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Abstract  

 

Large amounts of biological data are continuously generated nowadays, thanks to the 

advancements of high-throughput experimental techniques. Mining valuable 

knowledge from such data still motivates the design of suitable computational 

methods, to complement the experimental work which is often bound by 

considerable time and cost requirements. Protein complexes, or groups of interacting 

proteins, are key players in most cellular events. The identification of complexes not 

only allows to better understand normal biological processes but also to uncover 

disease-triggering malfunctions. Ultimately, findings in this research branch can 

highly enhance the design of effective medical treatments. The aim of this research is 

to detect protein complexes in protein-protein interaction networks and to associate 

the detected entities to diseases. The work is divided into three main objectives: first, 

develop a suitable method for the identification of protein complexes in static 

interaction networks; second, model the dynamic aspect of protein interaction 

networks and detect complexes accordingly; and third, design a learning model to 

link proteins, and subsequently protein complexes, to diseases. In response to these 

objectives, we present, ProRank+, a novel complex-detection approach based on a 

ranking algorithm and a merging procedure. Then, we introduce DyCluster, which 

uses gene expression data, to model the dynamics of the interaction networks, and we 

adapt the detection algorithm accordingly. Finally, we integrate network topology 

attributes and several biological features of proteins to form a classification model 

for gene-disease association. The reliability of the proposed methods is supported by 

various experimental studies conducted to compare them with existing approaches. 

ProRank+ detects more protein complexes than other state-of-the-art methods. 

DyCluster goes a step further and achieves a better performance than similar 

techniques. Then, our learning model shows that combining topological and 

biological features can greatly enhance the gene-disease association process. Finally, 

we present a comprehensive case study of breast cancer in which we pinpoint disease 

genes using our learning model; subsequently, we detect favorable groupings of 

those genes in a protein interaction network using the ProRank+ algorithm. 
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Title and Abstract (in Arabic) 

 

عن المركبات البروتينية وربط الجينات  كشفبهدف الدراسة الشبكات البيولوجية 

 بالأمراض

 صالملخ

يتم توليد كميات كبيرة من البيانات البيولوجية في الوقت الحاضر وذلك بفضل تقدّم 

ما زال استخراج معلومات قيمّة من هذه البيانات يحفز  التقنيات التجريبية ذات الإنتاجية العالية.

مناسبة، لاستكمال العمل التجريبي المرتهن غالباً بوقت طويل ومتطلبات تصميم طرق حاسوبية 

الكلفة. المركبات البروتينية، أو مجموعات البروتينات المتفاعلة هي لاعب أساسيّ في معظم 

الأحداث الخلوية. لا يسمح تحديد المركبات بفهم العمليات البيولوجية العادية بشكل أفضل فحسب 

في النهاية، تستطيع نتائج فرع البحث هذا  الاختلالات المسببة للأمراض. بل أيضاً بالكشف عن

هدف هذا البحث الكشف عن المركبات  تحسين تصميم العلاجات الطبية الفعالة إلى حد كبير.

 البروتينية في شبكات تفاعل البروتينات مع بعضها البعض وربط الكيانات المكتشفة بالأمراض.

هداف رئيسية: أولاً، تطوير طريقة مناسبة لتحديد المركبات البروتينية أ 3العمل مقسّم إلى  إن

ثانياً، صياغة الجانب الديناميكي لشبكات تفاعل البروتينات واستبيان  في شبكات تفاعل ثابتة.

المركبات وفقاً لذلك. ثالثاً، تصميم نموذج تعلمّ حاسوبي لربط البروتينات وبالتالي المركبات 

، وهو أسلوب جديد في (knaRorP+مراض. رداً على هذه الأهداف، نقدّم  البروتينية، بالأ

تحديد المركبات مبنيّ على خوارزمية لتصنيف المركبات وترتيبها ودمجها. ثم ندخل 

 retsulCyn ّالذي يستخدم بيانات التعبير الجيني لصياغة ديناميات شبكات التفاعل ونكيف ،)

، ندمج الصفات الطوبولوجية لشبكة البروتينات في سمات خوارزمية الكشف وفقاً لذلك. أخيراً 

مصداقية الطرق  البروتينات البيولوجية لتشكيل نموذج تصنيف لربط الجينات بالأمراض.

المقترحة مدعومة بدراسات تجريبية متنوعة أجريت لمقارنتها مع أساليب قائمة. يكشف 

 +knaRorP متطورة أخرى. يذهب ( عن مركبات بروتينية أكثر من أيّ أساليب

 retsulCyn ّخطوة أبعد ويحقق أداءً أفضل من أداء تقنيات مشابهة. ثم يظهر نموذج التعلم )

الخاص بنا أن الجمع بين السمات الطوبولوجية والسمات البيولوجية يستطيع أن يحسّن إلى حد 

الثدي نحدد فيها  كبير عملية ربط الجينات بالأمراض. أخيراً، نقدّم دراسة شاملة لحالة سرطان
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جينات المرض مستخدمين نموذج التعلمّ الخاص بنا. من ثم نحدد التجمعات المناسبة لتلك 

 (.knaRorP+الجينات في شبكة تفاعل البروتينات مستخدمين خوارزومية  
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Chapter 1: Introduction 

 

1.1 Scope 

From metabolism, signal transduction, transport, cellular organization to most 

biological processes, proteins are the key players. Their interconnections shape 

interaction networks which define highly-organized cellular systems (1000 Genomes 

Project Consortium, 2010). The association of a gene or a complex to a certain 

biological function broadens our perception of how this function occurs and it 

consequently allows us to uncover the malfunctions that trigger various diseases. For 

instance, in terms of a normal phenomenon, happiness can be psychologically 

defined as “the experience of joy, contentment, or positive well-being, combined 

with a sense that one’s life is good, meaningful, and worthwhile” (Lyubomirsky, 

2008). Philosophically, according to Aristotle, “Happiness depends upon ourselves”. 

Genetically, legitimate questions are asked: How far does happiness really depend on 

“ourselves”? Do genes, the shaping elements of “ourselves”, contribute to our 

happiness? In fact, genetics are linked to individual life satisfaction and particularly 

to happiness: long and more efficient alleles of the serotonin transporter gene 5-

HTTLPR and self-reported life satisfaction are positively associated (De Neve, 

Christakis, Fowler, & Frey, 2012). In view of that, a recent study (Oswald & Proto, 

2013) measures the genetic distance among countries’ populations and finds that it is 

highly correlated with international well-being differences. On the other hand, in 

terms of identifying disease-related genes, in ancient history, cancers were blamed on 

the gods (The History of Cancer, 2015). Then, through the middle ages, it was 

associated to imbalances in the body. Various theories were proposed later ranging 

from the lymph theory in the 1700s to the trauma theory and the infectious disease 
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theory in the 17
th

 and the 18
th

 centuries. Accumulated knowledge in genetics 

throughout the following years allowed more understanding of the disease. In 2014, 

more than 100 chemical, physical and biological substances were associated by the 

World Health Organization to cancer (World Health Organization IARC, 2014). In 

the same year, breast cancer was listed as the highest occurring cancer type in 

women worldwide (World Health Organization, 2014). The earlier association of the 

BRCA1 gene to breast cancer (Miki et al., 1994) not only accelerated the design of 

more efficacious treatments but also allowed the discovery of many key genes and 

complexes in other cancer types and complex diseases.  

Looking at the bigger picture, every genetic finding can be viewed as a 

puzzle piece that contributes to our comprehension of various molecular functions as 

well as different disorders. Ultimately, the more we know, the more we are able to 

improve medical treatments. 

1.2 Background 

The deoxyribonucleic acid (DNA) is considered the cell’s “master molecule” 

thanks to its essential functional properties (Lodish et al., 2013). It has a double-helix 

structure composed by two helical strands coiled around a common axis (Watson & 

Crick, Molecular structure of nucleic acids, 1953). This structure allows transferring 

genetic characteristics among successive generations and is thus crucial to heredity. 

The DNA strands consist of four types of nucleotides: adenine (A), thymine (T), 

cytosine (C) and guanine (G). They are arranged in such a way that A on one strand 

is matched with T on the other strand and likewise, C is matched with G. The linear 

order of nucleotides along each strand defines the genetic information carried by 

DNA. The informative segments of DNA are divided into functional units called 
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genes which typically consist of 5,000 to 100,000 nucleotides. Many genes are 

responsible for making proteins, the primary molecules responsible for cellular 

structure and activities. The conversion of DNA into proteins is divided into two 

processes as presented in Figure 1. The first process is transcription by which the 

coding portion of a gene is copied into a single-stranded ribonucleic acid (RNA) 

version of DNA. A large enzyme called RNA polymerase uses DNA as a template 

and catalyzes the linkage of nucleotides into RNA chain. In eukaryotic cells, RNA is 

transformed into a smaller messenger RNA (mRNA) 

molecule which moves to the cytoplasm region of the cell. This is where the second 

Figure 1: The multi-process conversion of DNA into protein (Lodish et 

al., 2013). 
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process, known as translation, takes place. A very complex molecular machine called 

ribosome and composed of both RNA and protein comes into play. The ribosome 

assembles amino acids to form proteins exactly as inferred by the mRNA sequence. 

Proteins consist of linear chains in which 20 different amino acids can be combined. 

Once a chain is created, it folds to form a three-dimensional structure which 

determines its distinctive function, as shown in Figure 2. The linear amino acid 

sequence of a protein (primary structure) folds into helices (secondary structure) that 

pack into globular domains (tertiary structure). Some proteins self-associate into 

complexes (quaternary structure) which comprise tens to hundreds subunits 

(supramolecular assemblies). Proteins can exhibit various functions including 

regulation, structure, movement, catalysis, transport and signaling. All those 

functions are subject to proper protein folding. The types and amounts of mRNA 

molecules existing in a cell determine its function. Accordingly, the course of protein 

formation through transcription and translation critically defines the functions of 

cells (O'Connor, Adams, & Fairman, 2010). The regulation of those processes allows 

cells to respond to environmental variations. In the same context, we note here that 

genes which exhibit similar expression patterns across various environmental 

conditions most likely interact (Baldi & Hatfield, 2002).  
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Figure 2: Protein structure and function (Lodish et al., 2013). 

 

Figure 3 visualizes the four structure levels of a protein, from amino acid 

sequence to protein complex. 
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 Mutations are errors that occur during DNA replication which alters the 

nucleotide sequence by changing its order, deleting or inserting an element, or even 

inverting it. This can cause the abnormal generation of proteins and can lead to 

inherited diseases if not controlled properly. For example, the sickle cell disease is 

caused by a single mutation of the hemoglobin gene by which the 17th nucleotide is 

changed from T to A (Rees, Williams, & Gladwin, 2010). In view of that, identifying 

disease-causing mutations and subsequently, disease-related genes, protein and 

Figure 3: The structural levels of proteins 

(Wikimedia Commons, 2008). 
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protein complexes is indeed a crucial task towards understanding various disorders 

and finding suitable ways to possibly avoid or treat them. 

1.3 Motivation and Problem Statement 

Biological functions are often acquired through collaborations of interacting 

protein groups referred to as protein complexes (Gavin et al., 2006). High-throughput 

experimental techniques designed to study protein complexes, such as yeast two-

hybrid (Y2H) (Fields & Song, 1989) and tandem affinity purification (TAP-MS) 

(Collins & Choudhary, 2008) approaches, are generally time-consuming and costly. 

Moreover, they are susceptible to high error rates (Marto, 2009). In view of that, 

various computational methods are developed to complement and reduce the efforts 

required for biological explorations. Ideally, looking at protein-protein interaction 

(PPI) data, a reliable computational approach can identify proteins and subsequently 

protein complexes possibly engaged in certain functions or phenotypes, for further 

experimental examinations. It is believed that the more enrichment with biological 

information is added to interaction networks and complex-detection algorithms, the 

better is the overall quality of the results. In a computational context, a PPI dataset is 

usually modeled as a single graph in which vertices and edges represent the proteins 

and their interconnections, respectively. An example of a protein complex is shown 

in Figure 4 in terms of graph and structural representations based the work by 

(Newman, Brändén, & Jones, 1993) and visualized at the Protein Data Bank (Berman 

et al., 2000).  



8 
 

 
 
 

(a) 

(b) 

Figure 4: An example of a protein complex. (a) A graph 

representation in which nodes and edges represent 

protein and their interactions, respectively. (b) The 

biological assembly of the complex. 

Given a PPI dataset, the goal is to develop a suitable computational approach 

that can identify the corresponding protein complexes and subsequently associate the 

detected entities to diseases. In this direction, several challenges need to be 

addressed. First, experimentally-generated datasets are usually large. For instance, in 

the case of human PPIs, the June 2015 release of the BioGRID repository (Stark et 

al., 2006) contains 186744 non-redundant interactions among 19415 unique proteins. 

As a result, scalable and efficient methods are required for their analysis. In addition, 

PPI data may contain false positive (spuriously-detected) and false negative 

(missing) interactions. Consequently, suitable data cleaning techniques have to be 

applied prior to analysis in order to ensure the reliability of the results. Moreover, 

protein interactions do not occur simultaneously. They are subject to temporal, 

spatial and contextual conditions (Macropol, Can, & Singh, 2009). Accordingly, the 

comprehensive network representation of a PPI dataset ought to take the dynamic 

nature of interactions into consideration. These main challenges, among others, 
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constitute the focus points based on which our methodology is designed and 

developed.  

1.4 Research Objectives and Proposed Solutions 

The goal of this dissertation is to develop a suitable approach for the 

identification and association of proteins and protein complexes to diseases. In this 

direction, the work is divided into three main objectives: 

1- Detecting protein complexes in PPI networks. 

