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Abstract

Many problems in bioscience for which observations are reported in the literature can be

modelled by suitable functional differential equations incorporating a delay, parameterized by

parameters p1,p2,. . .,pL. Given such observations (which usually contain error or ‘noise’), we

may determine the parameters by optimizing a measure of best fit. It is often desirable to

have information about “sensitivity” aspects of the problem. For example, the user may wish

to estimate the effect of perturbing the parameters on the solution. In data-fitting, it may

be important to know the effect of small changes of the data on the parameter estimates. In

addition, one might wish to determine the effect of nonlinearity of the model solutions.

Our aim in this paper is to produce a new method to estimate (i) the sensitivity of the state

variables to the parameter estimates {pi}, (ii) the sensitivity of the parameter estimates to the

observations and (iii) the nonlinearity effects for delay differential models. The sensitivity of

the parameter estimate to the observation is low if the sensitivity of the state variable to the

parameter estimate is high. Sensitivity coefficients are used to determine the covariance matrix

of parameter estimates and hence to determine the standard deviations. Numerical results,

based on growth of E.coli colonies, are used to illustrate the results.

A revised version of this Technical Report will be submitted for publication.

Keywords Sensitivity analysis, parameter estimates, neutral delay differential equation, time-lag,

nonlinearity effect.

1 Introduction

Delay differential equations (DDEs) are increasingly used in numerous application areas that include

population dynamics (taking into account the gestation and the maturation time), infectious diseases

(accounting for the incubation periods), physiological and pharmaceutical kinetics (modelling, for

example, hematopoiesis and respiration, where the delays are due, respectively, to cell maturation

and blood transport between the lung and brain, etc.), chemical and enzyme kinetics (such as

mixing reactants), biological immune response (in which the antibody production by the T-cell

population depends on the antigenic stimulation at an earlier time), the navigational control of

ships and aircraft (with, respectively, large and short lags), and more general control problems. We

refer to [4, 5, 6, 9, 18] for more examples in biomathematics. The object of a sensitivity analysis is

to determine systematically the effect of uncertain parameters on system solutions and the effect of

the noisy data on the certainty to which parameters may be determined; see also [14, 16].

∗Mathematics Department, The Victoria University of Manchester, Manchester M13 9PL, England. The second-

named author acknowledges support from the Egyptian Government.
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Consider the system of delay differential equations, parameterized by p ∈ RL:

y′(t,p) = f(t,y(t),y(t− τ),p), t ≥ 0,

y(t,p) = ψ(t,p), t ≤ 0.

(1.1)

In (1.1), the dependent variable is y(t,p) = (y1(t,p), y2(t,p), . . . , yM (t,p))T and the parameters

are given by p = (p1, p2, . . . , pL)
T ∈ RL; τ is the time-lag, to be identified as a parameter. Our

problem, given data {tj ;yj}Nj=1 (incorporating measurements yj of the solution y(t,p) at time tj ;

where N ≥ L), is to find the parameter p = p̂ for which the function y(t;p) provides a ‘best’ fit, at

arguments t = tj , to the given set {yj}Nj=1. (If the model is correct, yj represents an observed value

of y(tj ,p).) When determining the best fit we suppose that the unknown parameter p̂ is estimated

by minimizing the objective function [7]:

Φ(p̂) ≤ Φ(p) :=
N∑

j=1

[
y(tj ,p)− yj

]2
. (1.2)

Other objective functions are sometimes employed, but will not be considered in this paper. We

refer to the above as the least squares (LS) approach, and to p̂ as the LS estimator.

Determining p̂ relies, in general, upon numerical techniques, and these are essential to the

approach presented in this paper. In particular, we rely upon robust and accurate solvers of systems

of (neutral) delay differential equations. It was explained in [2] how the properties of the solutions

of delay (and neutral delay) equations can result in poor continuity of Φ; see Section 4.

1.1 Sensitivity issues and nonlinear bias in the model

Of considerable importance in assessing the model (1.1) is the sensitivity of the model solution

y(t,p) to changes in the parameter p or the sensitivity of the best fit p̂ to changes in the data

{tj ;yj}Nj=1. A knowledge of how the solution can vary with respect to small change in the data or

the parameters can yield insights into the model behaviour and can assist the modelling process.

For example, (i) if it can be seen that a particular parameter pj has no effect on the solution, it

may be possible to eliminate it from the modelling process; (ii) it might be found that a particular

parameter p# is affected by a small change in data and another not affected. In view of the preceding

remarks, we desire to compute the sensitivity of the state variable y(t,p) to the parameter estimates

p and to estimate the sensitivity of the parameter estimate p to the observations yj .

