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Abstract - Developing computational approaches for the 

detection of protein complexes in protein-protein interaction 

networks continues to be an evolving area of research. These 

approaches seek to complement the experimental methods 

which are usually expensive in terms of time and cost. A 

protein-protein interaction dataset is typically modeled as a 

static network whose vertices and edges respectively represent 

all the proteins and their interconnections. Despite the 

agreeable accuracies attained by various computational 

methods when applied on such networks, their additional 

improvements seem to face some limitations. It is believed that 

the more enrichment with biological information is added to 

the interaction networks and complex-detection algorithms, 

the better will be the overall quality of the results. In this 

paper, we stress on the importance of reflecting the dynamic 

nature of protein interaction networks as a primary 

enhancement phase and we highlight possible aspects by 

which it could be acquired. 
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dynamic protein-protein interaction network.  

 

1 Introduction 

  From metabolism to signal transduction, transport, 

cellular organization and ultimately all biological 

processes, proteins are the key players. Their 

interconnections shape interaction networks which 

define highly-organized cellular systems [1]. Biological 

functions are often acquired through collaborations of 

interacting protein groups referred to as protein 

complexes [2]. The progress in identifying protein 

complexes, involved in normal molecular events as well 

as phenotypes associated with diseases, allows the 

progressive development of effective cures. 

Accordingly, various experimental methods were 

designed to identify complexes given protein-protein 

interaction (PPI) data. However, in addition to their high 

computational cost, they are also susceptible to high 

error rates [3]. Therefore, several computational 

approaches came into the picture to complement the 

experimental activities. For instance, protein complexes 

detected by computational algorithms with suitable 

accuracy and quality could guide the experimental 

examinations and expectantly reduce the necessary 

biological explorations. 

 In a computational setting, a PPI dataset is usually 

modeled as a graph whose vertices and edges represent 

all the proteins and their interactions respectively. In 

this context, the majority of the computational 

approaches are based on the concept by which protein 

complexes correspond to dense subgraphs. These 

methods include, but are not limited to, Markov 

Clustering (MCL) [4] which uses random walks in 

protein interaction networks; the molecular complex 

detection (MCODE) algorithm [5] which identifies 

complexes as dense regions grown from highly-

weighted vertices; the clustering based on maximal 

cliques (CMC) method [6]; the Affinity Propagation 

(AP) algorithm [7]; ClusterONE [8] which identifies 

protein complexes through clustering with overlapping 

neighborhood expansion; the restricted neighborhood 

search (RNSC) algorithm [9,10]; the RRW algorithm 

which generates complexes by using repeated random 

walks [11]; and CFinder [12] which is based on the 

clique percolation method. Other approaches which are 

not based on the density notion include ProRank [13,14] 

which mainly uses a protein ranking algorithm to 

identify essential proteins in a PPI network; ProRank+ 

[15] which is an improved version of ProRank, it 

reflects the fact that proteins can be multifunctional and 

thus could belong to multiple complexes and it applies a 

merging procedure to improve the detected complexes; 

and finally PEWCC [16,17] which assesses the 

reliability of PPI data based on the weighted clustering 

coefficient notion prior to detecting protein complexes. 

When evaluated based on reference sets of biologically- 

identified protein complexes, these algorithms were on 

the right track. Nevertheless, their improvements 

towards reducing false positive and false negative 

outcomes seem to be bounded by the way in which PPI 

data is originally utilized and by the false positive and 

false negative interactions as well. The traditional 

experimental approaches used to study PPIs, such as 

yeast two-hybrid (Y2H) [18] and TAP-MS [19], do not 

provide temporal, spatial or contextual information 



across which a PPI occurs. In contrast, recent 

methodological advances, such as ChIP-chip [20] and 

ChIP-seq [21] can make such informative data 

available. Consequently, advances in the computational 

approaches developed to analyze PPI networks, 

including those designed to detect protein complexes, 

ought to relate to such diversity of information that is 

currently presented. PPI networks are dynamic in nature 

[22]. Accordingly, modeling the dynamicity of PPI 

networks is a necessary shift in the way such networks 

are viewed and studied [23]. It is actually essential and 

allows us to expand our knowledge about how cellular 

processes occur. In this paper, we highlight the 

advantages, potential approaches and possible 

bottlenecks of this emerging construal of PPI networks.  