2- Modeling the dynamic aspect of PPI networks and detecting protein 

complexes accordingly. 

3- Developing a learning model to classify genes as disease-related or 

not. 

To begin, we introduce ProRank+ (Hanna & Zaki, Detecting protein 

complexes in protein interaction networks using a ranking algorithm with a refined 

merging procedure, 2014), a protein-complex detection method based on a ranking 

algorithm which sorts proteins according to their importance in the PPI network; and 

a merging procedure which refines the detected complexes in terms of their 

members. When compared to several state-of-the-art approaches, ProRank+ is able to 

detect more protein complexes with higher quality scores. 

Since protein interaction networks are dynamic in nature (Levy & Pereira-

Leal, 2008), our second objective is to model the dynamic aspect of PPI networks 

and to tune ProRank+ accordingly. Recent experimental tools, such as ChIP-chip 

(Kim & Ren, 2006) and ChIP-seq (Johnson, Mortazavi, Myers, & Wold, 2007), can 

provide temporal, spatial and contextual information across which PPIs occur. 

Consequently, advances in computational approaches developed to analyze PPI 
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networks ought to relate to such diversity of information currently available. Gene 

expression datasets consist of quantitative measurements of genes in cellular 

compartments across different conditions (Lovén et al., 2012). Genome-wide 

expression levels can now be studied (Secrier & Schneider, 2013). Genes with 

correlated expressions across subsets of conditions most likely interact (Baldi & 

Hatfield, 2002). As a result, the integration of gene expression data with PPI 

information can potentially reveal the processes which underline the formation of 

protein complexes. In this direction, we present DyCluster, a framework to model the 

dynamic aspect of protein interaction networks by incorporating gene expression 

data, through biclustering techniques (Busygin, Prokopyev, & Pardalos, 2008), prior 

to applying complex-detection algorithms. The experimental studies, including 

biological applications, show that DyCluster leads to high numbers of correctly 

detected complexes with better evaluation scores. 

 The last objective consists of designing a suitable approach for gene-disease 

association. We propose a classification approach which integrates PPI network 

topology features and biological information collected from various sources. Given a 

list of genes, the goal is to maximize the contrast between disease and non-disease 

classes. Accordingly, we study the topology of the corresponding PPI network to 

find distinctive positioning of genes in interaction networks. Then, we combine those 

features with biological data from various sources to uncover potential similarities 

which characterize each class. The experimental work strongly favors our approach. 

1.5 Dissertation Outline 

The dissertation is organized as follows. In chapter 2, we survey and discuss 

state-of-the-art methods related to our research objectives. Chapter 3 introduces our 
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method for the detection of protein complexes in PPI networks. In chapter 4, we 

present our approach to model dynamic protein interaction networks and 

subsequently detect complexes. Chapter 5 includes our solution for gene-disease 

association. A comprehensive case study of the breast cancer disease is presented in 

chapter 6. Finally, we conclude the dissertation in chapter 7. 
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Chapter 2: Related Work 

 

This chapter surveys the state-of-the-art approaches related to our research 

objectives. Computational methods developed for the detection of protein complexes 

in PPI networks are reviewed in section 2.1. Various ways to model the dynamic 

aspect of PPI networks and detect protein complexes accordingly are presented in 

section 2.2. Gene-disease association approaches are discussed in section 2.3. Lastly, 

the drawbacks of previous approaches that we seek to overcome in our work are 

summarized in section 2.4. 

2.1 Detecting Protein Complexes in Protein-Protein Interaction Networks 

In a computational setting, it is generally assumed that protein complexes 

correspond to dense subgraphs in PPI networks. We hereafter highlight state-of-the-

art methods for the detection of complexes in protein interaction networks. The 

Markov Clustering Algorithm (MCL) (Van Dongen, 2001) looks for cluster 

structures in protein interaction networks using random walks. The search is based 

on alternations between two main operators:  expansion which is given by taking the 

power of a stochastic matrix using matrix squaring; and inflation which corresponds 

to taking the Hadamard power of a matrix, i.e. entry-wise, followed by a scaling step, 

to generate a stochastic matrix. The algorithm deterministically calculates the 

probabilities of random walks in the network and transforms one set of probabilities 

into another based on the expansion and inflation operators. The Molecular Complex 

Detection (MCODE) algorithm (Bader & Hogue, 2003) identifies complexes as 

dense regions grown from highly-weighted vertices. A vertex is weighted by 

checking the highest k-core in its neighbourhood, i.e. the central most densely 
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connected subgraph of minimal degree k. MCODE then seeds complexes with 

proteins, considered by their decreasing weights, and include only vertices of weights 

above a given threshold, at each time. The clustering based on maximal cliques 

(CMC) method (Liu, Wong, & Chua, 2009) starts by using an iterative scoring 

scheme to assign weights to protein interactions.  Lower scores correspond to less 

reliable interactions in order to reduce their impact in the detection process. All 

maximal cliques are generated from the PPI network and then, they are ranked based 

on their weighted density. Lastly, highly overlapping cliques are merged or removed. 

The Affinity Propagation (AP) algorithm (Frey & Dueck, 2007) uses a distance 

matrix to propagate messages between nodes until a high-quality set of “exemplars” 

and corresponding clusters are gradually generated. ClusterONE (Nepusz, Yu, & 

Paccanaro, 2012) identifies protein complexes through clustering with overlapping 

neighborhood expansion. A cohesiveness measure is introduced to reflect the notion 

by which a protein complex is viewed as an entity that is well-separated from the rest 

of the network and whose members have reliable interconnections. Proteins are 

considered by their descending order of degrees and a greedy algorithm is applied to 

generate complexes by joining proteins which are not yet added to any complex. 

Next, groupings with high overlaps are merged; and complexes with less than three 

proteins or with low density are discarded. The Restricted Neighborhood Search 

Clustering (RNSC) algorithm, presented in (King, Pržulj, & Jurisica, 2004) and 

(Pržulj, Wigle, & Jurisica, 2004), is a cost-based local search algorithm that uses the 

tabu metaheuristic. It seeks to partition proteins into highly-interconnected subsets. 

The method starts with a random clustering and then, moves nodes from one group to 

another to improve clustering cost. The RRW algorithm (Macropol, Can, & Singh, 

2009) exploits the global structure of a PPI network using repeated random walks. It 
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moves from one node to another based on the probabilities of the connective edges. 

CFinder (Adamcsek, Palla, Farkas, Derényi, & Vicsek, 2006) finds overlapping and 

fully connected complexes based on the clique percolation method. The GIBA tool 

(Moschopoulos, Pavlopoulos, Schneider, Likothanassis, & Kossida, 2009) clusters 

the whole network and then, filters the generated clusters in order to only keep the 

important ones. 

Although these state-of-the-art methods offer good solutions to the 

considered problem, most of them are bound by the assumption that protein 

complexes only correspond to dense subgraphs in protein interaction networks. As a 

result, they cannot identify complexes with few members and/or few interactions. 

That is an important drawback to overcome since for instance, among the 313 protein 

complexes included in the MIPS catalogue (Mewes et al., 2006), 104 complexes 

consist of 2 or 3 proteins (approximately 33%).  ProRank, introduced in (Zaki, 

Berengueres, & Efimov, 2012a) and (Zaki, Berengueres, & Efimov, 2012b) is a 

recent complex-detection method which is not restrained by this density supposition. 

It is mainly based on a protein ranking algorithm inspired by Google’s PageRank 

algorithm discussed in (Brin & Page, 1998), (Bryan & Leise, 2006), (Ishii & Tempo, 

2010) and (Langville & Meyer, 2011). As PageRank sorts web pages according to 

their level of importance, ProRank applies the same analogy to rank proteins in PPI 

networks, and subsequently, to identify the “essential” ones which most-likely have 

central roles in cellular functions. Those proteins are the starting point based on 

which the detected complexes are formed. In addition, the pairwise similarities of the 

proteins are computed under the assumption that proteins belonging to the same 

complex share evolutionary relationships (Kuang, Weston, Noble, & Leslie, 2005). 

In view of the notable performance of ProRank when compared to previous 
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approaches, the algorithm is the keystone of our approach introduced hereafter. Five 

main steps delineate the ProRank algorithm (Zaki, Berengueres, & Efimov, 2012a): 

1- Pruning: PPI datasets are usually noisy; they have high false-positive and 

false-negative rates (Reguly et al., 2006). Accordingly, the first step 

consists of removing unreliable interactions which could negatively affect 

the detection process. That is done using the AdjustCD method introduced 

in (Chua, Sung, & Wong, Exploiting indirect neighbours and topological 

weight to predict protein function from protein–protein interactions, 2006) 

and (Chua, Ning, Sung, Leong, & Wong, 2008); a weighting scheme that 

iteratively calculates the reliability of protein interactions based on the 

topology of the network and then discards the interactions with scores less 

than a specified threshold. 

2- Filtering: based on the protein interaction network, three types of noisy 

proteins are identified: bridge proteins which have a disconnected 

subgraph of neighbors; fjord proteins whose neighbors have a small 

number of interactions among each other; and shore proteins which have at 

least one neighbor with significantly few interactions with other proteins. 

Accordingly, the network vertices are examined for possible memberships 

in these types. Figure 5 illustrates examples of the three described 

categories. 



16 
 

 
 
 

bridge 

protein 

fjord 
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Figure 5: Examples of bridge, fjord and shore proteins in 

PPI networks. 

 

3- Protein Similarity Calculating: proteins belonging to the same complex are 

expected to have evolutionary relationships (Kuang, Weston, Noble, & 

Leslie, 2005). Therefore, the similarity scores among all the proteins in the 

PPI network are calculated using pairwise alignment. 

4- Protein Ranking: in analogy with the PageRank algorithm, a ranking 

algorithm is applied to order the proteins by their importance in the 

interaction network.  

Given   interacting proteins, we represent their interaction network by a 

graph         where           is the set of nodes (proteins) and E 

the set of edges (interactions) among those proteins where         if 

protein   interacts with protein . The goal of the ranking algorithm is to 

order proteins by their importance values in the network. Accordingly, the 

importance measure    of protein   is a real number such that          

and       means that protein   is more important than protein . The 

value of a protein is given by the sum of contributions of all proteins 
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interacting with it. The importance of protein   is based on the following 

equation: 

    ∑     
 

    

    (1) 

where    {         } is the index set of the proteins interacting with   

and    is the number of outgoing links from node  . The total of all values 

is normalized i.e. ∑      
   . Let the values of   be in the vector form 

where         . The PageRank algorithm can thus be rewritten as: 

      ,          and  ∑      
    (2) 

where   is the normalize similarity matrix computed in the Protein 

Similarity Calculating step. 

It is noted here that the vector Note that the vector x is a nonnegative 

eigenvector corresponding to the eigenvalue 1 of the nonnegative 

matrix  . Nonetheless, for this eigenvector to exist and to be unique, it is 

essential that the PPI network is strongly connected. To find the 

eigenvector corresponding to the eigenvalue 1, a modified version of the 

values is defined as follows. Let   be a parameter such that       , and 

let the modified interaction matrix        be given by: 

           
 

 
  (3) 

where   is an     matrix with all entries equal to 1. A typical value of   

is 0.15.  is a positive stochastic matrix. Thus, according to Perron 

theorem 33, this matrix is primitive. Particularly, | |   is the unique 

maximum eigenvalue. Therefore, we apply the following formula to find 

corresponding eigenvector : 
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  (4) 

where           and the initial vector           is a probability 

vector. Expanding on the convergence rate of this scheme, let       and 

      be the largest and the second largest eigenvalues of   in 

magnitude. Then, by the power method applied to , the asymptotic rate of 

convergence is exponential and depends on the ratio 

|          ⁄ |.Since   is a positive stochastic matrix, we have       

  and       . Therefore, the structure of the link matrix   leads us to 

the bound: 

 |     |      (5) 

5- Complex Detection: the essential proteins are the ones which do not 

belong to any of the categories define in step 2. Using the spoke model, 

those proteins are considered by their decreasing ranking order and each of 

them is pulled from the interaction network along with its neighbors to 

form a protein complex. Note that each protein can belong to one complex 

only. 

In addition to those five steps, ProRank discards complexes of less than three 

members and merges two complexes if more than 50% of the neighbors of each 

protein belonging to the first complex are in the second complex. 

2.2 Detecting Protein Complexes in Dynamic Protein-Protein Interaction 

Networks 

PPI networks are dynamic in nature (Levy & Pereira-Leal, 2008). In the 

direction of acquiring better complex-detection results, computational methods ought 
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to profit from the abundance of biological information provided by advanced 

experimental techniques to model the dynamics of protein interactions. A single 

network is usually used to represent a PPI dataset. In contrast, a dynamic PPI 

network can be visualized by a series of schemes representing snapshots of the 

network states corresponding to different stages and/or locations of molecular 

activities. We will hereafter highlight some of the potential concepts and approaches 

that can be used to model the dynamics of protein interaction networks. 