In general, the parameter estimation problem for (1.1) using (1.2) is an example of nonlinear

regression. Nonlinear regression models differ from linear regression models in that, given the usual

assumption of an independent and identically distributed normal stochastic term, linear models give

rise to unbiased, normally distributed, minimum variance estimators, whereas nonlinear regression

models have these properties only asymptotically (when the sample size becomes very large). Thus

it is also desired to estimate the nonlinearity effect in the models. Let us amplify this further.

When the predictions are governed by models using ordinary differential or delay-differential

equations as models, then the LS approach generally leads to a nonlinear minimization problem.

Difficulties may arise from the fact that nonlinear regression models differ in general from the linear

regression models in that the LS parameter estimates can be biased, non-normally distributed,

and have variance exceeding the minimum possible variance [26, p.13]. These characters differ

from model to model, so it is necessary to estimate the nonlinearity effect for every model we use.

The percentage bias in the parameter estimates is a good indicator to the quantitative effect of

nonlinearity; see [8, 26]. We shall consider this further in Section 3.
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Figure 1.1: Intersection of solutions to the different DDEs can cause non-unique best fit in certain data.

1.2 Uniqueness of best fit

For a given set {tj}Nj=1 and an arbitrary function f in (1.1), there is no reason to suppose that

there exists a unique minimizer p̂ of Φ(p). Indeed, it is easy to find examples for non-unique best

fit models; one requires only to find solutions for two different parameters that agree at the points

t1, t2, . . . , tN . In figure 1.1 we give an example of such a scenario; plotting the graphs of solutions

corresponding to small initial functions for the equation

y′(t) = y(t)
[
a− y(t− 1)

]
, t > 0, (1.3)

where p = [a], and 1 ≤ a ≤ 1.6 (say) demonstrates that solutions for different parameters may

pass through a common set of values. If the data correspond to the points of intersection, p is not

uniquely determined.

The question of what happens as N → ∞ under varying assumptions is of theoretical interest

but could only be answered with precise assumptions on {ti} and f . Even when there exists a unique

p̂, the success of iterative methods for determining its value may depend upon a sufficiently close

starting approximation. Graphical displays of Φ(p) for a particular model (see Section 5, figures

5.3 & 5.4) provide some insight.

2 A Special Case: A Linear Neutral-Delay Differential Equation

We consider here a linear scalar neutral-delay differential model of the form:

y′(t,p) = ρ0y(t,p) + ρ1y(t− τ,p) + ρ2y
′(t− τ,p), t ≥ 0, (2.1)

where the right-hand side depends upon the parameters {ρ0, ρ1, ρ2, τ}. Accompanying this equation

is the initial condition

y(t,p) = ψ(t,p), t ≤ 0,
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and in our numerical examples ψ(t,p) will depend upon a parameter ρ3 and on τ . To cover the

complete set of parameters, we take p = [ρ0, ρ1, ρ2, ρ3, τ ]
T as the parameter vector.

The model will allow us to demonstrate the salient features of our discussion, and we address

the modifications required in the case of a more general model (1.1) in Section 6 towards the end of

the paper. We first examine the sensitivity of y(t,p) to p.

2.1 Sensitivity of y(t,p) to the parameter p

In the case of a scalar y(t,p), the partial derivatives
∂y

∂pi
measure the local sensitivity of the solution

with respect to changes in the parameters pi. The sensitivity coefficients that we wish to compute

are the functions si(t,p) ≡
{

∂
∂pi

}
y(t,p) such that

y(t,p+ δp)−
{
y(t,p) +

∑

i

δpisi(t,p)
}

is O(||δp||2) as ||δp|| → 0 (2.2)

(or is at least o(1)||δp||, in the case of reduced differentiability). The sensitivity coefficients si(t,p)

are evaluated at the optimal parameters p := p̂ = [ρ̂0, ρ̂1, ρ̂2, ρ̂3, τ̂ ]
T. We therefore seek the compo-

nents of the first order sensitivity coefficients, evaluated at (t, p̂), of the vector

[
∂

∂ρ0
y,

∂

∂ρ1
y,

∂

∂ρ2
y,

∂

∂ρ3
y,

∂

∂τ
y

]T

= [s1(t,p), s2(t,p), s3(t,p), s4(t,p), s5(t,p)]
T
.