2 The advantages of shifting to 

dynamic PPI networks 

2.1 Enhancing the replication of real biological 

events 

 The shift to dynamic PPI networks in 

computational approaches of systems biology comes as 

a natural response to advances in experimental methods 

by which novel types and increased amounts of 

biological data are generated. As an interdisciplinary 

area of research, the more representative are its building 

models and methods, the better is its aptitude. 

Moreover, when cellular interactions are reproduced in 

a more realistic manner, the accountability and accuracy 

of the results produced by computational methods will 

certainly augment. 

2.2 Potentially uncovering previously 

unknown biological facts 

 A PPI dataset is conventionally represented as a 

comprehensive graph which includes the proteins along 

with all their interactions. However, not all the 

interconnections happen at the same time. In fact, the 

occurrence of a PPI is subject to various temporal, 

spatial and contextual conditions. Obviously, 

encompassing such conditionality parameters elucidates 

the dynamics of PPIs. In view of that, by combining 

biological information, we would reach a computational 

visualization level of protein interaction events that 

could verify or even contradict biological concepts. 

Furthermore, previously unknown facts may be learned, 

such as the characterization of hub proteins in [24] as 

“party hubs” which interact with their partners at the 

same time or “date hubs” which connect to their 

partners at different times and locations. 

2.3 Possibly overcoming data limitations 

 The biological methods used to identify protein 

interactions are very sensitive to experimental settings. 

Therefore, the PPI datasets that they generate are always 

liable to high error rates. Many algorithms were 

developed to filter protein interactions according to their 

reliability levels. For example, some of these methods 

use weighting schemes based on the number of common 

neighbors of interacting proteins such as CDdistance 

[25], FSWeight [26] and AdjustCD [27]. Similarly, the 

PE-measure introduced in [16,17] reduces the level of 

noise in protein interaction networks by looking for 

subgraphs that are closest to maximal cliques based on 

the weighted clustering coefficient measures. In 

addition, possible enrichment data that can be used to 

model the dynamicity of PPI networks, such as gene 

expression profiles [28] and gene ontology [29], suffer 

from low gene coverage in contrast with most PPI 

datasets, in which the number of interacting proteins is 

typically very high [30]. The recurrence of information 

and/or inferences that are drawn from different types of 

biological data can be seen as a confidence indicator. In 

view of that, combining various datasets, although not 

fully-credible, in the direction of modeling PPI 

dynamics could potentially reduce data limitations such 

as the effect of false positives and false negative rates, 

as well as low coverage issues. 

2.4 Increasing the ability to categorize the 

information deduced from PPI networks  

 Dynamic PPI networks, once modeled, can provide 

a closer view of their corresponding cellular events. 

Accordingly, in contrast with static PPI networks, the 

information revealed by dynamic networks is at a higher 

level of details. For instance, in the problem of 

identifying protein complexes in protein interaction 

networks, most of the presented algorithms do not 

differentiate between functional modules and protein 

complexes. That is mainly due to the absence of 

embedded information in the networks that could guide 

the search. In fact, complexes are formed by proteins 

which interconnect at the same time and place, whereas 

the members of functional modules may interact at 

different times and places [31]. Accordingly, when PPIs 

are bounded by spatiotemporal conditions inferred by 

gene expression and gene ontology datasets for 

example, the detected components could more likely be 

categorized as protein complexes or functional modules. 

Likewise, dynamic PPI modeling may highly contribute 

to the detection of protein subcomplexes in PPI 

networks. Various approaches were developed to solve 



this important research problem, but all based on static 

networks [32]. As dynamic modeling could reveal the 

mechanisms of protein-complex formation and could 

yield better complex-detection approaches, it could also 

provide the same for the detection of subcomplexes.  