Gene expression datasets present quantitative measurements of RNA species 

in cellular compartments across different conditions (Lovén et al., 2012). Genome-

wide expression levels can now be generated (Secrier & Schneider, 2013). Time-

series gene expression data report quantities of RNA species across various time 

points in cellular processes. Genes with correlated expressions across subsets of 

conditions most likely interact. When combined with PPI data to simulate the 

interaction dynamics, it can potentially reveal the processes which underline the 

formation of protein complexes. For example, that is done in (Wang, Peng, Xiao, Li, 

& Pan, 2013) where it was shown that a just-in-time mechanism elapsing through 

continuous time points delineates the formation of most protein complexes. The 

statistical 3-sigma principle is used in (Wang, Peng, Xiao, Li, & Pan, 2013) and 

(Wang, Peng, Li, Luo, & Pan, 2011) to define the active time points of proteins 

based on their gene expression levels and thus, to introduce approaches for the 

identification and refinement of protein complexes. The core-attachment composition 

of complexes is recently considered in (Li, Chen, Wang, Wu, & Pan, 2014). Relying 

on gene expression data, the identification of a protein complex is split into two main 

parts: a static core consisting of proteins expressed throughout the whole cell cycle 

and short-lived proteins that form a dynamic attachment. The results of these 
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approaches are better than the ones deduced from static networks. Kim et al. (Kim, 

Han, Choi, & Hwang, 2014) highlight some of the computational methods used to 

infer dynamic networks from expression data, based on statistical dependence to 

categorize nodes and/or edges as active or not. These methods include: Bayesian 

networks (Friedman, Linial, Nachman, & Pe'er, 2000), relevance networks 

(Remondini et al., 2005), Markov Random Fields (Song, Kolar, & Xing, 2009), 

ordinary differential equations (Bansal, Belcastro, Ambesi‐Impiombato, & Di 

Bernardo, 2007) and logic-based models (Morris, Saez-Rodriguez, Sorger, & 

Lauffenburger, 2010). 

As it is conditioned by time, the occurrence of a protein interaction is also 

subject to the co-localization of its interacting partners in cellular components (Park 

et al., 2011). In fact, unsuccessful interactions caused by inappropriate protein 

localizations can be pathological. Consequently, subcellular localization annotations 

(de Lichtenberg, Jensen, Brunak, & Bork, 2005) can be also used to model dynamic 

PPI networks based on spatial constraints. Indeed, the formation of protein 

complexes is influenced by the localization settings of proteins as well. As a result, it 

is certainly beneficial to incorporate the spatial dynamics in the direction of 

improving complex-detection approaches. Various methods aim at studying and 

collecting spatial movements of proteins (Lee, Tan, & Chung, 2010). However, in 

addition to mathematical modeling techniques, methods to appropriately integrate 

spatial protein dynamics in PPI networks are still required. 

Gene ontology annotations (Ashburner et al., 2000) provide information 

about genes across different species. They can potentially infer the dynamic aspect of 

PPI networks (Xu, Lin, & Yang, 2010). As an indicator of interaction probability, 

various weighting schemes are introduced to assign PPI weights based on the 



21 
 

 
 
 

similarity degrees of gene ontology terms between interacting partners. Among these 

approaches are: SWEMODE (Lubovac, Gamalielsson, & Olsson, 2006), which 

detects communities within PPI networks based on weighted clustering coefficient 

and weighted average nearest-neighbors degree measures; and OIIP (Xu, Lin, & 

Yang, 2010), which identifies protein complexes in PPI networks by assigning node 

and edge weights based on the size of gene annotations. 

By modeling the dynamics of PPI networks, we can potentially: reproduce 

the mechanisms of protein-complex formation; uncover new biological facts about 

complexes; overcome limitations existing in most experimental datasets; categorize 

modules deduced from PPI networks; and finally, increase the accuracy and 

reliability of the detected results. 

2.3 Associating Genes to Diseases 

The identification of the genes and the inter-molecular events leading to the 

formation of diseases remains an essential research area towards the development of 

effective medical treatments. Based on the assumption that genes related to similar 

disorders tend to be functionally associated (Oti & Brunner, The modular nature of 

genetic diseases, 2007) (Wu, Jiang, Zhang, & Li, 2008), existing methods often 

follow a guilt-by-association (Altshuler, Daly, & Kruglyak, 2000) conjecture by 

which genes are ranked by their similarity to known disease genes. We hereafter list 

various existing approached for gene-disease association. 

Deng et al. (Deng, Chen, & Sun, 2004) combine physical and genetic 

interactions of proteins with gene expression networks, protein complex data and 

domain structures to form an integrated probabilistic model to predict protein 

functions. They apply the Markovian random field theory. Xu and Li (Xu & Li, 



22 
 

 
 
 

2006) classify genes as disease-related or not based on PPI network topology 

features, using the k-nearest neighbor algorithm. Ma et al. (Ma, Lee, Wang, & Sun, 

2007) apply a method based on Markov Random Field (MRF) on a high-throughput 

dataset comprising gene expression profiles and protein interaction data. They seek 

to prioritize disease genes without requiring known candidate genes. Lage et al. 

(Lage et al., 2007) consider that mutations in members of protein complexes lead to 

comparable phenotypes. Accordingly, they build a phenome-interactome network by 

integrating phenotypic data and phenotypic similarities with a high-confidence 

human protein interaction network. They use a Bayesian classifier to potentially link 

previously unknown protein complexes to diseases. Köhler et al. (Köhler, Bauer, 

Horn, & Robinson, 2008) apply a random walk with restart algorithm (RWR) on a 

heterogeneous interaction network to prioritize candidate disease genes. They 

consider that global network-similarity measures reflect the relationships among 

disease genes better than direct or shortest-paths algorithms. Li and Agarwal (Li & 

Agarwal, 2009) use pathway data to answer the gene prioritization problem. They 

examine disease relationships via literature mining to identify disease genes. That is 

done by associating diseases to biological pathways where those genes are enriched 

and linked to diseases based on their shared pathways. Zhang et al. (Zhang, Li, Tai, 

Li, & Chen, 2012) construct a combined classifier multiple PPI network topology 

features to identify disease genes. Guan et al. (Guan et al., 2012) create tissue-

specific functional networks to prioritize disease genes. Their approach is based on 

the notion by which tissue-specificity is viewed as an essential factor that highlights 

the diversity of protein roles in different cell lineages. In other words, forming tissue-

specific functional networks can potentially lead to more accurate gene-phenotype 

associations. Li et al. (Li et al., 2014) introduce novel topological attributes and use 
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support vector machines (SVM) to classify genes as disease-related or not. Chen et 

al. (Chen B. , Wang, Li, & Wu, 2014) introduce a method based on the Markovian 

random field theory and Bayesian analysis for gene-disease association. They 

combine biological data from multiple sources in order to prioritize disease genes. 

Although most of the existing approaches perform well, their limitations 

mainly reside in requiring initial settings of parameters and thresholds in addition to 

the dependence on a single set of gene features, either topological or biological. 

2.4 Summary 

The literature offers various solutions to the research problem and objectives 

that we address in our work. Nevertheless, the research area remains open thanks to 

the continuously-growing biological knowledge provided by advanced experimental 

techniques. In view of that, we seek to overcome the limitations of the existing 

approaches while developing algorithms that are also enriched by the available 

biological information. Accordingly, the proposed solution for the first objective is 

not bound by the assumption that protein complexes only correspond to dense 

subgraphs in PPI networks. Complexes may also overlap. In addition, post-

processing steps are introduced to examine and refine the detected entities based on 

their overlapping protein members. In the second objective, we model the dynamic 

aspect of protein interaction networks by incorporating time-series gene expression 

data. The expressions are analyzed using biclustering techniques (Busygin, 

Prokopyev, & Pardalos, 2008) which allow the identification of subsets of co-

regulated genes across subsets of samples. And in analogy to biological facts, by 

using these techniques a gene can belong to multiple clusters or may not fit in any 

cluster as well. Finally, we present a classification model for the gene-disease 
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association problem which is built based on integrated PPI network topology 

attributes and various biological features collected from multiple sources. We believe 

that by combining computationally-conveyed network analysis and experimentally-

generated biological information, the gene-disease association process can be greatly 

enhanced. 
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Chapter 3: Detecting Protein Complexes in Protein-Protein Interaction 

Networks 

 

In this chapter, we present our approach for the detection of protein 

complexes in PPI networks. Section 3.1 revisits some background information of the 

research objective. In section 3.2, our ProRank+ method is introduced. The 

performance of ProRank+ is testes and compared to the performance of existing 

state-of-the-art approaches in section 3.3. The chapter conclusion is in section 3.4. 

3.1 Background 

The importance of this objective originates from the fact that protein 

complexes are key players in most cellular processes (Gavin et al., 2006). Designing 

suitable methods for the detection of protein complexes in protein interaction 

networks continues to be an intriguing area of research. The more complexes we 

identify, the better we can perceive normal as well as abnormal molecular events. 

Given a set of proteins that participate in a process under study and based on the 

interconnections that they exhibit, biologist use advanced experimental techniques to 

identify the corresponding protein complexes. Nevertheless, this procedure is often 

accompanied with extensive time and cost requirements. Computational approaches 

are consequently developed in order to overcome those drawbacks. Their goal is to 

narrow down the required experimental work by pinpointing protein groups which 

presumably correspond to complexes.  

Our approach for the detection of protein complexes in PPI networks is based 

on the ProRank method (Zaki, Berengueres, & Efimov, 2012a) presented in Chapter 

2. We consider the network presented in Figure 6 to trace the ProRank algorithm. It 

is a sub-network generated from the yeast PPI dataset at the Mentha interactome 
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browser (Calderone, Castagnoli, & Cesareni, 2013), version date 05/01/2014. It 

corresponds to the largest connected portion of the network and includes 235 

interactions of scores greater than or equal to 0.99. The yellow nodes correspond to 

the essential proteins identified by ProRank and the detected protein complexes are 

presented in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Yeast PPI sub-network. The nodes colored in yellow correspond 

to essential proteins identified by the ProRank algorithm. 

Figure 7: Detected complexes by the ProRank algorithm when 

applied on the PPI network in Figure 6. 
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3.2 The ProRank+ Method 

Granting that ProRank achieves competitive results when compared to 

previous approaches, it can be further improved. The pruning, filtering, ranking and 

complex-detection steps are certainly requisite. In fact, PPI datasets are usually 

noisy. They have high false-positives (spuriously-detected interactions) and false-

negatives (missing interactions) rates which could negatively affect the detection 

process. Accordingly, it is important to remove the unreliable edges or even detect 

the missing ones using proper computational techniques. Categorizing the proteins 

and forming the detected complexes based on the essential nodes can potentially lead 

to more accurate results. Moreover, ranking the proteins by their importance in the 

network and using the spoke model to form protein complexes are all vital to the 

complex-detection algorithm. Nevertheless, the similarity calculating step can be 

discarded due to its high computational cost and its low effect on the final results 

(Zaki, Berengueres, & Efimov, 2012a). 

Proteins can participate in multiple cellular functions (Hodgkin, 1998). 

Hence, a protein can belong to many complexes. For instance, among the 1189 

proteins contained in the MIPS catalog of protein complexes (Mewes et al., 2006), 

820 proteins (approximately 69%) belong to more than one complex. Similarly, 

among the 1279 complexes covered by the SGD set (Hong et al., 2008), 332 proteins 

(approximately 26%) belong to multiple complexes. Consequently, the detected 

protein complexes are expected to have common members. A detection algorithm 

which accounts for this fact would most likely lead to more accurate results. This is 

the first alteration of ProRank. To do that, we explore the formation of protein 

complexes from various protein seeds by allowing the complexes to overlap. Indeed, 
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Figure 8: Detected complexes by the ProRank algorithm, with the complex-

overlap assumption, when applied on the PPI network in Figure 6. 

the number of detected entities would increase but it is then subject to merging or 

deleting entities based on their degrees of overlaps. The complexes detected after 

adding the overlap assumption to ProRank and applying it on the PPI network in 

Figure 6, are shown in Figure 8. 

 

The results uphold the improvement added by allowing the detected 

complexes to overlap. However, it can be noticed that the amount of overlaps among 

some of the detected complexes is relatively high. This was anticipated. Actually, 

since all essential proteins are now seeds for protein-complex formation, the ones 
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that share numerous neighbors will certainly produce highly similar protein 

complexes. In order to overcome this limitation and to further improve the quality of 

the predicted complexes, the following filtering and merging steps are added to the 

algorithm: 

1- Duplicate complexes resulting from the complex-overlap notion are 

removed. 

2- Next, a merging procedure, Merging by Cohesiveness, is applied to 

explore more variations of the detected complexes. In conformity with the 

initial considerations of the ProRank method, we rely on the key roles of 

the essential proteins in the network to establish the merging process. All 

the detected complexes are matched against each other. Two complexes, 

C1 and C2, whose percentage of overlapping essential proteins is above a 

merging threshold, are merged along with their interconnections to form a 

larger complex C. Then, the process uses the cohesiveness measure 

introduced in (Nepusz, Yu, & Paccanaro, 2012) to assess the quality of the 

resulting complex and its iterative extensions as follows. The cohesiveness 

of a complex C is given by equation (6): 

                  
      

                
 (6) 

where win(C) is the sum of the weights of edges that are entirely contained 

in C, wout(C) is the sum of the weights of edges that connect the proteins 

belonging to C to the rest of the network and p is a penalty term reflecting 

PPI uncertainties. This cohesiveness measure was developed to model the 

assumption by which a protein complex is viewed as an entity with 

strongly-interconnected members that is well-separated from the rest of the 
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network. The successive steps of our merging procedure aim at refining 

merged complex while increasing their cohesiveness measures. For each 

protein, prot, contained in C: first, the set of its neighbors, Nprot, is formed; 

then, for each neighbor protein nprot  in Nprot, the complex C’=C ∪ {nprot} is 

constructed; and if the cohesiveness of C’ is greater or equal to the 

cohesiveness of C, nprot is added to C. After exploring all the proteins 

initially belonging to C in the same manner, the derived complex is added 

to the final list of detected complexes. The pseudocode of merging two 

complexes, Merge_by_Cohesiveness, is presented next. 