2.1.1 Computing the sensitivity coefficients

The sensitivity coefficients of the model (2.1) can be computed by solving a system of neutral-

delay differential equations (NDDEs). This system comes from differentiating the model (2.1) with

respect to the parameters {ρ0, ρ1, ρ2, ρ3, τ}. We introduce the variable z(t,p) = y′(t,p) and we

repeat equation (2.1) for y to give us (in the present model) a system of equations which can be

expressed as

u′(t,p) = Au(t,p) +Bu(t− τ,p) +Cu′(t− τ,p), t > 0,

u(t,p) = Ψ(t,p), t ≤ 0,

(2.3)

where

A =




ρ0 0 0 0 0 0 0

1 ρ0 0 0 0 0 0

0 0 ρ0 0 0 0 0

0 0 0 ρ0 0 0 0

0 0 0 0 ρ0 0 0

0 0 0 0 0 ρ0 0

0 0 0 0 0 0 ρ0




, B =




ρ1 0 0 0 0 0 0

0 ρ1 0 0 0 0 0

1 0 ρ1 0 0 0 0

0 0 0 ρ1 0 0 0

0 0 0 0 ρ1 0 0

0 0 0 0 0 ρ1 0

0 0 0 0 0 -ρ1 ρ1




,

C =




ρ2 0 0 0 0 0 0

0 ρ2 0 0 0 0 0

0 0 ρ2 0 0 0 0

1 0 0 ρ2 0 0 0

0 0 0 0 ρ2 0 0

0 0 0 0 0 ρ2 0

0 0 0 0 0 -ρ2 ρ2




, u(t,p) =




y(t,p)

s1(t,p)

s2(t,p)

s3(t,p)

s4(t,p)

z(t,p)

s5(t,p)




; Ψ(t,p) =




ψ(t,p)
∂

∂ρ0
ψ(t,p)

∂
∂ρ1

ψ(t,p)
∂

∂ρ2
ψ(t,p)

∂
∂ρ3

ψ(t,p)

ψ′(t,p)
∂
∂τ
ψ(t,p)




.

(and some terms ∂
∂pi

ψ(t,p) are non-vanishing in the case that the initial function ψ depends non-

trivially upon ρ0, ρ1, ρ2, ρ3 or τ).

System (2.3) may be solved by software for NDDEs, discussed in Section 4.
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2.1.2 Second order sensitivity coefficients

In some applications, the sensitivity of the parameter estimates p to the observed data yj might be

characterized by considering the second order sensitivity coefficients, rij(t,p)

rij(t,p) :=
∂

∂pj
si(t,p) =

∂2

∂pj∂pi
y(t,p), (i, j = 1, . . . , Lp)

again evaluated at (t, p̂).

These values, rij (the sensitivity coefficients of second order), measure the sensitivity of the

coefficients si(t,p) to perturbations in the parameters:

si(t,p+ δp) = si(t,p) +
∑

j

rij(t,p)δpj + o(1)||δp||.

They are therefore of some intrinsic interest in assessing the reliability of the values si.

The coefficients rij can again be derived via the system of neutral delay differential equations

(2.3). For a 5-parameter system, there are 25 coefficients and each requires a delay differential

equation as part of a coupled system of delay differential equations that also includes equations

for y and for z := y′. However, the number of equations could be reduced by assuming sufficient

differentiability, rij(t,p) = rji(t,p). For the present model, we give the appropriate equations in

the appendix.

2.2 Sensitivity of the optimum parameter p̂ to perturbations in the data

To compute ∂p̂

∂y
j

, the sensitivity of the parameter estimate p̂ to the observed data yj , assume that

the objective function

Φ(p) ≡ Φ(p,y) :=
∑

i

[
y(ti,p)− yi

]2

(2.4)

is smooth as a function of p in the neighbourhood of the optimal parameter p̂. Then we have

∂

∂pk
Φ(p,y) = 2

∑

i

[
y(ti,p)− yi

]∂y(ti,p)
∂pk

, (2.5)

∂2

∂pl∂pk
Φ(p,y) = 2

∑

i

∂y(ti,p)

∂pl

∂y(ti,p)

∂pk
+ 2

∑

i

[
y(ti,p)− yi

]∂2y(ti,p)

∂pl∂pk
. (2.6)

To minimize the objective function (2.4), the right hand side of equation (2.5) vanishes at p = p̂

(where p̂ ≡ p̂(y)), so
∑

i

[y(ti, p̂(y))− yi]sk(ti, p̂(y)) = 0. (2.7)

Now, the left hand side of equation (2.7) is a function of p̂(y) and y; differentiating both sides with

respect to yj yields, for k = 1, . . . , Lp,

N∑

i=1

Lp∑

l=1

[
sk(ti, p̂)sl(ti, p̂) + [y(ti, p̂)− yi] rlk(ti, p̂)

] ∂p̂l
∂yj

= sk(tj , p̂). (2.8)

If we assume that y(ti, p̂) is close to the observed value yi, so that the term [y(ti, p̂)− yi] in the

left hand side of equation (2.8) can be neglected, then the above system can be approximated by

N∑

i=1

Lp∑

l=1

sk(ti, p̂)sl(ti, p̂)
∂p̂l
∂yj

≈ sk(tj , p̂), k = 1, . . . , Lp,
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or

N∑

i=1

sk(ti, p̂)
( Lp∑

l=1

sl(ti, p̂)
∂p̂l
∂yj

)
≈ sk(tj , p̂), k = 1, . . . , Lp. (2.9)

This equation can be written in a compact form

[ N∑

i=1

s(ti, p̂)s
T(ti, p̂)

] ∂p̂
∂yj

≈ s(tj , p̂). (2.10)

Then the sensitivity of the best fit parameter estimate p̂ to observations yj(j = 1, 2, . . . , N) can be

estimated by

∂p̂

∂yj

≈
[
B(p̂)

]−1

s(tj , p̂), (2.11)

where s is Lp × 1 vector, given by (2.3), and B(p̂) :=
[∑N

i=1 s(ti, p̂)s
T (ti, p̂)

]
is an Lp × Lp

nonsingular matrix.

