific intensity is independent of φ, then

Fν = F (+)
ν = 2π

∫ 1

0

Iν(µ) µ dµ (17.19)

If in addition, there is no θ dependence over the range 0 ≤ θ ≤ π/2,
then the flux of radiation from the emitting source is

Fν = π Iν (17.20)

As an example, consider a detector placed at a distance D from a star
of spherical shape with radius R and uniform brightness B. Clearly
such a star is an isotropic source of radiation. At the position of the
detector, the specific intensity is Iν if the ray intersects the star and
zero otherwise, i.e.

I(detector)
ν =


B, 0 ≤ θ∗;

0, otherwise.
(17.21)
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where θ∗ = sin−1R/D is the angle at which a ray from the detector
is tangent to the star. Then,

F (observed)
ν = 2πB

∫ θ∗

0

cos θ sin θ dθ (17.22)

= πB sin2 θ∗ = πB

(
R

D

)2

(17.23)

or, equivalently,

F (observed)
ν = πB

(
R

D

)2

F (star)
ν (17.24)

where F (star)
ν = F

(+)
ν is the emitted flux of radiation from the star.

Another way to derive the above expression is as follows. The pro-
jected area of the annulus of radius r at angle θ as

dA = 2πrdr = 2πR2 µ dµ (17.25)

Thus, the annulus subtends an element of solid angle

dΩ =
dA

D2
= 2π

(
R

D

)2

µ dµ (17.26)

So, the total observed flux at the detector is

F (observed)
ν = 2π

(
R

D

)2 ∫ 1

0

B µ dµ (17.27)

=

(
R

D

)2

F (star)
ν

Thus, while the specific intensity is the same at both the surface of
the star and the location of the detector, the flux depends on the
distance between them and it follows the inverse square law.

3. Specific Radiation Energy Density (uν):

The energy dEν flowing in an element of a cylindrical volume dV , of
area dA and length dl, with a frequency between ν and (ν + dν) in a
solid angle dΩ is

dEν = uν(Ω) dV dΩ dν (17.28)
= uν dA dl dΩ dν
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where uν(Ω) is the energy density per unit solid angle. The element
of length is the distance travelled by the radiation during the time
interval d t,. Hence we can write

dEν = c uν(Ω) dA dΩ dν dt (17.29)

In terms of specific intensity, the energy dEν reads dEν = Iν dA dΩ dν dt.
Thus, we deduce that

uν(Ω) =
Iν
c

(17.30)

Integrating uν(Ω) over solid angle, we obtain the specific energy den-
sity uν as

uν =
1

c

∫
Iν dΩ =

4π

c
Jν (17.31)

4. Radiation Pressure

Consider radiation with energy ∆E bouncing back and forth between
two parallel perfect mirrors of area A and separation d. Each time the
radiation bounces off the mirror, at an angle θ it imparts a momentum
∆p⊥ normal to the mirror, given by

∆p⊥ =
2∆E

c
cos θ (17.32)

in an interval of time ∆t = 2L cos θ/c. So, the contribution to pres-
sure is given by

∆P =
∆p/∆t

∆A
= ∆u cos2 θ (17.33)

= uν(Ω) ∆Ω ∆ν cos2 θ

where ∆u = ∆E/AL is the energy density of the radiation. Using
(17.30), and integrating over the frequency and the solid angle, we
get

P =
1

c

∫
Iν dν cos2 θdΩ (17.34)
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So, the radiation pressure is related to the second -order momentum
of the intensity159. For isotropic radiation field, we obtain

P =

∫
4π

c
Jν dν =

1

3
u (17.35)

17.2 The Hamilton-Jacobi Equations

17.3 Ehrenfest’s Adiabatic Principle

17.4 Discovery of the Electron Spin

17.5 Clebsch Gordon Coeffiecients

17.6 Derivation of Cross Section using Wave Packets

The S-matrix element < φb|Ŝ|φa > represents the probability amplitude
that a state asymptotic to |φa > in the distant past evolves into a state
asymptotic to |φb >. The scattering experiments measure the number of
particles scattered into an element of solid angle dΩ:

Nscat(dΩ) =
dσ

dΩ
.ninc (17.36)

where ninc is the number of incident particles per unit area in a direction
perpendicular to the initial momentum. For a given initial wave packet,
the probability of a scattering into a solid a solid angle dΩ is

dP(|ψ(in) >) = dΩ

∫ ∞
0

p′
3
dp′|< p′|Ŝ|ψ(in) > |2 (17.37)

= dΩ

∫ ∞
0

p′
3
dp′|
∫
d3p < p′|Ŝ|p >< p|ψ(in) >|2

The total number of particles scattering into a given cone with solid an-
gle dΩ will be the sum over the number of incident particles times the

159The n-th order momentum of the intensity is defined as

M (n)
ν =

1

2

∫ 1

−1

Iν(µ)µn dµ

For instance, the first-order moment is related to the flux and is known as Eddington flux given by

Hν =
1

2

∫ 1

−1

Iν(µ)µ dµ =
Fν
4π
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probabilities of scattering into a given cone with solid angle dΩ:

dNscat =
∑
i

dP(|ψ(in)
i >) (17.38)

Here the index i labels the particles in the incident beam. The wave packet
|ψ(in)

i > will have an average momentum approximately equal to the beam
momentum P̄ . However, they differ by impact parameter b, which is a
2-dimensional vector in the plane perpendicular to the direction of the
incident beam, say z-axis. An initial state shifted by an amount b relative
to a reference state < p|ψ(in)

0 > is

< p|ψ(in)
b >= eib.p < p|ψ(in)

0 > (17.39)

We will assume that the impact parameters are distributed uniformly over
the cross-sectional area subtended by the target with density ninc. The
sum over the states in ?? sum can be replaced by

dNscat =

∫
d2b ninc dP(|ψ(in)

b >) (17.40)

Thus, the differential cross section is given by
dσ

dΩ
=

∫
d3b

∫ ∞
0

p′
2
dp′|
∫
d3p [−2πiδ(Ep′ − Ep)] e

ib.p < p′|T (+)(E)|p >|2< p|ψ(in)
0 >

Expanding every thing out gives
dσ

dΩ
=

∫
d3b

∫ ∞
0

p′
2
dp′
∫
d3pd3k4π2δ(Ek − Ep′)δ(Ep − Ep′) (17.41)

< p′|T (+)(E)|p >< k|T (−)(E)|p′ >< p|ψ(in)
0 > eib.(p−k) < ψ

(in)
0 |k >

The integral over the impact parameter gives∫
d3beib.(p−k) = (2π)2δ (p⊥ − k⊥) (17.42)

The product of the energy δ-functions times δ (p⊥ − k⊥) reads:

δ (Ek − Ep′) δ (Ep − Ep′) δ (p⊥ − k⊥) = (17.43)
= δ (Ek − Ep) δ (Ep − Ep′) δ (p⊥ − k⊥)

= 2µδ
(
k2

3 − p2
3

)
δ (Ep − Ep′) δ (p⊥ − k⊥)

' µ

p̄3
δ(3) (k− p) δ (Ep − Ep′)
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where p̄ denotes the average momentum of the incident particles . With
these identities, the differential scattering cross-section can be written as

dσ

dΩ
=

16π2µ

p̄3

∫
p′

2
dp′
∫
d3p δ (Ep − Ep′) (17.44)

×|< p′|T (+)(E)|p > |2|< p|ψ(in)
0 > |2

For sufficiently sharply peaked wave packet, the transition matrix elements
are approximately constant on the region where the momentum of the wave
packets are non-vanishing. In this case we have:

dσ

dΩ
=

16π2µ

p̄3
|< p̄′|T (+)(Ep̄3

)|p̄ > |2
∫
d3p |< p|ψ(in)