Pseudocode of the Merge-by-Cohesiveness algorithm 

Merge_by_Cohesiveness (C1, C2, merging_threshold) 

ep1 = (set of essential proteins in C1) 

ep2 = (set of essential proteins in C2) 

if size(ep1) > size(ep2) then 

 larger_set = ep1 

else larger_set = ep2 

end if  

ep = ep1 ∪ ep2 

if size(ep) > size(larger_set)*merging_threshold then 

 C = C1 ∪ C2 

 for prot in C do 

 N_prot = (set of neighbors of prot) 

        for n_prot in N_prot do 

 C’ = C ∪ {n_prot} 

                      if Cohesive(C’) ≥ Cohesive(C) then 

                            C = C ∪ {n_prot} 

                      end if 

 end for 

  end for 

end if 

 

3- Additional screening of the generated complexes is applied to remove 

possible duplicates. 

In summary, Figure 9 shows the steps of the ProRank+ algorithm. 
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Figure 9: Steps of the ProRank+ algorithm. 
 

3.3 Experimental Study 

3.3.1 Datasets and Evaluation Criteria 

ProRank+ is tested on five large-scale protein-protein interaction datasets 

associated to the well-studied yeast microorganism. Four of the datasets consist of 

weighted protein interactions, they are: Collins (Collins et al., 2007), Krogan core 

and Krogan extended (Krogan et al., 2006), and Gavin (Gavin et al., 2006). The fifth 

dataset, BioGRID (Stark et al., 2006), consists of unweighted interactions. The 
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characteristics of the five datasets used in the experimental work are shown in Table 

1. 

Dataset 
No. of 

Proteins 

No. of 

Interactions 

Network 

Density 

Average no. 

of neighbors 

Collins 1,622 9,074 0.007 11.189 

Krogan Core 2,708 7,123 0.002 5.261 

Krogan extended 3,672 14,317 0.002 7.798 

Gavin 1,855 7,669 0.004 8.268 

BioGRID 5,640 59,748 0.004 21.187 

 

The sets of predicted complexes are matched against the MIPS catalog of 

protein complexes (Mewes et al., 2000). The same datasets and the reference set of 

complexes are used to evaluate the ClusterONE method and to compare its 

performance with other approaches. We also adopt the same quality scores applied in 

(Nepusz, Yu, & Paccanaro, 2012) to assess the quality of our algorithm. In addition, 

it is important to note that the parameters of the compared algorithms are optimized 

in such a way to produce best possible results. The quality scores cover: (a) the 

number of complexes in the reference catalog that are matched with at least one of 

the predicted complexes with an overlap score, w, greater than 0.25; (b) the 

clustering-wise sensitivity (Sn); and (c) the clustering-wise positive predictive value 

(PPV) which are used to calculate the matching quality, mainly in terms of the 

correctly-matched protein members among the detected complexes; (d) the geometric 

accuracy (Acc) which is the geometric mean of Sn and PPV; and (e) the maximum 

matching ratio (MMR) which reflects how accurately the predicted complexes 

represent the reference complexes by dividing the total weight of the maximum 

matching by the number of reference complexes. Given m predicted complexes and n 

reference complexes, and based on the confusion matrix, T = [tij], the corresponding 

Table 1: Characteristics of the five experimental datasets. 
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formulae are given by equations (7) to (10).  A and B refer to two complexes in 

equation (7) and tij represents the number of proteins that are found in both predicted 

complex m and reference complex n in equation (8) and (9). 

        
|   | 

| || |
 (7) 

    
∑       

    
 
   

∑   
 
   

 (8) 

     
∑       

    
 
   

∑ ∑    
 
   

 
   

 (9) 

     √       (10) 

3.3.2 Experimental Settings of ProRank+ 

The steps of applying ProRank+ on a given dataset, D, and their experimental 

settings are as follows: 

1- Pruning: removing unreliable protein interactions from D using the 

AdjustCD method (Chua, Ning, Sung, Leong, & Wong, 2008). This 

technique assigns weights to the interactions based on the network 

topology and considers unreliable those whose weights are less than a 

specified threshold. Here, we experimentally set the pruning threshold to 

0.2 for weighted datasets and to 0.45 for unweighted datasets. 

2- Filtering: identifying bridge, fjord, and shore proteins which could add 

noise to the network, as defined in (Zaki, Berengueres, & Efimov, 2012a). 

3- Protein Ranking: ordering proteins using a ranking algorithm, in analogy 

with the PageRank algorithm. 

4- Complex Detection: considering all the essential proteins, i.e. those that do 

not belong to any of the types defined in step 2, as seeds based on which 
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detected complexes are formed using the spoke model. Here, a protein can 

belong to more than one complex. 

5- Pre-processing: filtering the set of predicted complexes by removing 

possible duplicates generated due to the introduced overlap assumption. 

6- Merging by Cohesiveness: two detected complexes, whose overlap is 

above a merging threshold, here 75%, are merged. The subsequent 

complex is iteratively extended following the presented merging 

procedure. 

7- Post-processing: filtering the refined set of predicted complexes to remove 

possibly replicated copies of the same complexes resulting from the 

previous merging step. 

3.3.3 Comparison with Other Methods 

ProRank+ is compared to other state-of-the-art methods. They include ProRank 

(Zaki, Berengueres, & Efimov, Detection of protein complexes using a protein 

ranking algorithm, 2012a) to highlight the attained improvement, Markov Clustering 

(MCL) (Van Dongen, 2001), the molecular complex detection (MCODE) algorithm 

(Bader & Hogue, 2003), the clustering based on maximal cliques (CMC) method 

(Liu, Wong, & Chua, 2009), the Affinity Propagation (AP) algorithm (Frey & 

Dueck, 2007), ClusterONE (Nepusz, Yu, & Paccanaro, 2012), the restricted 

neighborhood search (RNSC) algorithm (King, Pržulj, & Jurisica, 2004), the RRW 

algorithm (Macropol, Can, & Singh, 2009), and CFinder (Adamcsek, Palla, Farkas, 

Derényi, & Vicsek, 2006). The comparisons among the results scored by these 

approaches (Nepusz, Yu, & Paccanaro, 2012) and those scored by ProRank + are 

displayed in Figures 10 and 11. Since not all the algorithms can be applied to 
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Figure 10: ProRank+ compared to ProRank, MCL, MCODE, CMC, AP, 

ClusterONE, RNSC, RRW, and CFinder. Here, the four weighted yeast 

datasets are used: Collins, Krogan core, Krogan extended and Gavin. The 

comparisons are in terms of (a) the number of clusters that match the 

reference complexes, (b) the geometric accuracy (Acc) which reflects the 

clustering-wise sensitivity (Sn) and the clustering-wise positive predictive 

value (PPV), and (c) the maximum matching ratio (MMR). 

unweighted datasets, fewer methods for instance were applied on the BioGRID 

dataset. 
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The experimental results show that ProRank+ detects a higher number of 

protein complexes that are matched with the reference set. Note that the number of 

clusters predicted by ProRank+ is relatively higher than the number of clusters 

returned by the other methods for Collins, Gavin and BioGRID datasets. 

Nevertheless, the ratio equivalent to the number of matched complexes over the 

number of detected clusters falls within the same range of the ratio corresponding to 

the other methods. Added to that, ProRank+ achieves higher clustering-wise 

sensitivity (Sn), geometric accuracy (Acc) and maximum matching ratio (MMR) for 

all the considered datasets. However, it cannot surpass the clustering-wise positive 

predictive value (PPV) of ProRank which was the highest for all datasets. This can 

be justified by the fact that PPV tends to be lower when the overlaps among the 

detected complexes are substantial. By the PPV formula, a complex-detection 

algorithm that fully succeeds in detecting the reference complexes has a PPV value 

less than or equals to 1 since there is a matching predicted complex for every 

Figure 11: ProRank+ compared to ProRank, MCL, MCODE, AP, 

ClusterONE, RNSC, and RRW. Here, the un-weighted BioGRID 

dataset is used. The comparisons are in terms of (a) the number of 

clusters that match reference complexes, and (b) the geometric 

accuracy (Acc) which reflects the clustering-wise sensitivity (Sn) 

and the clustering-wise positive predictive value (PPV), and the 

maximum matching ratio (MMR). 
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reference complex, in addition to other predicted complexes that partially overlap 

with reference complexes. On the other hand, a dummy detection algorithm which 

distributes the proteins into separate sets of single elements has a PPV value equals 

to 1, which is greater than the PPV of the perfect algorithm that is able to detect all 

reference complexes. Consequently, PPV values must be carefully analyzed since 

they may not always reflect the competence of a certain method. Moreover, the 

geometric accuracy (Acc) is negatively affected by the predicted complexes that do 

not match any of the reference complexes. This somehow contradicts the initial 

purpose of developing methods for the detection of protein complexes which mainly 

consists of finding previously unknown or undiscovered entities. Accordingly, the 

MMR measure (Nepusz, Yu, & Paccanaro, 2012) is introduced to overcome such 

limitations by dividing the total weight of the maximum matching with the number 

of reference complexes. The MMR values achieved by ProRank+ are in the favor of 

the proposed approach. We hereby note that our approach can also be explored using 

other pruning methods such as the ones introduced in (Zaki, Efimov, & Berengueres, 

2013) and (Kritikos, Moschopoulos, Vazirgiannis, & Kossida, 2011). 

3.3.4 Testing the Ability of ProRank+ to Detect Small Complexes 

Detecting small protein complexes is not a common feature of complex-

detection methods. In fact, it is important to identify such complexes in protein 

interaction networks. For instance, among the 313 protein complexes included in the 

MIPS catalogue (Mewes et al., 2006), 104 complexes consist of 2 or 3 proteins 

(approximately 33 %). Most of the approaches which view protein complexes as 

dense regions in the interaction networks are usually unable to detect complexes of 

small sizes. Hence, we also test the ability of ProRank+ to detect small protein 
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complexes. We consider the same yeast datasets that are utilized in the previous 

experiments. The set consisting of the 104 complexes of small sizes in the MIPS 

catalogue (Mewes et al., 2006) is formed and used as a reference set. The datasets are 

filtered by the AdjustCD method with a threshold of 0.2. The corresponding results 

are shown in Table 2. The table highlights the competency of ProRank+ in detecting 

small protein complexes in terms of the number of matched complexes as well as the 

accuracy (Acc) and the maximum matching ratio (MMR) scores. 

Dataset 
Predicted 

Complexes 

Matched 

Complexes 
Sn Acc MMR 

Collins 428 91 0.875 0.935 0.433 

Krogan Core 229 34 0.667 0.816 0.163 

Krogan Extended 260 78 0.75 0.769 0.217 

Gavin 534 57 0.897 0.947 0.293 

BioGRID 823 78 0.882 0.9 0.351 

 

3.3.5 Testing ProRank+ on Human Protein-Protein Interaction Dataset 

When tested on various datasets, weighted and unweighted, ProRank+ is able 

to detect more complexes than state-of-the-art methods with higher quality scores. 

Indeed, the method could be very helpful for biologists if it is also tested on Human 

interactions and proved valuable in detecting known protein complexes of key roles 

in normal and abnormal cellular functions. Therefore, we apply our method on the 

Human interactions dataset in the BioGRID repository (Stark et al., 2006). The 

interactions are unweighted, and thus the pruning threshold was set to 0.45. The 

pruned dataset consists of 3031 interactions. ProRank+ is able to predict 267 protein 

complexes. We then examine the detected entities for potential mappings with 

known protein complexes; some of which are presented in Table 3 and highlighted 

hereafter. 

Table 2: The results of testing ProRank+ on small complexes. 
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Table 3: Selected complexes detected by ProRank+ when tested on human 

protein-protein interaction dataset. 

Detected 

Complex 
Proteins Members of the Detected Complex 

Matching 

Percentage 

CCT micro-

complex 
{CCT3, CCT2, CCT8, CCT6A, CCT4, CCT7, 

CCT5, TCP1} 
100 % 

Ribosomal 

protein complex 

{RPL32, RPS17, RPSA, RPL10A, RPL12, 

SLC25A5, RPL7, RPL18, RPL15, RPL21, 

RPS6, RPS4X, RPL19, RPL14, RPL4, RPS27L, 

RPS23, RPS26, RPS16, RPL7A, RPS24, RPS13, 

RPS15A, RPS8, RPS3A, FAU, RPL11, RPL6, 

RPL9, RPL5, RPS27, RPL17, RPS2, RPS25, 

RPS20, NOP56, RPS15, RPL23A, RPS10, 

RPL10L, RPLP0P6, RPS28, RPS5, RPS9, 

RPL23, RPL18A, RPS3, RPL37A, RPL31, 

RPL10, RPL8, RPS11, RPL36, RPS19, RPL30, 

RPL24, RPS21, RPL27, RPS12, RPL29, RPS29, 

RPS7, RPL22, RPLP0, RPS14, RPL3, RPLP2, 

RPL27A, RPL13, RPS18, RPS27A} 

81.48 % 

PA700-20S-

PA28 complex 
{PSMD8, PSMB2, PSMC3, PSMC4, PSMA4, 

PSMA1, PSMD1, PSMD7, PSMA2, PSMB6, 

PSMB7, PSMD3, PSMB1, PSMC1, PSMC5, 

PSMC2, PSMB4, PSMA6, PSMD6, PSMD14, 

PSMD12, PSMD11, PSMD13, PSMA7, PSMC6, 

PSMA5, PSMB3, PSMB5, PSMA8, PSMD2} 

83.33 % 

SWItch/Sucrose 

NonFermentable 

(SWI/SNF) 

complex 

{SMARCA4, SMARCC1, ARID1A, SMARCE1, 

SMARCC2, SMARCA2, SMARCB1} 
60 % 

 

1- The CCT micro-complex (Liou & Willison, 1997) which participates in 

protein folding, assembly and transport. It is fully-detected by ProRank+. 