A desirable property of the model is that the sensitivity of the parameter estimate to the obser-

vation, ∂p̂

∂y
j

, should be small in order to minimize the effects of observation noise on the parameter

estimate. Equation (2.11) suggests that increasing s(t, p̂) (the sensitivity of the state variable with

respect to the unknown parameter) decreases the sensitivity of the parameter estimate to observa-

tion.

2.3 Standard Deviation of Parameter Estimates

We can use the sensitivity coefficients (si, i = 1, . . . , L) to determine the covariance matrix [ςij ], of

the estimates, as follows:



ς11 ς12 . . . ς1L

ς21 ς22 . . . ς2L

ς31 ς32 . . . ς3L

.. .. . . . ..

ςR1 ςR2 . . . ςLL



= 2

Φ(p̂)

N − L [H(p̂)]
−1
,

where (N − L) is the number of degree of freedom and H(p̂) is the Hessian matrix of the objective

function Φ(p̂). Using the notation ∂
∂p

and ∂
∂pT in §§ 7.1, the Hessian matrix can be written in the

form

H(p̂) =

[
∂2

∂p∂pT
Φ(p̂)

]
.

This matrix can be approximated, in terms of (2.6) and using the sensitivity coefficients, as:

H(p̂) ≈ H̃(p̂) := 2

[
N∑

k=1

si(ξk, p̂)sj(ξk, p̂)

]

i,j=1,...,L

.

The standard deviations for the parameter estimates are the quantities σi ≡ σ(p̂i) =
√
ςii (i =

1, . . . , L).

3 Indications of Bias

We remarked earlier that percentage bias in the parameter estimates is a good indicator of the quan-

titative effect of nonlinearity [26]. To examine the biases of the parameter estimates we proceed as

follows:
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• Perturb the solution, of the model, corresponding to the best-fit parameters p̂ with normally

distributed random errors of zero mean and variance (see [7]),

σ2 =
Φ(p̂)

N − L.

• Find new best-fit parameters p̃ to the perturbed data.

• Repeat this process, perhaps, 500 or preferably 1000 times, to generate a statistically significant

estimate of the mean value of p̃.

• If the relative biases satisfy the relation,

|p̂−mean{p̃}| < 0.01|p̂|,

then the LS estimates are not significantly biased and the effect of non-linearity is not signifi-

cant and the experimenter can have confidence in the parameter estimates, and their standard

deviations (see table 5.2).

In other words, if the LS estimator of parameters of a nonlinear model is only slightly biased with

a distribution of which close to that of a normal distribution and with a variance only slightly in

excess of the minimum variance bound, it seems reasonable to consider the estimator as behaving

close to a linear. If, on the other hand, the LS estimator is badly biased, with distribution far

from normal and variance greatly in excess of the minimum variance bound, the nonlinear model

might be far from the linear model in behaviour. For more details about the nonlinearity effects in

parameter estimations, we may refer to [1], [7], [8], [12] and [26].

4 Solvers of DDEs and Parameter Estimation for DDE Mod-

els

There is now an extensive body of expertise in the mathematical community concerned with the

numerical solution of DDEs: Fourth-order Runge-Kutta methods and two point Hermite interpo-

lation polynomials have been used by Neves [20] and Neves and Thompson [21]. Algorithms based

on fourth- and seventh-order Runge-Kutta-Fehlberg methods together with Hermite interpolation

polynomials were presented by Oberle and Pesch [22]. Thompson [28] has developed numerical

methods which are based on a continuously embedded Runge-Kutta method of Sarafyan [29]. Our

numerical work has been based upon the use of an explicit Runge-Kutta method. This method is

based on the Dormand & Prince fifth-order Runge-Kutta method for ODEs [15] due to Shampine

[27] and fifth-order Hermite interpolant [22].

There are currently a number of general purpose codes for solving initial value problems for

DDEs. An important feature of such codes is that they aim to produce a solution to within a given

accuracy for a wide range of requested tolerances. Paul [24] has developed such a code that based

on the feature of [23] and [25]. The resulting code is uniformly fifth-order accurate for ODEs, DDEs

and neutral differential equations (NDDEs). Another code based on continuously embedded sixth-

order Runge-Kutta methods for the solution of functional differential equations has been proposed

by Corwin et al. [13].