 

 

Fig. 1 Snapshots of a hypothetical PPI network, capturing its dynamics at different time points/stages. Each schema includes the 

available proteins at a certain stage, along with their interconnections. Nodes and edges of similar colors correspond to the same 

protein complexes, whereas the rest of the edges are represented in yellow. 

 

2.5 Increasing the accountability and the 

accuracy of the results produced by 

computational methods 

 Undeniably, dynamic PPI networks describe 

cellular interactions in a more realistic manner. 

Therefore, the computational methods, customized to 

suit such networks, would certainly produce analytical 

results with higher accuracy and accountability. Here, 

we namely consider the algorithms designed to detect 

protein complexes in protein interaction networks. The 

integration of temporal, spatial or contextual biological 

information with PPI data as a means to show the PPI 

dynamics, can be viewed as a kind of clustering based 

on temporal, spatial and/or contextual attributes. Hence, 

the proteins and their interconnections can be grouped 

based on the integrated conditions and a protein 

complex- 

detection method shall be applied accordingly and with 

a generalization capability indeed. Once this is 

achieved, the rates of false positives and false negatives 

will certainly decrease at the level of the detected 

complexes and at the level of their protein members as 

well. Consequently, the overall accuracy of the results 

will be higher than those scored by methods applied on 

static networks. The former potentially applies to other 

exploratory approaches of PPI networks. 

3 Modeling Dynamic PPI Networks  

 A single scheme is usually used to represent a 

static PPI network with all its components. In contrast, a 

dynamic PPI network can be visualized by a series of 

schemes representing snapshots of the network state 

corresponding to different stages and/or locations of 

molecular activities, as shown in Fig. 1. The 

interpretation of a dynamic interaction network and its 

state transitions depends on the types of data which are 

used to biologically-condition PPI events. We will 

hereafter highlight some of the concepts and the 

approaches to model the dynamicity of protein 

interaction networks and we will particularly relate 

them to the problem of detecting protein complexes in 

PPI networks.  

 The advancements in experimental techniques are 

gradually allowing in-depth explorations of biological 

systems. The resultant progresses can broaden our 

understanding of biology through the integration of 

various types of generated information and by 

consistently developing computational tools to expand 

our knowledge. 

 Gene expression datasets are subsequent products 

which consist of quantitative measurements of RNA 

species in cellular compartments across different 

conditions [33]. Genome-wide expression levels can 

now be studied [34]. Time-series gene expression data 



report quantities of RNA across different time points in 

cellular processes. It is believed that genes with 

correlated expressions across subsets of conditions most 

likely interact. When combined with PPI data to model 

the interaction dynamics, it can potentially reveal the 

processes which underline the formation of protein 

complexes. For instance, that was done in [35] where it 

was shown that a just-in-time mechanism elapsing 

through continuous time points delineates the formation 

of most complexes. The statistical 3-sigma principle 

was then used by the works presented in [35] and [36] 

to define the active time points of proteins based on 

their gene expression levels and consequently, introduce 

approaches to detect and refine protein complexes. The 

core-attachment view of complexes was recently 

considered in [37]; based on gene expression data, the 

identification of a protein complex was split into two 

main parts: a static core consisting of proteins expressed 

throughout the whole cell cycle and a short-lived 

dynamic attachment. The results of these approaches 

were better than the ones tested on static networks. Kim 

et al. [38] highlighted some of the computational 

methods used to infer dynamic networks from 

expression data based on statistical dependence to 

classify nodes and/or edges as active or inactive. These 

methods include: Bayesian networks [39], relevance 

networks [40], Markov Random Fields [41], ordinary 

differential equations [42] and logic-based models [43]. 

 As they are conditioned by time, PPIs are space-

dependent as well. In other words, the occurrence of a 

protein interaction is also subject to the co-localization 

of its interacting partners in cellular components [44]. 

Actually, a failed interaction caused by inappropriate 

protein localizations could be pathological. 