2- The Ribosomal protein complex (Nakao, Yoshihama, & Kenmochi, 2004) 

is detected with an 81.48 % match. Five additional proteins are detected: 

SLC25A5, RPS27L, NOP56, RPL10L, and RPLP0P6. Their association 
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with the detected complex may be just noise or, on the contrary, can 

present biologically meaningful information. 

3- The PA700-20S-PA28 complex (Kopp, Dahlmann, & Kuehn, 2001) is 

detected with a mapping percentage of 83.33%. This complex is a key 

component of the ATP-dependent proteolytic pathway in eukaryotic cells 

and is responsible for the degradation of most cellular proteins. 

4- A recent publication (Shain & Pollack, 2013) confirms that the mutations 

of the SWItch/Sucrose NonFermentable (SWI/SNF) complex are 

ubiquitous in various types of cancer. Accordingly, future research efforts 

will put more focus on this tumor suppressor complex towards better 

understanding of cancer diseases and in the direction of developing more 

effective cures. The SWI/SNF complex is composed of ten elements 

distributed as follows: (a) SMARCA2 or SMARCA4, two mutually-

exclusive ATPase enzymatic subunits; (b) ARID1A, ARID1B, or PBRM1, 

three mutually-exclusive subunits associated to functional specificity; (c) 

core and accessory subunits including SMARCB1, SMARCC1, 

SMARCC2, SMARCE1, SMARCD1, SMARCD2, or SMARCD3, 

PHF10, DPF1, or DPF2, DPF3, and ACTL6A or ACTL6B. We map the 

composition of SWI/SNF with the set of predicted complexes by 

ProRank+. Our method is able to detect a complex consisting of the 

elements SMARCA4, SMARCC1, ARID1A, SMARCE1, SMARCC2, 

SMARCA2, SMARCB1. In comparison with the known structure of 

SWI/SNF, ProRank+ correctly predicts six members out of ten 

corresponding to 60 % of its subunits with a relatively low number of false 

positives. 
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The above experiment affirms the ability of ProRank + to identify significant 

and key protein complexes from protein interaction data. In addition, such outcomes 

can potentially contain relevant and previously-undiscovered protein complexes or 

unidentified protein members of certain complexes. 

3.4 Conclusion 

ProRank+ is an efficient method for detecting protein complexes in protein-

protein interaction networks. The detection process is mainly centered on a ranking 

algorithm that allows the identification of key proteins based on which the 

corresponding components are formed. It is also tailored by a series of pruning, 

filtering and merging steps, allowing the refinement of the drawn complexes. Unlike 

most approaches, the design of our method is not bound by the sole association of 

protein complexes to dense regions in interaction networks. In addition, ProRank+ 

takes into account possible overlaps among complexes and this is an important 

assumption that reflects biological facts. In contrast with other methods, the 

experimental study underlines the competitive ability of ProRank+ to identify protein 

complexes. The performance of our algorithm is tested on weighted and un-weighted 

datasets and using Human protein interaction data as well. The results greatly favor 

our method. 
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t1 t2 tn 

Figure 12: Snapshots of a hypothetical PPI network, showing its dynamics 

through different temporal, spatial and/or contextual settings. Nodes and edges 

of the same color belong to the same protein complex. 

Chapter 4: Detecting Protein Complexes in Dynamic Protein-Protein 

Interaction Networks 

 

In this chapter we present our solution for the second research objective, 

modeling the dynamic aspect of PPI networks and detecting protein complexes 

accordingly. In section 4.1, we review the motivation of this objective and list the 

advantages of modelling the dynamics of protein interaction networks. The 

DyCluster method is introduced in section 4.2. The experimental study and results 

are presented in section 4.3. Finally, the chapter is concluded in section 4.4. 

4.1 Background 

Early methods developed for the detection of protein complexes usually 

model protein-protein interaction data as a static and all-inclusive network. However, 

protein interactions do not occur at the same time (Macropol, Can, & Singh, 2009), 

i.e. they are subject to various temporal, spatial and contextual settings. Accordingly, 

instead of a single network representation, we would rather be looking at a series of 

snapshots of a PPI network modeled based on either one or a combination of 

conditions, as shown in Figure 12. 
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Novel experimental techniques can currently make such biological information 

available. Hence, the shift from viewing PPI networks as static to modeling the 

dynamics of these networks became fundamental (Przytycka, Singh, & Slonim, 

2010). Hereafter, we highlight some of the advantages of this transition. First, it is a 

natural response to advances in experimental methods as it enhances the replication 

of real biological events. Indeed, the more representative are the models and the 

methods, the higher the accountability and the accuracy of the produced results. 

Second, by combining different biological data, we can reach a computational 

visualization level of protein interaction events that could verify or even contradict 

biological concepts. Furthermore, previously unknown facts may be learned, such as 

the characterization of hub proteins (Han et al., 2004) as “party hubs” which interact 

with their partners at the same time or “date hubs” which connect to their partners at 

different times and locations. In addition, integrating multiple types of biological 

information allows overcoming data limitation issues. For instance, PPI datasets are 

usually susceptible to high error rates (Reguly et al., 2006); they may have missing 

interactions or may include spuriously-detected ones. Moreover, possible enrichment 

data that can be used to model the dynamics of PPI networks, such as gene 

expression profiles (Chen & Yuan, 2006) and gene ontology (Xu, Lin, & Yang, 

2010), suffer from low gene coverage in contrast with most PPI datasets, in which 

the number of interacting proteins is typically very high (Von Mering et al., 2002). 

The recurrence of information and/or inferences that are drawn from different types 

of biological data can be seen as a confidence indicator. In view of that, the 

integration of various datasets, even if not highly-credible, in the direction of 

modeling PPI dynamics can potentially reduce the effect of false positive and false 

negative rates, as well as low coverage issues. In contrast with static PPI networks, 
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the information revealed by dynamic networks is at a higher level of details. For 

instance, in the problem of identifying protein complexes, most of the presented 

algorithms do not differentiate between functional modules and protein complexes. 

That is mainly due to the absence of embedded information in the networks that 

could guide the search. In fact, complexes are formed by proteins which interconnect 

at the same time and place, whereas the members of functional modules may interact 

at different times and places (Spirin & Mirny, 2003). Accordingly, when PPIs are 

constrained by spatiotemporal conditions inferred from gene expression and gene 

ontology datasets for example, the detected components could more likely be 

categorized as protein complexes or functional modules. Likewise, dynamic PPI 

modeling may highly contribute to the detection of protein subcomplexes. Various 

approaches were developed to solve this important research problem, but all based on 

static networks (Zaki & Mora, 2014). As dynamic modeling can reveal the 

mechanisms of protein-complex formation and can thus yield better complex-

detection approaches, it can also provide the same for the detection of subcomplexes.

  Finally, since dynamic PPI networks better describe protein interconnections, 

they can highly lead to better analytical results. The integration of temporal, spatial 

or contextual biological information with PPI data as a means to reproduce the PPI 

dynamics, can be viewed as clustering based on temporal, spatial and/or contextual 

attributes. Hence, proteins and their interactions can be grouped based on the 

integrated conditions and complex- detection methods shall be applied accordingly, 

indeed with a generalization capability. Consequently, the reliability of 

computational approaches is expected to increase. 
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Based on the listed advantages, the next objective is to model the dynamic 

aspect of PPI networks and then modify our complex-detection algorithm, ProRank+, 

accordingly. Our approach is presented hereafter. 

4.2 The DyCluster Method 

The biological information that could be used to represent dynamic PPI 

networks include, but are not limited to, gene expression data (Lovén et al., 2012) 

which report quantitative measurement of RNA species in cellular compartments 

across various conditions, subcellular localization annotations (de Lichtenberg, 

Jensen, Brunak, & Bork, 2005) which provide spatial positions of elements in 

cellular components; and gene ontology annotations (Ashburner et al., 2000) which 

highlight genes that are present across different species. Time-series gene expression 

data measure quantities of RNA across different time points in cellular processes. 

Genes with correlated expressions across various conditions most likely interact. 

Hence, the combination of time-series gene expression information with PPI data can 

be used to model the dynamics of the PPI networks. For instance, that is done in 

(Wang, Peng, Xiao, Li, & Pan, 2013), (Wang, Peng, Li, Luo, & Pan, 2011), (Li, 

Chen, Wang, Wu, & Pan, 2014) and (Kim, Han, Choi, & Hwang, 2014); as 

elaborated in the literature review (Chapter 3). Our proposed approach, DyCluster, 

requires as input a gene expression dataset and a PPI dataset. It consists of five main 

steps: biclustering gene expression data, extracting biclusters’ PPIs, pruning bicluster 

PPIs, detecting protein complexes and finally, merging and filtering the sets of 

detected protein complexes. An outline of the method is presented in Figure 13. 
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Gene Expression Dataset 

Biclustering Gene Expression 

BC1 BC2 BCk . . . 

Extracting Bicluster PPIs 

BC1_PPI BC2_PPI BCk_PPI . . . 

PPI Dataset 
. . . 

Pruning Bicluster PPIs 

Pruned 

BC1_PPI 

Pruned 

BC2_PPI 

Pruned 

BCk_PPI 
. . . 

Detecting Protein Complexes 

DC1 DC2 DCk . . . 

Merging and Filtering 

Detected Protein Complexes 

Figure 13: An outline of the DyCluster method.  

4.2.1 Biclustering Gene Expression Data 

A gene expression dataset shows the expression levels of a typically large 

number of genes across different environmental conditions, time points, organs, 

species, etc. It is conventionally represented as a matrix in which rows and columns 

correspond to genes and their expression levels at different conditions or samples 

respectively. It is assumed that genes which exhibit similar expression patterns 
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across various conditions can be functionally-related (Baldi & Hatfield, 2002). The 

analysis of these datasets is challenging because they are usually unbalanced, i.e. the 

number of genes is quite larger than the number of conditions (Watson & Berry, 

DNA: The secret of life, 2009). Various approaches are proposed to analyze 

expression data and to group genes according to their expression patterns; in 

particular, data mining approaches such as classification and clustering. 

Classification methods require knowing the label of the resulting classes in advance, 

which somehow limits the process of data exploration. Nevertheless, several research 

efforts study the application of such supervised techniques on gene expression data 

(Asyali, Colak, Demirkaya, & Inan, 2006). Likewise, typical clustering techniques 

have two drawbacks when applied to gene expression data (Jiang, Tang, & Zhang, 

2004): first, each gene must be placed in a cluster even if its similarity with other 

cluster members is relatively low; second, a gene can belong to one cluster only. 

Consequently, these techniques cannot account for the fact that a large number of 

genes can exhibit multiple biological functions (Hodgkin, 1998), and thus can belong 

to more than one cluster. Besides, clustering spans the whole sample set whereas in 

reality, the expression levels of a gene cluster may be correlated based on a subset of 

samples. Thanks to the simultaneous two-dimensional clustering capability which 

they provide, biclustering techniques present better means to explore expression data 

(Madeira & Oliveira, 2004). In fact, they allow the identification of subsets of co-

regulated genes across subsets of samples. Added to that, in analogy to biological 

facts, a gene may belong to multiple clusters or may not fit in any cluster in some 

cases. 

A formal problem formulation of biclustering gene expression data is as 

follows: Let A be an n*m data matrix, representing a gene expression dataset 
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consisting of n genes measured across m conditions; aij being a real value 

corresponding to the expression level of the gene at row i and the condition at 

column j. The goal is to find a set of biclusters BC(I, J); where I is a subsets of genes 

which exhibit similar expression patters across the subset of conditions J. 

We highlight some of the existing biclustering approaches which are also used later 

to evaluate the DyCluster method. Biclustering is first applied on gene expression 

data by Cheng and Church (Cheng & Church, 2000). Their method, CC, consists of a 

greedy search heuristic to form the biclusters, namely the set covering algorithm, and 

uses the Mean Square Residue (MSR) measure to assess the biclusters’ quality based 

on a specified threshold. The MSR of a bicluster BC, of I rows and J columns, 

reflects the degree of coherence between the genes and the conditions which it 

includes. It is calculated based on equation (6) where bcij, bciJ, bcIj and bcIJ represent 

the elements in row i and column j, the row and the column means, and the mean of 

BC, respectively. 

         
 

| || |
∑∑(                   )

 

| |

   

| |

   

 (11) 

The lower the MSR, the higher is the bicluster coherence. Correlations among 

genes can be expressed in terms of scaling and shifting patterns. A robustness 

characteristic of a biclustering algorithm, when applied on expression data, is in its 

ability to capture both types of patterns. MSR can only detect shifting 

correspondences among the expression levels of genes (Bozdağ, Kumar, & 

Catalyurek, 2010). Despite that, it is used by several similar approaches and some 

variants of this measure are also introduced to identify the scaling patterns 

(Mukhopadhyay, Maulik, & Bandyopadhyay, 2009). The Order Preserving Sub 

Matrix (OPSM) algorithm (Ben-Dor, Chor, Karp, & Yakhini, 2003) searches for 
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large submatrices in which genes have the same linear ordering of the samples. The 

Iterative Signature Algorithm (ISA) (Bergmann, Ihmels, & Barkai, 2003) uses the 

signature algorithm to identify self-consistent transcriptional modules consisting of 

co-expressed genes and the samples corresponding to them. A comprehensive survey 

of these methods can be found in (Madeira & Oliveira, 2004). 