The task of parameter estimation is one of minimizing a suitable objective function Φ(p), for

example one given by (1.2), based on the unknown parameters and observed data. In the case

of parameter estimation for DDEs, this can include not only estimating parameters appearing in

the DDEs but also estimating the position of the initial point, the initial function and the delayed

arguments.
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For example, consider the problem of estimating the parameters ρ0, ρ1, ρ2, ρ3 and τ in the

model (2.1). The optimum parameter p̂ ≡ [ρ̂0, ρ̂1, ρ̂2, ρ̂3, τ̂ ]
T
is taken to be the value such that

Φ(p̂) ≤ Φ(p)

for all physically meaningful values of p and p̂.

Given a set of experimental data, {yj}Nj=1, the technique for finding the best-fit parameter val-

ues for a given mathematical model and objective function involves solving the model equations

using the current values of the parameters in order to compute Φ(p). The parameter values are

then adjusted (by the minimization routine, for example EO4UPF in1 the NAG library, LMDIF from2

NETLIB and FMINS in MATLAB) so as to reduce the value of the objective function. However, in order

to find the global best-fit parameter values, the initial estimate of the parameter values should be

sufficiently close to the global minimum. Thus, good starting estimates for the parameter values can

be of great assistance, both in speeding up the minimization process and finding the global minimum.

4.1 Some problems with parameter estimation in DDEs

One obvious difficulty with such procedures (from both the practical and the theoretical viewpoint)

is that solutions of DDEs are not, in general differentiable, with respect to variation of the delay. In

addition, discontinuities can arise in the solution of a DDE. Such discontinuities, when they arise

from the initial point t0(p) and the initial function ψ(t,p), may propagate into Φ(p) via the solution

y(t,p) if it has a jump at one of the data points {ζi}; see [3]. Therefore parameter estimation in

DDEs mainly depends on:

• differentiability of the solution y(t;p) with respect to the parameter p,

• the existence and uniqueness of the solution y(t,p) that depends on the initial function ψ and

the parameter p,

• existence and position of the jump discontinuity points,

• the statistical nature of the observed data-points {ζi,yi}Ni=1.

From the fact that:

(
∂Φ(ζi;p)

∂pl

)

±

= 2
N∑

i=1

[y(ζi;p)− yi]

(
∂y(ζi;p)

∂pl

)

±

, (4.1)

(
∂2Φ(ζi;p)

∂pl∂pm

)

±±

= 2

N∑

i=1

[(
∂y(ζi;p)

∂pl

)

±

(
∂y(ζi;p)

∂pm

)

±

+ [y(ζi;p)− yi]

(
∂2y(ζi;p)

∂pl∂pm

)

±±

]
. (4.2)

It is clear from equations (4.1) and (4.2) that, unless yi = y(ζi;p), jumps can arise in the first or the

second partial derivative of Φ(p), with respect to pl, if the first or the second partial derivatives of

y(t,p) with respect to pl has a jump at t = ζi (one of the data-points). These jumps can propagate

into the second derivative of Φ(p) if the first derivative of y(t;p), with respect to pl, has a jump at

1E04UPF is designed to minimize an arbitrary smooth sum of squares function subject to constraints (which

may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a sequential

quadratic programming (SQP) method.
2LMDIF is an unconstrained minimization routine based on the Levenberg-Marquardt algorithm.
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one of the data-points t = ζi even when yi = y(ζi;p). For more discussion about these issues we

refer to [2].

The connection between jumps in the derivatives of y(t;p) with respect to t and the partial

derivatives of y(t;p) with respect to some pl can also be seen in the sensitivity coefficient system

(2.3). It is clear that the jumps in this system are intimately related to the jumps in the derivatives

y(t,p) with respect to t in the delay differential system. Such jumps can spread forward along the

integration interval. Location of these jumps is determined by t− τ , additional discussion has been

given in [3].

5 Numerical Example: Growth of Escherichia Coli (E.coli) Colonies

A synchronous culture of E.coli that exhibits prolonged step-like growth [19, Fig.4] (experimen-

tal data given in table 5.1) can be modelled by a hierarchy of models (2.1) (where we include

successively more parameters), with the initial function ψ(t) given by a distribution curve [5]:

y(t) := ψ(t) =
2× 2.25

τcell
(Nρ3/ρ1)E(

2t

τcell
+ 1), t ≤ 0, (5.1)

where

E(t) =

{
exp( −1

1−t2
) for |t| ≤ 1,

0 for |t| ≥ 1.