Consequently, subcellular localization annotations [45] 

can be used to model dynamic PPI networks based on 

spatial constraints. Indeed, the formation of protein 

complexes is also influenced by the localization settings 

of proteins. According to that, it is certainly beneficial 

to incorporate the spatial dynamics towards improving 

complex-detection approaches. Various methods aim at 

studying and collecting spatial movements about 

proteins [46]. However, in addition to mathematical 

modeling techniques, further approaches to 

appropriately integrate spatial protein dynamics in PPI 

networks are still required. 

 Gene ontology annotations [47], which provide 

information about genes that are shared across species, 

can also infer the dynamics of PPI networks [48]. As an 

indicator of interaction probability, various weighting 

schemes were introduced to assign PPI weights based 

on the similarity degrees of gene ontology terms 

between interacting partners. Among these approaches 

are SWEMODE [49], which detects communities within 

PPI networks based on weighted clustering coefficient 

and weighted average nearest-neighbors degree 

measures, and OIIP [48], which is a method to detect 

protein complexes in PPI networks by assigning node 

and edge weights based on the size of gene annotations.  

 Gene expression, spatial annotation and gene 

ontology annotation data could credibly contribute to 

the incremental attempts to model dynamic PPI 

networks. 

 Forthcoming approaches are expected to profit 

from these data among other types of biological 

information. Specifically, the integration of biological 

attributes enhances the computational methods designed 

to detect protein complexes in protein interaction 

networks. It not only participates in uncovering the 

mechanisms of protein-complex formation but also 

points out useful details for the design of such methods. 

In addition, the former may help categorize protein 

complexes and could be informative regarding their 

building blocks as well. 

4 Datasets and Evaluation Measures 

 The datasets which could be used to enrich PPI 

networks in order to model their dynamic aspects, such 

as gene expression and gene ontology data, typically 

describe the variations of protein activities and/or 

quantities across sets of conditions. The resulting 

network analysis ought to consider these conditions. For 

example, the detected protein complexes in a PPI 

network enriched by time-series gene expression data 

would most likely be adherent to the conditions across 

which the gene expression data were generated. 

Therefore, reference protein-complex sets which were 

used to evaluate previous approaches that work on static 

networks, such as MIPS [50] and CYC2008 [51], may 

not be the best choice for dynamic networks. 

Accordingly, reference sets tailored to match input 

datasets and their conditionality could be more 

convenient in such cases. Similarly, issues regarding the 

choice of evaluation measures arise when shifting to 

dynamic PPI networks. The formulae used to evaluate 

the accuracy, sensitivity and specificity in addition to 

other qualities of previous approaches are not the same 

[8, 52]. Strong evaluation scores include the number of 

complexes in the reference catalog that are matched 

with at least one of the predicted complexes with an 

overlap score, w, greater than a certain threshold; the 



clustering-wise sensitivity (Sn);the clustering-wise 

positive predictive value (PPV); the geometric accuracy 

(Acc); and the maximum matching ratio (MMR) which 

shows how accurately the predicted complexes 

represent the reference complexes by dividing the total 

weight of the maximum matching by the number of 

reference complexes. Given m predicted complexes and 

n reference complexes, the corresponding formulae are 

given by the following equations, where tij represents 

the number of proteins that are found in both predicted 

complex m and reference complex n. 
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5 Conclusion 

The realization of dynamic protein interaction networks 

is a natural evolution which leverages computational 

methods for biology. It could typically be acquired by 

investing in recent biological data generated by 

advanced experimental techniques. These data include, 

but are not limited to, gene expression, subcellular 

localization annotation and gene ontology terms 

annotation datasets which provide temporal, spatial and 

contextual information about protein interactions 

throughout cellular processes. With emphasis on the 

algorithms for the detection of protein complexes, by 

modeling the dynamics of PPI networks, we could: 

reproduce the mechanisms of protein-complex 

formation more realistically; potentially uncover new 

biological facts about complexes; overcome data 

limitations existing in most experimental datasets; 

categorize modules deduced from PPI networks; and 

finally, increase the accuracy and value of the detected 

results. Accordingly, novel algorithms for the detection 

of protein complexes in dynamic protein interaction 

networks are expected to appear. 
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