4.2.2 Extracting Bicluster PPIs 

Given the set of gene biclusters, BC = {BC1(I1, J1), BC2(I2, J2), ...,BCk(Ik, Jk)}, 

the next step consists of finding the interconnections among the members of each 

bicluster based on a specified PPI dataset. The interactions involving elements that 

belong to the set of proteins in each bicluster are extracted. 

4.2.3 Pruning Bicluster PPIs 

PPI datasets are usually noisy (Marto, 2009). As a result, many methods are 

developed to prune PPI data and thus to reduce their levels of false positives and 

false negatives such as (Chua, Ning, Sung, Leong, & Wong, 2008) and (Zaki, 

Efimov, & Berengueres, 2013). Here, we use the PE method introduced by Zaki et al. 

to assess the reliability of protein interactions at the level of generated biclusters and 

to prune the corresponding PPI subsets accordingly. Experiments show that PE-

measure is efficient as it reduces the level of noise in protein interaction networks by 

looking for subgraphs that are closest to maximal cliques, based on the weighted 

clustering coefficient measures. 



50 
 

 
 
 

4.2.4 Detecting Protein Complexes 

Successively, a protein-complex detection method is applied on the pruned 

biclusters PPIs, disjointedly on each bicluster. Therefore, several sets of identified 

protein complexes are formed, DC1, DC2, ..., DCk. 

4.2.5 Merging and Filtering 

Indeed, it is important to design an appropriate method for the combination of 

the resulting sets of complexes. However, we keep this task for later research stages 

and we hereby limit the formation of the generalized set of complexes to merging 

protein members and filtering duplicates. 

4.3 Experimental Study 

4.3.1 Datasets 

DyCluster requires a gene expression dataset to model the dynamic aspect of 

protein interactions and a PPI dataset from which the interconnections among those 

proteins are extracted. Certainly, the higher the homogeneity of both datasets, 

namely in terms of the species and the number of common genes that they cover, the 

better are the expected outcomes. We refer to Gene Expression Omnibus (GEO) 

repository (Barrett et al., 2013) from which we select the expression dataset of 

accession number GSE3431 (Tu, Kudlicki, Rowicka, & McKnight, 2005), entitled 

“Logic of the yeast metabolic cycle”. It reports the expression levels of genes across 

twelve time intervals in three successive metabolic cycles. Our choice is primarily 

based on its wide coverage of yeast proteins and potentially, a high number of 

participants in various cellular processes. The yeast PPI dataset is downloaded from 
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the Database of Interacting Proteins (DIP) (Xenarios et al., 2002) catalogue of 

experimentally-determined protein interactions. Finally, we compare our results to 

the CYC2008 catalogue (Pu, Wong, Turner, Cho, & Wodak, 2009) containing 408 

complexes, as reference set of yeast protein complexes. 

4.3.2 Evaluation Scores 

The quality scores, used to evaluate our approach, include: (a) the number of 

complexes in the reference catalogue that are matched with at least one of the 

predicted complexes with an overlap score, OS ≥ 0.2; (b) the clustering-wise 

sensitivity (Sn) and (c) the clustering-wise positive predictive value (PPV) used to 

calculate the matching quality, mainly in terms of the correctly-matched protein 

members among the detected complexes; (d) the geometric accuracy (Acc) which is 

the geometric mean of Sn and PPV; and (e) the maximum matching ratio (MMR) 

which measures the maximal one-to-one mapping between predicted and reference 

complexes by dividing the total weight of the maximum matching with the number 

of reference complexes. Note that the same measures are used to evaluate the 

ProRank+ method, introduced in the previous chapter. 

4.3.3 Algorithms 

For the gene expression biclustering step, we use three algorithms: OPSM 

(Ben-Dor, Chor, Karp, & Yakhini, 2003), CC (Cheng & Church, 2000) and ISA 

(Bergmann, Ihmels, & Barkai, 2003). Here, we note that although efforts are spent in 

the direction of finding suitable ways to evaluate biclustering approaches (Oghabian, 

Kilpinen, Hautaniemi, & Czeizler, 2014), comparing their performances is still a 

challenging task. Added to that, in order to shed the light on the advantage of using 
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gene expression data, we also examined the results of applying the framework using 

the one-way clustering method k-means (Hartigan & Wong, 1979), based on 

Pearson’s correlation as a distance measure. The parameters settings of these 

algorithms are presented in Table 4. We used the BicAT tool (Barkow, Bleuler, 

Prelić, Zimmermann, & Zitzler, 2006) to visualize and perform the biclustering of 

the gene expression dataset. 

 Parameter Settings 

CC 

upper limit of MSR:  = 0.5 

threshold for multiple node deletion:  = 1.2 

number of output biclusters = 10 

OPSM number of passed models for each iteration: l = 10 

ISA 

threshold of genes: t_g = 0.5 

threshold of chips: t_c = 0.5 

number of starting points = 100 

K-means 

distance measure: Pearson’s correlation 

number of clusters = 10 

number of iterations = 100 

number of replications = 1 

 

For the step consisting of pruning the PPI data at the biclusters levels, we 

apply the PE method (Zaki, Efimov, & Berengueres, 2013) with default parameters, 

specifically, with edges reliability score threshold equals to 0.1. In terms of protein-

complex detection methods, we use ProRank (Zaki, Berengueres, & Efimov, 

Detection of protein complexes using a protein ranking algorithm, 2012a), ProRank+ 

(Hanna & Zaki, Detecting protein complexes in protein interaction networks using a 

ranking algorithm with a refined merging procedure, 2014), ClusterONE (Nepusz, 

Yu, & Paccanaro, 2012) and CMC (Liu, Wong, & Chua, 2009), MCODE (Bader & 

Hogue, 2003) and CFinder (Adamcsek, Palla, Farkas, Derényi, & Vicsek, 2006). 

ProRank, ProRank+, ClusterONE and CFinder are applied with default parameters. 

For CMC, the overlap and the merging thresholds are set to 0.75 and 0.5, 

Table 4: Parameter settings of the biclustering algorithms. 
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respectively. For MCODE, degree cutoff, node score cutoff, k-core and maximum 

depth from seed are set to 2, 0.2, 2 and 3, respectively. 

Added to that, the generated sets of detected complexes are examined and 

refined as follows: if two complexes have a number of overlapping members greater 

than 75% of the size of the smaller complex; and if the members of the first complex 

interact with at least 50% of the members of the second complex, then they are 

merged. 

4.3.4 Results 

According to the presented framework, the gene expression dataset, 

GSE3431, is processed by the three biclustering algorithms, OPSM, CC and ISA, 

and by the k-means clustering algorithm, one at a time. The PPIs corresponding to 

the proteins contained in each of the resulting biclusters are extracted from the 

specified yeast PPI dataset and are pruned using PE technique. The protein complex-

detection methods, listed above, are applied on the generated biclusters. Finally, the 

detected sets of complexes are merged, filtered and matched against the CYC2008 

reference catalogue. Table 5 shows the corresponding results in terms of the number 

of matched protein complexes and the number of detected complexes along with the 

corresponding evaluation scores. For comparison purpose, the table also includes the 

results of just applying the detection algorithms on the PPI dataset, excluding the 

gene expression data. 

Method 
Biclustering 

Algorithm 

No. of 

matched 

complexes 

No. of 

detected 

complexes 

Acc Sn MMR PPV 

P
ro

R
a
n

k
 

None 41 230 0.4715 0.3072 0.1032 0.7237 

OPSM 78 335 0.5911 0.4627 0.2103 0.755 

CC 63 252 0.5658 0.4296 0.1804 0.7451 

ISA 71 320 0.564 0.4332 0.195 0.7342 
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K-means 71 331 0.556 0.4222 0.1896 0.7322 

P
ro

R
a
n

k
+

 None 46 274 0.4788 0.3371 0.1161 0.6801 

OPSM 81 397 0.5982 0.5116 0.225 0.6995 

CC 65 305 0.5668 0.4724 0.1947 0.6802 

ISA 78 392 0.5677 0.4719 0.2231 0.683 

K-means 78 424 0.5687 0.4782 0.2196 0.6764 

C
lu

st
er

O
N

E
 

None 76 365 0.6008 0.511 0.2349 0.7064 

OPSM 89 929 0.6426 0.5758 0.2469 0.7172 

CC 78 578 0.6267 0.5465 0.2036 0.7186 

ISA 87 890 0.6015 0.5506 0.2499 0.6571 

K-means 83 862 0.6153 0.533 0.2334 0.7102 

C
M

C
 

None 114 4292 0.6587 0.6517 0.347 0.6658 

OPSM 100 1207 0.6159 0.5566 0.2903 0.6816 

CC 95 1145 0.5983 0.5264 0.2844 0.6801 

ISA 100 1843 0.6041 0.5518 0.3071 0.6614 

K-means 94 1126 0.6088 0.5542 0.2913 0.6689 

M
co

d
e 

None 62 168 0.55 0.4271 0.149 0.7082 

OPSM 71 475 0.5695 0.4602 0.1835 0.7049 

CC 60 285 0.545 0.4058 0.1581 0.7321 

ISA 63 315 0.5529 0.4232 0.171 0.7222 

K-means 74 448 0.5658 0.4583 0.1947 0.6986 

C
F

in
d

er
 None 116 6381 0.6143 0.5641 0.3776 0.669 

OPSM 94 2079 0.6187 0.525 0.2925 0.7291 

CC 98 1236 0.5977 0.559 0.3005 0.6391 

ISA 

K-means 

99 2119 0.5738 0.5393 0.3021 0.6104 

99 1352 0.5988 0.5455 0.3098 0.6574 

 

 

 

4.3.5 Case Study 

Next, we test the effectiveness of DyCluster on a network of 140 key genes 

involved in programmed cell death in Rat Apoptosis (RT2 Profiler PCR Array Rat 

Apoptosis, PARN- 012A) and inflammation (RT2 Profiler PCR Array Rat 

Inflammatory Cytokines and Receptors, PARN-011A). All the 140 genes are 

processed using String 9.1 (http://string-db.org/) (Jensen et al., 2009). String is a 

biological database and web resource of known and predicted protein-protein 

interactions. All the corresponding proteins and their interactions are retrieved and 

Table 5: Experimental results of matching the sets of protein complexes, 

detected by the DyCluster framework, against the CYC2008 reference 

catalogue. 

http://string-db.org/
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the network was built. Once the PPI network including 1413 interactions and 140 

proteins related to the Rattus norvegicus species is build, several enrichment features 

available in String 9.1 (features related to KEGG pathway, Reactome Pathway, 

Molecular function, Pfam domain, InterPro-Domains) are used to generate several 

sub-networks/groups which were then considered as protein complexes. The idea 

here is to see whether DyCluster is capable of detecting such groups of biologically 

related proteins given only the PPI network information. 

In this experiment, the gene expression data set, of accession number 

GSE17384, is downloaded from the GEO (Barrett et al., 2013) repository. It is 

entitled: “Gene expression data from the LEC rat model with naturally occurring and 

oxidative stress induced liver tumorigenesis”. It reports the variations of gene 

expression levels in a stepwise manner from the normal liver condition, to chronic 

oxidative stress-induced hepatitis and liver tumor by time-series microarray analysis. 

In other words, the study involves a comparison between normal liver tissues and 

developed liver tumors at different time points. It can potentially reveal genes which 

participate in the progressive formation of the disease. The OPSM method (Ben-Dor, 

Chor, Karp, & Yakhini, 2003) is used to bicluster the gene expression data since it 

shows a relatively good performance in our experimental study. 

Then, we examine the results for potential matching with the reference 

subnetworks/groups generated using String. Table 6 shows the detected components 

by DyCluster framework, listed by types, along with their matching percentages. The 

experimental results thus confirm the potential of our approach in detecting and 

understanding protein entities of key roles in normal and abnormal cellular functions. 