We can then perform the sensitivity analysis for the hierarchy in order to estimate the effect of

adding new components. The cases that we consider are:

(a) fit τculture =
ln(2)
ρ0

(exponential growth, with initial value N) in the model: y′(t) = ρ0y(t),

(b) fit τ := τcell =
1
ρ1
, with ρ0 = ρ2 = 0, and ρ3 = 1 (time-lag growth) in the model: y′(t) =

ρ1y(t− τ),

(c) fit τ := τcell, ρ0 , ρ1, with ρ2 = 0, and ρ3 = 1 in the model: y′(t) = ρ0y(t) + ρ1y(t− τ),

(d) fit τ := τcell, ρ0 , ρ1, ρ2, with ρ3 = 1 in the model: y′(t) = ρ0y(t) + ρ1y(t− τ) + ρ2y
′(t− τ),

(e) fit τ := τcell, ρ0 , ρ1, ρ2, and ρ3, with ψ(t) given by (5.1).

The corresponding graphs are shown in Figure 5.2.

The biological meaning of the parameters is as follows:

τ > 0 : the average cell-division time;

−ρ0 ≥ 0 : the rate of cell-death in the culture;

ρ1 ≥ 0 : the rate of commitment to the cell-division process;

0 ≤ ρ2 ≤ 2 : the gradual dispersion of synchronization of cell-division;

(ρ2 = 2 implies that synchronization is presented);

0 ≤ ρ3 ≤ 1 : the fraction of cells dividing over the first step.

The term ‘synchronous’ refers to the fact that the cells in the culture are homogeneous and syn-

chronized [11]. Thus features of the model are: (i) All the cells have the same division time. (ii)

All the cells divide simultaneously. (iii) There is prolonged initial step-like growth, as shown in

figure 5.1. (iv) The initial number, N , of E.coli colonies is unknown which can be specified as a

parameter to be estimated or can be estimated by backwards continuation of the data (in this case

N = 99). The parameter ρ2 has a natural interpretation, so the neutral delay term is attractive

for qualitative reasons. Procedures of the above sections are applied to the concerned model (2.1).
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Figure 5.1: Data for synchronous E.coli growth and a graph of the solution of the DDE: y ′(t) =

λy(t) + µy(t− τ).

Numerical values of parameter estimates, standard deviations, nonlinear bias, and sensitivity of the

state variable to the parameter estimates and the parameter estimates to the observations are given

in tables 2,3, for the observed data given in table 5.1. Local uniqueness of the best-fit for the

least square approach, and the qualitative effect of nonlinearity are shown through the figures 5.3

& 5.4.

We now turn to an interpretation of our numerical results:

The results obtained show that there is a considerable “qualitative improvement” (indicated

by a graph of the best-fit solution and the experimental data; see figure 2) and “quantitative

improvement” (indicated by the size of ‖Err‖2 and the standard deviations of the best-fit parameter

values; see tables 2) when we add more parameters in our model. The fact that ρ2 < 2 indicates

that the initially synchronized cell population becomes desynchronized over time. We note also

that neutral DDEs provide better qualitative and quantitative consistency with the step-like growth

patterns than ODEs or DDEs with constant time-lag. In addition, using delay differential model

(2.1) in cell growth, gives direct estimates of some relevant growth parameters of synchronous

cultures such as: the cell-doubling time, the fraction of cells that are dividing, the rate of commitment

of cells to cell division, the degree of synchronization of cells in the population, and the death rate

of cells. Whereas using ODE model, in cell growth, only provides an indirect estimate of the

culture-doubling time τculture = ln(2)/ρ0.

In table 5.2, we note that the parameters are slightly biased, so that the model-data combination

is not badly nonlinear. In figure 5.3, the closeness of the graph of Φ(p) to a parabola indicates the

small degree of nonlinearity of the model-data set combination in one parameter time-lag model.

figure 5.4 shows the pairwise plots of the parameters. The regularity behaviour of the contours

(such as ellipses) indicates whether the model-data combinations are not badly nonlinear in five

parameters time-lag model. In addition, the contours, in these Figures, indicates the degree of the

closeness of those models to a linear regression behaviour.

The sensitivity coefficients of the state variable to the parameter estimates should be large

enough and the sensitivity of the parameter estimates to the observation should be small in order

to minimize the effect of the observation noise on the parameter estimates. Results are obtained in

table 5.3 which show that the sensitivity of the solution to the parameter estimates is high and
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Observed data of E.coli colonie growth

Time(mins) 4.85 9.96 15.1 19.6 24.6 29.5 34.6 39.4 43.9 49.2

Cells per ml 10.6 99 99 103 115 140 142 165 185 185

Time(mins) 54.3 59.2 64.5 69.5 74.9 79.8 85.0 89.7 95.2 99.7

Cells per ml 173 190 224 317 353 346 363 424 551 623

Time(mins) 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0

Cells per ml 650 836 992 1105 1153 1556 1818 2100

Table 5.1: Observed data of E.coli colonie growth [19, Fig.4].