0 > |2
∫
p′

2
dp′ δ (Ep − Ep′)(17.45)

where |p̄′|= |p̄|. Using the fact that the wave function < p|ψ(in)
0 > is

normalizable, and the identity
∫
p′2dp′ δ

(
p2/2µ− p′2/2µ

)
= 2πµp̄, we

find that

dσ

dΩ
= 16π4µ2 p̄

p̄3
|< p̄′|T (+)(Ep̄3

)|p̄ > |2 (17.46)

The assumption that the beam is in the z-direction means that p̄3 = p̄,
which leads to

dσ

dΩ
= |(2π)2 µ < p̄′|T (+)(Ep̄3

)|p̄ > |2≡ |f(p̄′, p̄)|2 (17.47)

which gives the on-shell relation between the T-matrix and the scattering
amplitude, that is

f(p̄′, p̄) = −µ (2π)2 < p̄′|T (+)(Ep̄3
)|p̄ > (17.48)

Finally, we notice that the expression of the differential cross-section ??diff
can also be cast in the form

dσ

dΩ
=

(2π)4

vinc
|< p̄′|T (+)(Ep̄3

)|p̄ > |2p2 dp

dE
(17.49)

where vinv = p̄3/µ = p̄/µ is the mean speed of the incident beam. A
key observation is that as long as the wave packet is sharply peaked, the
differential cross section is independent of the shape of the wave packet.

– 188 –



References

[1] Quantum Concepts in Physics, Malcolm Longair; Cambridge University Press; 2013
edition.

[2] The Conceptual Development of Quantum Mechanics, Max Jammer; Thomas
Publishers; Volume 12, 1989.

[3] Sources of Quantum Mechanics, B. L. Van Der Waerden; NORTH-HOLLAND
publishing company; 1966.

[4] I. Aitchison, D. MacManus, and T. Snyder, Am. J. Phys. 72 (2004).

[5] Ludwig Boltzmann: The Man Who Trusted Atoms, Carlo Cercignani; Oxford
University Press; 2006 edition.

[6] Passive Microwave Remote Sensing of the Earth: Physical Foundations, Eugene A.
Sharkov; Springer; 2003 edition.

[7] Planck, the Quantum, and the Historians, Clayton Gearhart; Phys. perspect. 4, 170-
215 (2002).

[8] The Official Web Site of the Nobel Prize.
Available via:[www.nobelprize.org/nobelprizes/physics/laureates].

[9] The Physics of Stars, Ian Howarth. Available via:
[http://zuserver2.star.ucl.ac.uk/ idh/].

[10] Modern Physics, Michael Fowler. Available via:
[http://galileo.phys.virginia.edu/classes/252/home.html].

[11] The Photoelectric Effect, M. Brandl. Available via:[ http://www.physnet.org/].

[12] Thermal Radiation: Kinetic Theory and Thermodynamics, R. Madivanane.
Available via: [http://aadhi2ani.synthasite.com/notes-2y.php].

[13] Friedrich Reinert and Stefan Hufner, New J. Phys. 7, 97 (2005).

[14] Course on Quantum mechanics, Reinhold Bertlmann, summer semester 2008.
Available via: [http://homepage.univie.ac.at/reinhold.bertlmann/lectures.html] .

[15] The electron and light-quant from the experimental point of view, Robert Millikan,
Nobel Lecture, May 23, 1924.

[16] Revealing the Magic of Everyday Life, M. K. Yip.
Available via: [ http://www.physics.hku.hk/ phys0607/lectures/chap06.html].

[17] http://chemwiki.ucdavis.edu/.

[18] Compton scattering data, HyperPhysics.
Available via: [ http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/compdat.html].

[19] J. Von Fraunhofer, Denkschriften der K. Acad. der Wissenschaften zu MŸnchen, 5,
pp. 193-226 (1814).

[20] W. Fedak and J. Prentis, "Quantum Jumps and classical harmonics", American
Journal of Physics, 70: 332-344 (2002).