 Detected Component Matching 

Percentage 

InterPro- Chemokine receptor family 100% 
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Domains G protein-coupled receptor, rhodopsin-like 100% 

GPCR, rhodopsin-like, 7TM 100% 

BLC2 family 83.3% 

BLC2-like 83.3% 

Death effector domain 66.7% 

Interleukin-6 receptor alpha, binding 50% 

Death domain 100% 

Apoptosis regulator, Bcl-2, BH2 motif, conserved site 75% 

Chemokine interleukin-8-like domain 60% 

KEGG 

Pathway 

Chemokine signaling pathway 40% 

Cytokine-cytokine receptor interaction 32.8% 

NOD-like receptor signaling pathway 31.3% 

Apoptosis 34.4% 

Autoimmune thyroid disease 71.4% 

Huntington's disease 66.7% 

Systemic lupus erythematosus 40% 

Asthma 50% 

Intestinal immune network for IgA production 25% 

Cell adhesion molecules 50% 

Pathways in cancer 70% 

Molecular 

Function 

Peptide receptor activity 58.3% 

Receptor activity 52.2% 

Growth factor activity 60% 

C-C chemokine binding 66.7% 

Tumor necrosis factor receptor superfamily binding 40% 

Death effector domain binding 66.7% 

Growth factor binding 50% 

Nucleic acid binding transcription factor activity 75% 

Chemokine activity 77.8% 

Pfam 

Domains 

7 transmembrane receptor, rhodopsin family 100% 

Apoptosis regulator proteins, Bcl-2 family 83.3% 

Death effector domain 66.7% 

Interleukin-6 receptor alpha chain, binding 50% 

Small cytokines (intecrine/chemokine), interleukin-8 like 53.3% 

Death domain 100% 

Reactome 

Pathway 

Activation of DNA fragmentation factor 66.7% 

Interleukin-1 family precursors are cleaved by caspase-1 100% 

Downstream TCR signaling 100% 

FasL/CD95L signaling 100% 

Exocytosis of platelet alpha granule contents 100% 

IRAK4 is activated by autophosphorylation 75% 

Beta defensins 66.7% 

TRAIL  signaling 66.7% 
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Interleukin-1 processing 75% 

FASL:FAS Receptor Trimer, FADD complex 100% 

4.4 Conclusion 

DyCluster is a framework for the detection of protein complexes in dynamic 

protein interaction networks modeled by incorporating gene expression data, through 

biclustering techniques. It responds to the important shift from interpreting PPI data 

as a single static network to modeling and exploring the dynamic nature of these 

networks. Our approach is tested using several biclustering techniques and various 

protein complex detection methods. As the experimental results show, the 

incorporation of gene expression data in the process of detecting protein complexes 

in dynamic PPI networks is indeed beneficial, in contrast with the detection of 

complexes in static networks. On one hand, it can notably increase the correctness 

and the quality of the results, as it is the case for ProRank, ProRank+ and 

ClusterONE where the numbers of matched complexes, Acc, Sn, PPV and MMR are 

higher. On the other hand, biclustering genes based on their expression patterns can 

significantly reduce the large number of complexes detected by some algorithms, 

such as CMC and CFinder, while not compromising the quality of the outcomes. The 

framework models the dynamic aspect of PPI networks by grouping proteins 

according to the similarities of their expression patterns across subsets of conditions. 

Moreover, it is not restricted by threshold imposition on gene expression levels. As 

mentioned earlier, biclustering approaches are better than conventional clustering 

methods when it comes to expression data analysis. Nonetheless, the results attained 

by DyCluster using the k-means clustering algorithm accentuate the improvement 

which can be gained by incorporating gene expression information to model the 

Table 6: The detected components by the DyCluster framework when applied on 

the Rattus norvegicus datasets. 
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dynamics of PPI interactions and to detect protein complexes in PPI networks 

accordingly. Finally, the produced results in our case study are in favor of the 

DyCluster framework. 



59 
 

 
 
 

Chapter 5: Gene-Disease Association through Topological And Biological 

Feature Integration 

 

In this chapter, we present our gene-disease association approach. 

Background information is presented in section 5.1. The building blocks of our 

learning model are discussed in section 5.2. The experimental study is shown in 

section 5.3. A case study in which we apply our approach on the Diabetes Mellitus, 

Type II disease is presented in section 5.4. The chapter is concluded in section 5.5. 

5.1 Background 

The huge amounts of information generated using high-throughput 

experimental techniques continue to motivate the design of suitable methods for 

valuable biological knowledge mining. In particular, the identification of the genes 

and the inter-molecular events leading to the formation of diseases remains essential 

towards the development of effective medical therapies. The association of genes to a 

one disorder accelerates the linkage of key players to other diseases. Full insights 

about the formation processes of most diseases are still incomplete. Based on the 

assumption that genes related to similar disorders tend to be functionally associated 

(Oti & Brunner, The modular nature of genetic diseases, 2007) (Wu, Jiang, Zhang, & 

Li, 2008), existing methods often follow the notion of guilt-by-association 

(Altshuler, Daly, & Kruglyak, 2000) by which genes are ranked based on their 

similarity to known disease genes. Many existing approaches have good 

performance. However, they usually mainly require initial setting of parameters and 

thresholds in addition to the dependence on a single kind of gene features, either 

topological or biological. 
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We present a learning model which classifies genes as disease-related or not, 

based on both topological and biological features. Given a list of genes, the goal is to 

maximize the contrast between disease and non-disease classes. Accordingly, we 

study the topology of the corresponding PPI network to find distinctive positioning 

of genes and we combine biological data from various sources to discover potential 

similarities which characterize each class. Our proposed approach scores an area 

under the receiver operating characteristic (ROC) curve of 0.941 when applied using 

the Naïve Bayes classifier on a multiple disease dataset. 

5.2 Gene Features 

Recent advances in experimental technologies, in general, and in next-

generation sequencing, in particular, offer great means for the identification of 

disease-related genes (Mardis, 2008). Large amounts of informative biological data 

can be easily generated nowadays. Nonetheless, fully perceiving various molecular 

processes still requires the assistance of computational techniques for the analysis 

and the integration of heterogeneous data. Based on the characteristics of reference 

disease genes, the goal is to shortlist other genes which could most likely be related 

to diseases, for further experimental explorations. In our study, we develop a model 

to classify genes as disease-related or not according to common PPI network 

topology attributes and various biological features shared by each type. We believe 

that by gathering computationally-conveyed network study and experimentally-

generated biological information, we can enhance the gene-disease association 

process. 
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5.2.1 Topological Features 

Mutations in interacting proteins often lead to similar phenotypes. 

Accordingly, PPI networks in which proteins and there interconnections are 

represented as nodes and edges respectively, significantly reflect the functional 

associations among genes (Xu & Li, 2006). Studying PPI networks to extract the 

topological features can greatly expedite gene-disease association tasks. In view of 

that, given a set of genes to classify, we examine the corresponding PPI network and 

compute the topological features of the nodes, as described in Table 7. 

Topological 

Features 
Description 

Degree Number of edges that are adjacent to a node 

Eccentricity 
The distance from a node to the farthest node from it in 

the network 

Closeness 

Centrality 

The average distance from a node to all other nodes in 

the network 

Betweenness 

Centrality 

The number of times a node appears on shortest paths 

between nodes in the network 

Authority The value of the information stored at a node 

Hub The quality of a node’s links 

Modularity 

Class 

The class reflecting how well a network decomposes 

into modular communities 

PageRank The rank of a node by its importance in the network  

Component 

ID 

The number of connected components to a node in the 

network 

Clustering 

Coefficient 

The completeness of the neighborhood of a node in the 

network 

Number of 

triangles 

The number of connected triangles including a certain 

node 

Eigenvector 

Centrality 

The importance of a node in the network based on its 

connections 

 Table 7: The topological features of genes and their definitions. 
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5.2.2 Biological Features 

Various experimental observations can be viewed as sources of descriptive 

evidences that could potentially tell apart disease from non-disease genes (Piro & Di 

Cunto, 2012). Hence, the more attributes we include, the larger the potential contrast 

between gene classes. The biological features of genes considered in our study are 

presented hereafter. 

1- Sequence Length: Previous studies show that disease genes tend to have 

longer sequences (Mushegian, Bassett, Boguski, Bork, & Koonin, 1997). 

In view of that, the number of amino acids in the canonical gene sequence 

is examined. 

2- Gene Ontology (GO) Terms: The GO project (Ashburner et al., 2000) 

provides a set of hierarchically-controlled vocabulary that describes gene 

products in terms of their biological processes, molecular functions and 

cellular components. Biological processes cover the gene molecular events 

related to the functioning of integrated living units including cells, tissues, 

organs, and organisms. Molecular functions delineate the elemental 

activities of a gene product at the molecular level. Cellular components are 

the parts of a cell or its extracellular environment in which the gene 

resides. 

3- Topological Domains: The topology and the compartments of proteins in 

the cell can potentially take part in disease or non-disease gene 

classification (Ibn-Salem et al., 2014). In particular, the topological 

domain information which describes the subcellular compartments where 

each non-membrane region of a membrane-spanning protein is found. 
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4- Chain: This feature shows the extent of a polypeptide chain in the mature 

protein following processing. It can also provide an insight on whether a 

protein is related to disease or not (Park & Park, 2015). 

5- Domain: Defined as a specific combination of secondary structures 

organized into a characteristic three-dimensional structure or fold, protein 

domains usually correspond to structural domains which fold 

independently of the rest of the protein chain. 

6- Protein Family: Under the assumption that proteins belonging to the same 

family share common evolutionary origins and thus exhibit similar 

functions (Wu, Huang, Yeh, & Barker, 2003); we take into account protein 

family groupings in our classification process. 

7- Pathway: Considering the pathways in which genes participate could 

potentially direct the association of genes to diseases. 

5.3 Experimental Study 

5.3.1 Data Sources and Feature Collection 

We refer to the paper by Goh et al. (Goh et al., 2007) to extract the gene-

disease association data which reports 1777 genes linked to 1284 disorders split into 

22 types. This data is originally derived from the Online Mendelian Inheritance in 

Man (OMIM) database (McKusick, 2007). We preprocess the dataset as reported in 

the paper by Chen et al. (Chen B. , Wang, Li, & Wu, 2014), namely, by removing the 

genes related to “multiple”, “unclassified”, “cancer”, “neurological” diseases in 

addition to the disease types of less than 30 gene members. The PPI dataset is 

extracted from the Human Protein Reference Database (HPRD) (Prasad et al., 2009) 

which originally comprises 37039 edges. We use the PE method presented in (Zaki, 
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Efimov, & Berengueres, 2013) to assess the reliability of protein interactions and 

clean the PPI data accordingly. As a result, the final learning dataset consists of 9228 

genes out of which 839 are associated to diseases. 

We use Gephi (Bastian, Heymann, & Jacomy, 2009), the interactive 

visualization and exploration platform, to study the PPI network and compute the 

topological features of the genes as listed in Table 7. Next, we consult the Universal 

Protein Resource (UniProt) (UniProt Consortium, 2014) to extract the biological 

features of the genes. UniProt is a comprehensive resource that captures accurate and 

consistent information on proteins including, but not limited to, accepted biological 

ontologies, classifications and cross-references. Sequence length, chain and domain 

attributes are directly retrieved and added to the learning dataset. Some 

preprocessing is required for the rest of the biological characteristics which are 

multi-valued and comprise a large number of possible descriptions. Accordingly and 

since we are interested in identifying disease genes, we look for distinctive top 

feature values describing them. For instance, we look for the top 25 GO biological 

processes, molecular functions and cellular components associated to disease genes 

in the learning dataset, convert them to Boolean attributes and find the values 

corresponding to all the genes accordingly. The idea is illustrated in Figure 14. 

 

 

 

 

 

 

 

 

Genes GO Biological Process 

g1 v1 v2   

g2 v1 v3 v4  

g3 v2   ... 

g4 v1 v4   

. .
 .     

 Top 25 GO Biological Processes 

Genes v1 v3 v4 ... 

g1 1 0 0  

g2 1 1 1 ... 

g3 0 0 0  

g4 1 0 1  

. .
 .     

Figure 14: Conversion to Boolean attributes. 
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The same applies for GO molecular functions, GO cellular components, 

Protein Family and Pathway. Protein family information is based on PROSITE 

database of protein domains, families and functional sites (Sigrist et al., 2012). 

Pathway information is based on the Reactome Pathway Database (Croft et al., 

2014). The number of Topological Domains associated to the genes under 

consideration is relatively lower. For this reason, we pick the top 3 domains and 

convert them to Boolean features in the same manner; they are “cytoplasmic”, 

“lumenal” and “extracellular”. In total, we have 9228 genes with 142 features. 

5.3.2 Classification Model and Results 

After assembling the components of our learning dataset, we develop a 

classification model based on the Naïve Bayes classifier (John & Langley, 1995). We 

use the Weka data mining software (Hall et al., 2009). The generated results are 

based on default parameters of the Naïve Bayes classifier with a 10-fold cross-

validation process. Table 8 and Table 9 represent the confusion matrix and the 

classification scores, respectively. The ROC curve is an essential indicator of the 

classification quality (Zweig & Campbell, 1993). It reflects the classifier's ability to 

discriminate between classes by plotting the true positive rate against the false 

positive rate across various thresholds. The ROC curve of our Naïve Bayes 

classification is presented in Figure 15. It corresponds to an area under curve (AUC) 

of 0.941. 

Classified as 
Non-Disease 

Genes 

Disease 

Genes 

Non-Disease Genes 7858 531 
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Disease Genes 149 690 

 

Class Precision Recall F-Measure AUC 

Non-Disease Genes 0.981 0.937 0.959 0.941 
Disease Genes 0.565 0.822 0.67 

 

 

We compare the outcome of our approach to the experimental results 

presented in (Chen B. , Wang, Li, & Wu, 2014) in which several disease-gene 

identification methods are applied on the same gene-association dataset. Those 

methods include: IMRF2 (Chen B. , Wang, Li, & Wu, 2014) which uses the theory of 

Markov Random Field (MRF) and Bayesian analysis to integrate data from various 

sources; MRF-Deng (Deng, Chen, & Sun, 2004) which is also based on MRF; the 

Table 8: The confusion matrix showing the number 

of correctly-classified and the incorrectly-classified 

instances per class. 
T

ru
e 

P
o
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False Positive Rate 

Figure 15: The ROC curve of our learning model, it 

corresponds to an AUC score of 0.941. 

Table 9: The classification scores of our gene classification 

model. 



67 
 

 
 
 

Random Walk with Restart (RWR) algorithm (Köhler, Bauer, Horn, & Robinson, 

2008) proposed to identify disease genes by combining multiple PPI networks; and 

the method by Chen et al. (Chen et al., 2011) who define a Data Integration Rank 

(DIR) score to find key information in integrated data. DIR has the best performance 

when compared to previous approaches (Chen et al., 2011). The AUC score 

comparisons are presented in Table 10 and our approach clearly has better disease-

gene association results. 