Parameter(s), STD, Errors and NLB, for E.coli growth models

Model ρ0 ρ1 ρ2 ρ3 τ ‖Err‖2
1 param ODE - - - - 33.5863 724.86

σ(.) - - - - 0.3768

NLB(.) - - - - 0.0028%

1 param DDE - - - - 25.0616 571.80

σ(.) - - - - 0. 0.2993

NLB(.) - - - - 0. 0.0136%

3 param DDE -0.1156 0.30886 - - 27.7165 258.82

σ(.) 0.0293 0.0595 - - 0.3438

NLB(.) 0.9426% 0.9939% - - 0.0314%

4 param NDDE -0.0257 0.0504 1.6847 - 20.2719 160.16

σ(.) 0.0038 0.0082 0.0467 - 0.0868

NLB(.) 0.7022% 0.3304% 0.0338% - 0.1043%

5 param NDDE -0.0057 0.0131 1.8407 0.1600 20.2229 129.88

σ(.) 0.0051 0.0101 0.0783 0.1107 0.0486

NLB(.) 0.0708% 0.0506% 0.0062% 0.0384% 0.0420%

Table 5.2: Parameter estimates , STD, Errors and their nonlinear biases (NLB) for E.coli growth models.

the sensitivity of the parameter estimates to the observations is low. This reflects that the model is

correct and the parameters used have significant effect.

6 Generalizations of the Model

We here indicate how the mathematics for the special model (2.1) is modified to cover the general

non-linear case (1.1). We introduce some notation in the Appendix used to define the sensitivity

coefficients.

6.1 Sensitivity of state variables to parameter estimates

The relevant sensitivity quantities are, respectively, the matrices

{ ∂

∂yj

}T

p :=
[ ∂pi
∂yj

]
i=1,···,L

∈ RL×M . (6.1)
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Sensitivity coefficients of E.coli colonies

par. ρ0 ρ1 ρ2 ρ3 τ

∂y/∂ρ0 ∂ρ0/∂yj ∂y/∂ρ1 ∂ρ1/∂yj ∂y/∂ρ2 ∂ρ2/∂yj ∂y/∂ρ3 ∂ρ3/∂yj ∂y/∂τ ∂τ/∂yj

Time One param. ODE model

34.6 - - - - - - - - 8 0.0000

69.5 - - - - - - - - 7 0.0004

105 - - - - - - - - 20 0.0015

140 - - - - - - - - 56 0.0043

Time One param. DDE model

34.6 - - - - - - - - 16 0.0000

69.5 - - - - - - - - 18 0.0001

105 - - - - - - - - 75 0.0003

140 - - - - - - - - 233 0.0011

Time Three params. DDE model

34.6 1099 0.0000 383 0.0000 - - - - 11 0.0014

69.5 5062 0.0000 1863 0.0000 - - - - 10 0.0018

105 19379 0.0000 7369 0.0000 - - - - 30 0.0024

140 65723 0.0000 25557 0.0002 - - - - 53 0.0041

Time Five params. Neutral DDE model

34.6 7140 0.0000 1640 0.0000 10 0.0005 280 0.0002 10 0.0002

69.5 40190 0.0000 15960 0.0000 110 0.0003 870 0.0001 20 0.0002

105 166780 0.0000 75000 0.0000 640 0.0005 2920 0.0000 80 0.0001

140 617650 0.0000 289710 0.0000 3910 0.0006 10380 0.0003 40 0.0017

Table 5.3: Absolute values of sensitivity coefficients of the state variables to the parameter estimates and the parameter estimates to the observations for E.coli colonies

growth models.



Baker & Rihan 192

0 50 100 150
0

500

1000

1500

2000

2500

E
.c

ol
i c

ol
on

ie
s

a: ODE model

0 50 100 150
0

500

1000

1500

2000

2500

E
.c

ol
i c

ol
on

ie
s

b: 1 DDE model

0 50 100 150
0

500

1000

1500

2000

2500

Time(mins)

E
.c

ol
i c

ol
on

ie
s

c: 3 DDE model 

0 50 100 150
0

500

1000

1500

2000

2500

3000

Time(mins)

d: 4 NDDE model 

0 50 100 150
0

500

1000

1500

2000

2500

3000

Time(mins)

e: 5 NDDE model

Figure 5.2: A synchronous culture of E.ecoli K12λ F− cells was prepared by loading 2× 1010 cells from

an exponential culture into a 15ml tube. The cells were then centrifuged at 2500g for 20 minutes and the

top 2% of cells suspended in fresh growth medium. The graphs represent: (a) the exponential growth

model of one parameter τculture =
ln(2)
ρ0
, (b) the time-lag model with one parameter τcell =

