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Abstract

Many real-life phenomena involve a delayed rather than instantaneous reaction,
with a dependence on a memory of past events. Examples occur in biology, eco-
nomics, immunology, materials with memory, physiology, and population dynam-
ics, where there is a time-lag or after-effect. Models of such phenomena frequently

involve retarded functional differential equations (RFDEs).

This thesis presents the author’s research in the numerical treatment of some delay
differential equations (DDEs) and neutral DDEs (NDDEs) that occur in certain
areas of bioscience. The main novelty concerns parameter estimation in DDEs,
and a sensitivity analysis of the solution with respect to the parameters and of the
parameters with respect to the observations. When modelling in bioscience, DDEs
and NDDEs are frequently more consistent with real phenomena than differential

equations with no time-lag.
The outline of this thesis is as follows:

In chapter I, we indicate the scope for applications of delay differential models in
biological systems. We show how delay differential models, of real-life phenom-
ena, have potentially more interesting dynamics than equations that lack memory

effects.

In chapter 11, we review some features of DDEs, such as existence and uniqueness
of the solution; propagation and location of discontinuities in DDEs. We inves-
tigate how ODEs formulae (in particular continuous Runge-Kutta formulae) can

be adapted to solve various types of DDEs. We also recall the methods of steps
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and #-methods for DDEs. We describe, in brief, the theory of accuracy and some

issues related to numerical solutions of DDEs.

In chapter 111, we examine the stability of delay models described by linear
and nonlinear DDEs and NDDEs, and conditions that ensure stable behaviour.
In particular we study, and get some new results in, numerical stability regions
of the solutions. Sufficient conditions for contractivity of the solutions are also

discussed.

In chapter IV, we produce a numerical method (using a least squares approach)
for parameter identification in DDEs and NDDEs. We also discuss some related
problems in parameter estimation in DDEs and NDDEs, such as discontinuities
arising in the objective function via the solutions of DDEs. We describe, in
some detail, some numerical models in cell proliferation phenomena and make
a comparison between the exponential and time-lag growth models for pre-B-
cell growth in ‘fetal calf serum’ and growth of ‘fission yeast’. Numerical results
illustrate that (compared with ODEs) DDEs provide better consistency with the

nature of cell proliferation phenomena.

In chapter V', we formulate an approach to sensitivity analysis of delay differential
modes, covering (%) the sensitivity of the state variables to the parameter estimates
(that is, to measure the sensitivity of the solution with respect to changes in
the parameter estimates), (i7) the sensitivity of the parameter estimates to the
observations (to estimate the change in parameter estimates due to a change in
the data) and (i7) the nonlinearity effect. Sensitivity coefficients are used to
determine the covariance matrix of parameter estimates and hence to determine
the standard deviations. Numerical results, based on the growth of E.coli colonies,
illustrate that the sensitivity of the parameter estimate to the observation is low

if the sensitivity of the state variable to the parameter estimate is high.

In the last chapter, we give a general summary and discussion of our results, and
provide some suggestions for further investigation that could be used to extend

the present work.
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