 IMRF2 MRF-Deng RWR DIR Our Model 

AUC 0.743 0.551 0.676 0.691 0.941 

 

5.4 Case Study: Diabetes Mellitus, Type II disease 

In order to test the performance of our proposed model, we consider the case 

study of the Diabetes Mellitus, Type II disease which is a metabolic disorder marked 

by high blood sugar and a lack of insulin in the body (Chen, Magliano, & Zimmet, 

2012). The occurrence of this disease is continuously growing making it one of the 

major healthcare challenges around the world. We consult the OMIM database 

(McKusick, 2007), and extract the genes associated to the Diabetes Mellitus, Type II 

(OMIM: 125853). Next, in terms of PPI data, we refer to HPRD (Prasad et al., 2009). 

We collect the corresponding topological and biological features of the genes, as 

described in our approach. Consequently, a learning dataset is formed; it consists of 

9166 genes out of which only 23 are related to the Diabetes Mellitus, Type II disease. 

We consistently use a 10-fold cross-validation Naïve Bayes classifier to build the 

model. The resultant confusion matrix is shown in Table 11. It corresponds to an 

AUC score of 0.895. 

Table 10: AUC score comparison of our model with 

previous approaches. 
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Classified as 
Non- Diabetes 

Genes 

 

 

Diabetes 

Genes 

Non-Diabetes Genes 9027  116 

15 Diabetes Genes 8  

 

The attained results are in favor of the presented model which can identify 15 

of the Type II Diabetes genes, equivalent to 65.2%. In comparison, our model has a 

better performance than the method by Chen et al. (Chen, Wu, & Jiang, 2013) which 

predicts 13 Type II Diabetes genes. 

5.5 Conclusion 

Finding suitable methods for the identification of disease genes remains 

essential towards understanding how various disorders are formed and ultimately 

finding appropriate medical treatments. Our solution integrates topological features 

calculated based on PPI network analysis with various biological 

information/features of genes stored in multiple databases. Our experimental work 

verifies our initial hypothesis. By combining computationally-conveyed network 

study and experimentally-generated biological information, we can enhance the 

gene-disease association process. 

 

 

Table 11: The confusion matrix showing the number of 

correctly-classified and the incorrectly-classified instances 

per class in our Diabetes Mellitus, Type II case study. 
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Chapter 6: A Comprehensive Case Study: Breast Cancer 

 

6.1 Background 

In this chapter, we present a comprehensive case study on which we apply the 

approaches introduced in this dissertation. The main question that we would like to 

answer here is: by applying our gene-disease association model on a specific disease 

and given that it is able to reliably-identify the disease-related genes, can our 

complex-detection method, ProRank+, generate substantial groupings of those genes 

from a PPI network? To answer this question, we consider the breast cancer case 

study. This disease develops in breast tissues and it is actually the highest occurring 

cancer type in women worldwide (World Health Organization, 2014). Indeed, it is 

important to identify the key players as well as the cellular events which lead to the 

formation of this malady. We start by validating the reliability of our model in 

identifying the genes related to breast cancer. Once confirmed, we apply the 

ProRank+ algorithm (Hanna & Zaki, Detecting protein complexes in protein 

interaction networks using a ranking algorithm with a refined merging procedure, 

2014) to potentially detect protein clusters that can be associated to breast cancer. 

6.2 Identifying Genes Related to Breast Cancer 

From the OMIM database (McKusick, 2007), we get the list of genes related 

to breast cancer (OMIM: 114480). We refer to the Human Protein Reference 

Database (HPRD) (Prasad et al., 2009) and download the up-to-date Human PPI 

dataset. Then, we compute the topological features and collect the biological 

attributes to form the corresponding learning data. It consists of 9167 genes out of 

which 23 breast cancer genes are covered. We use the Naïve Bayes classifier (John & 
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Langley, 1995) with a 10- fold cross-validation to generate the learning model. The 

resultant confusion matrix is presented in Table 12. 

Classified as 
Non- Breast Cancer 

Genes 

Breast Cancer 

Genes 

Non-Breast Cancer Genes 8973 171 
Breast Cancer Genes 10 13 

 

Although the learning dataset is unbalanced, i.e. the number of disease genes 

is very small in comparison with the number of non-disease genes; our model 

identifies 13 of the breast cancer genes (56.5%). In comparison, the protein complex-

prioritization method by Chen et al. (Chen, Jacquemin, Zhang, & Jiang, 2014) ranks 

6 breast cancer genes in the top ten complexes. Considering the classes unbalance 

and examining the results, we can infer that our model has a relatively good 

performance. 

6.3 Detecting protein complexes using ProRank+ 

Considering the performance of our model, we then apply the ProRank+ 

algorithm (Hanna & Zaki, 2014) to potentially detect groupings of breast cancer 

genes in the same PPI network downloaded from HPRD. Various studies noted the 

fact that genes related to the same or similar diseases are often close to one another 

in a PPI network, for example (Oti, Snel, Huynen, & Brunner, 2006) and (Oti & 

Brunner, 2007). In view of that, we refer to the MimMiner (van Driel, Bruggeman, 

Vriend, Brunner, & Leunissen, 2006) tool which uses many text-mining algorithms 

to compute the similarities among phenotypes contained in the OMIM database 

(McKusick, 2007). Given a query disease, in our case breast cancer, MimMiner 

Table 12: The confusion matrix showing the number of correctly-

classified and the incorrectly-classified instances per class in our breast 

cancer case study. 
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Table 13: Top 24 disorders similar to breast cancer, given by MimMiner. 

returns the related phenotypes along with the similarity scores and the causal genes 

of each phenotype. We select the top 24 disorders similar to breast cancer and 

generate the set of associated genes to all of them. The considered disorders are listed 

in Table 13.  

OMIM 

No. 
OMIM Title Similarity 

Score 114480 Breast Cancer 1.0000 

176807 Prostate Cancer 0.5108 

113705 Breast Cancer, Type 1 0.4996 

120435 Colon Cancer, Familial Nonpolyposis, Type 1 0.4560 

155720 Melanoma, Uveal 0.4402 

151623 Li-Fraumeni Syndrome 0.4383 

259500 Osteogenic Sarcoma 0.4205 

278700 Xeroderma Pigmentosum, Complementation Group 

A  

0.4152  

208900 Ataxia-Telangiectasia  0.4100  

256700 Neuroblastoma  0.4093  

102660 Adamantinoma Of Long Bones  0.4044  

603737 Ovarian Germ Cell Cancer  0.4039  

180200 Retinoblastoma  0.4030  

260350 Pancreatic Carcinoma  0.3909  

300068 Androgen Insensitivity Syndrome  0.3904  

305700 Germinal Cell Aplasia  0.3877  

273300 Testicular Tumors  0.3862  

188550 Thyroid Carcinoma, Papillary  0.3853  

211410 Breast Cancer, Ductal, 1  0.3845  

139300 Gynecomastia, Hereditary  0.3834  

158350 Cowden Disease  0.3822  

210900 Bloom Syndrome  0.3794  

194070 Wilms Tumor 1  0.3783  

211980 Lung Cancer  0.3745  

0.3732  151410 Breakpoint Cluster Region  

 

 

Genes in this set are used as seed to protein complex-formation by ProRank+ when 

applied on the Human PPI dataset. Note that protein interactions are pruned using the 

PE method (Zaki, Efimov, & Berengueres, 2013). Since we are interested in 

complexes including as much disease genes as possible, we set the minimum 

http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=176807
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=113705
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=120435
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=155720
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=151623
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=259500
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=278700
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=208900
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=256700
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=102660
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=603737
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=180200
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=260350
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=300068
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=305700
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=273300
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=188550
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=211410
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=139300
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=158350
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=210900
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=194070
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=211980
http://mrs.cmbi.ru.nl/mrs-web/entry.do?db=omim&id=151410
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complex size generated by ProRank+ to 5. The total number of detected complexes is 

113. Among those entities, 12 are shortlisted since the percentage of disease genes 

that they include is greater or equal to 30%. Those complexes are presented in Table 

14, ordered by their decreasing percentage of breast cancer genes. 

Complex 

No. 
Breast Cancer Genes in the Detected Complex 

Percentage of 

Breast Cancer 

Genes 

1 BRCA1, BRCA2, ATM, TP53, RAD51 100% 

2 BRCA1, TP53, MSH2, ATM, CHEK2 83.3% 

3 BRCA1, BRCA2, TP53, RAD51 80% 

4 BRCA1, TP53, MSH2, CHEK2 80% 

5 BRCA1, TP53, XPA, ATM, RAD51, CHEK2 75% 

6 BRCA1, TP53, RB1 60% 

7 
BRCA1, BRCA2, TP53, BARD1, ATM, RB1, AR, 

RAD51, CHEK2 
52.9% 

8 
BRCA1, WT1, BRCA2, TP53, BARD1, ATM, 

PTEN, PPM1D, RAD51, CHEK2, BCR 
37.9% 

9 AR, HIP1, RB1 37.5% 

10 EPHB2, EGFR, BCR 33.3% 

11 BRCA1, EGFR, RB1, PTEN, AR, RNASEL 31.6% 

12 BRCA1, AR, RB1 30% 

 

Figure 16 displays three of those twelve complexes. They respectively 

correspond to complex numbers 8, 7 and 5; based on Table 14. In addition, we show 

the associations of the genes to the phenotypes in which they are involved. 

Table 14: Groupings of genes associated to breast cancer and similar 

phenotypes, detected by ProRank+ and numbered by their decreasing percentage 

of disease genes that they contain. 
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Figure 16: Detected groupings of proteins as detected by the ProRank+ 

algorithm. Circular nodes correspond to proteins among which the ones 

associated to breast cancer and similar phenotypes are colored. Hexagonal nodes 

correspond to phenotypes given by their OMIM numbers. Interactions among the 

proteins are based on the PPI dataset. Interconnections among phenotypes 

correspond to their similarities based on MimMiner. The dotted lines correspond 

to the association of disease genes to various phenotypes. 
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6.4 Conclusion 

Considering the case of breast cancer, our learning model reliably identifies 

most of the genes related to this disease and the top 24 similar disorders. In view of 

that, we apply the ProRank+ algorithm and successfully detect groupings of those 

disease genes in the PPI network. Out of the 113 complexes generated by ProRank+, 

twelve have more than 30% of their protein members related to breast cancer and 

comparable diseases. Our results support the usability and the reliability of the 

presented solutions in this dissertation. Namely, given a set of proteins reported as 

disease-related, the detected entities by ProRank+ may highly-likely include proteins 

which can also be related to the considered disorders. Therefore, such proteins can be 

subject to further experimental examination. 
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Chapter 7: Conclusion 

 

Looking at a protein-protein interaction network, a reliable computational 

approach can identify proteins and subsequently protein groupings that are possibly 

engaged in certain functions or phenotypes, for further experimental examinations. 

The proposed methodology in this dissertation is divided into three main 

contributions. 

First, we present ProRank+, an effective method for the detection of protein 

complexes in PPI networks. It is based on a ranking algorithm which orders proteins 

by their importance in the network. It also applies a merging procedure to refine the 

detected complexes. In addition, our method accounts for the fact that a protein can 

participate in multiple cellular functions by belonging to several complexes. The 

method is tested on weighted and unweighted yeast datasets, as well as human PPI 

data. When compared to several state-of-the-art approaches, our algorithm is able to 

detect more complexes with better evaluation scores. Additional examinations and 

modeling of biological structures and properties of PPI networks and protein 

complexes could further improve the ProRank+ method.  

Second, since protein interactions are usually subject to various temporal, 

spatial and contextual settings, we introduce a novel way to model the dynamic 

aspect of PPI networks. Genes which exhibit similar expression patterns across 

various conditions most likely interact. Hence, we apply biclustering techniques to 

analyze time-series gene expression data in order to group genes by their expression 

patterns across different subsets of conditions. Then, we detect protein complexes 

according to the generated groupings. In terms of experimental results, our 

framework allows the detection of more protein complexes with higher quality 
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scores. Our approach can be extended by integrating other biological data with PPI 

networks such as gene ontology annotations and subcellular localizations to better 

reproduce the dynamics of protein interaction networks. 

Third, we present a classification model which integrates PPI network 

topology attributes and numerous biological features to identify disease-related 

genes. The experimental results validate our hypothesis that combining 

computationally-conveyed network study and experimentally-generated biological 

information can enhance the gene-disease association process. The approach 

identifies 65.2% of the genes related to the Diabetes Mellitus, Type II disease which 

is a better percentage than existing experiments. Based on the attained results, 

contributions from additional gene features may be examined. Moreover, the 

presented approach can be extended by exploring various diseases and ultimately 

linking the outcomes to drug design. Finally, we present a comprehensive study of 

breast cancer. Our learning model recognizes most of the genes associated to this 

disease and the top 24 related disorders. Then, we apply the ProRank+ algorithm to 

detect groupings of those genes in the PPI network.  

The generated results are in favor of our approaches, they support their 

reliability and usability to analyze protein interaction networks and potentially 

discover previously-unknown biological facts. In terms of future research directions, 

our plan includes: (1) Integrating additional biological data and refining the modeling 

of PPI dynamics towards better detection of protein complexes; (2) Working closer 

to biology to potentially explore specific diseases using our approaches, in the 

direction of identifying and validating the associations of genes and protein 

complexes; (3) Computationally and biologically examining the extent at which 

various attributes used in our approaches influence the association of genes to 



77 
 

 
 
 

diseases; (4) Finally, developing comprehensive and flexible tools which allow the 

convenient use of the presented methods in this dissertation. 
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