[21] Notes on Quantum Mechanics, K. Schulten, University of Illinois at Urbana
Champaign 2000.

– 189 –


	Cracks in the Foundations of Classical Physics
	Black Body Radiation red [1859 - 1901]
	Kirchhoff's law of radiation [1859]
	Stefan-Boltzmann law [1879/1884]
	Wien's Displacement Law [1893]
	Wien's Energy Distribution for a Black Body [1896]
	 Rayleigh-Jeans law and Ultra-Violet Catastrophe [1900/1902]
	Planck Distribution [1900- 1901]

	Photoelectric Effect red[1887- 1905]
	Experimental Observations
	Predictions of the Classical Physics
	Einstein explanation for the photoelectric effect

	Compton Effect red[1923]

	Old Quantum Mechanics: red[1913- 1925]
	Atomic Spectral Lines
	Instability of Atoms
	Bohr's Model [1913]
	Sommerfeld Extension of Bohr's Model [1915- 1919]
	Einstein Coefficients [1916]

	Wave Mechanics red [1923- 1927] 
	Wave-Particle Duality and Davisson-Germer Experiment [1923- 1927]
	Schrodinger Equation [1926]
	Interpretation of the Wave Function [1926]

	Examples of One Dimensional Potentials
	Free Particle in 1-dimension and Wave Packet 
	Infinite Square Potential
	Symmetric Finite Potential: Bound and Unbound States
	Particle moving through a Step Potential
	Harmonic Oscillator
	Quantum Tunneling and the WKB approximation

	Matrix Mechanics * red [1925] 
	Heisenberg's Re-interpretation of the Position and New Multiplication Rules 
	Heisenberg's Quantum Condition and The non linear Oscillator
	Born and Jordan's Matrix Mechanics 
	Equivalence between Wave Mechanics and Matrix mechanics

	The Mathematical Formalism of Quantum Mechanics 
	Pre-Hilbert Space
	Dual Space and Bras
	Hilbert Space
	Linear Operators 
	Hermitian and Anti-Hermitian
	Isometric and Unitary Operators
	Projection Operator
	Matrix Representation
	Tensor Products

	Principles of Quantum Mechanics 
	The Postulates of Quantum Mechanics
	Position and Momentum representations
	Position representation
	Momentum representation

	Compatible Operators and Simultaneous Measurement
	Heisenberg Uncertainty Relation
	Schrodinger, Heisenberg and Interaction Picture *

	Harmonic Oscillator Using Ladder Operators
	Raising and Lowering Operators
	Energy Spectrum and Eigenstates 
	The Wave Function of the Harmonic Oscillator
	The Matrix Representation of the Harmonic Oscillator
	Coherent States

	Theory of Angular Momentum 
	Angular Momentum Algebra
	Quantization of Angular momentum
	Angular Momentum and Rotations in R^3 
	Representation of Rotation in Hilbert State

	The Hydrogen Atom 
	Approximation Methods 
	Time Independent Perturbation Theory
	 Non Degenerate Spectrum
	Degenerate Spectrum

	variational Methods
	Time-Dependent Perturbation Theory

	Formal Theory of Scattering 
	Møller Operator
	Properties of the Møller Operator
	 Møller Operator and the Resolvant of 
	The Transition Operator
	The Case of System with Bound States 
	Unitarity Relations
	The  Operator
	Relating the S- Matrix and the T-Matrix
	 A heuristic Derivation of the Cross Section

	Interpretation of Quantum Mechanics * 
	Mixed States and the Density Matrix
	Measurement and Interpretation
	Schrodinger's Cat
	Einstein-Podolsky-Rosen (EPR) Argument

	Exercices
	Answers 
	Exams with Solutions
	Appendices
	Specific intensity and Flux
	The Hamilton-Jacobi Equations
	Ehrenfest's Adiabatic Principle 
	Discovery of the Electron Spin
	Clebsch Gordon Coeffiecients
	Derivation of Cross Section using Wave Packets