1
ρ1
, (c) the

DDE model with three parameters, ρ0, ρ1 and τcell, (d) the NDDE model with four parameters, ρ0, ρ1,

τcell, ρ2 and (e) the NDDE model with five parameters, ρ0, ρ1, τcell, ρ2, ρ3.
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Figure 5.3: Local uniqueness of the best fit and the depending of Φ on τ (for one parameter time-lag

model).

which we shall discuss in the next section, and, as we shall discuss now, the matrix of sensitivity

coefficients

S(t,p) ≡
{ ∂

∂p

}T

y(t,p) :=
[∂yi(t,p)

∂pj

]
i=1,···,M
j=1,···,L

∈ RM×L. (6.2)

Assuming appropriate differentiability of y(t,p) with respect to p,

y(t,p+ δp) = y(t,p) +

L∑

j=1

∂y(t,p)

∂pj
δpj +O(‖δp‖2), or

y(t,p+ δp) = y(t,p) + S(t,p)δp+O(‖δp‖2).

Thus the M × L matrix S(t,p) may be regarded as the local sensitivity [17] of the solution y(t,p)

to small changes in p.

Applying
∂

∂p
to (1.1) yields, in the case τ is not one of the parameters {p`}, the variational

equation is

S′(t) =

[
∂f

∂y
(t,y(t),y(t− τ);p)

]
S(t) +

[
∂f

∂yτ
(t,y(t),y(t− τ);p)

]
S(t− τ) +B(t).

Alternatively, we write

S′(t) = J(t)S(t) + Jτ (t)S(t− τ) +B(t), t ≥ 0, (6.3)

where:

S(t) is the M × L sensitivity coefficient matrix (Sij ≡ ∂yi

∂pj
), J(t) is the M ×M Jacobian matrix

(Jij ≡ ∂fi

∂yj
), B(t) is an M × L matrix of partial derivatives (Bij ≡ ∂fi

∂pj
). Note that the i-th column

in S(t), si(t) ≡ si(t,p) :=
[
∂y1(t,p)

∂pi
, ∂y2(t,p)

∂pi
, . . . , ∂yM (t,p)

∂pi

]T

, is the sensitivity solution vector for the

model parameter pi.
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Figure 5.4: Local uniqueness of the best fit and the depending of Φ(p) on the pairwise parameter

estimates. For each graph, contours indicate the correlation of the parameter with each other and the

inference region of least square estimate. The closeness of the contour to the ellipse, the small degree

of nonlinearity of the model to the data.
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In the case that τ is a component, pj , of p, the matrix B(t) in (6.3) should be changed so that,

Bij(t) ≡
∂fi
∂pj

:=
∂fi

∂y(σj(t))

dy(σj(t))

dσj(t)

dσj(t)

dpj
= − ∂fi

∂y(σj(t))
y′(t− pj),

where σj(t) = t− pj , and the other components are as before.

The second order sensitivity coefficients give information on the sensitivity of S(t,p) to p and

are defined by the (LM)× L matrix, R(t) ≡ ∂
∂p
S(t), whose ith row is

ri(t) ≡ ri(t,p) :=
[
∂s1(t,p)

∂pi
,
∂s2(t,p)

∂pi
, . . . ,

∂sL(t,p)

∂pi

]
.

A further differentiation, applying
∂

∂p
to (6.3) gives, in terms of Kronecker products, the result

R′(t) = A(t)S(t) +
(
IL ⊗ J(t)

)
R(t) +Aτ (t)S(t− τ) +

(
IL ⊗ Jτ (t)

)
R(t− τ) +K(t), t ≥ 0. (6.4)

In (6.4), R(t) is an (LM)× L sensitivity coefficient matrix of second order (Rij ≡ ∂si

∂pj
), A(t) is an

(LM)×M partial derivatives of the Jacobian matrix (Aij ≡ ∂Ji(t)
∂pj

, where, Ji =
∂fk

∂yi
), and K(t) is

an (LM)× L partial derivative matrix (Kij ≡ ∂bi

∂pj
, where bi =

∂fk

∂pi
).

To find the sensitivity coefficient matrices, S and R, we need to solve the (neutral) delay dif-

ferential systems (6.3) and (6.4) simultaneously with the system (1.1), with respectively, associated

initial functions

S(t,p) =
∂

∂p
ψ(t,p), and R(t,p) =

∂2

∂p∂pT
ψ(t,p) for t ≤ 0. (6.5)

It should be noted here that jumps can propagate into systems (6.3) and (6.4) if the derivative

of y(t,p) has a jump and the time lag term τ is considered as as a parameter to be estimated; see

[2].

6.2 Sensitivity of parameter estimates to observations

To compute the sensitivity of p̂ to yj , the objective function Φ(p) is minimized by finding where

its derivatives vanishes:

∂

∂p
Φ(p̂) = 2

N∑

j=1

ST(tj , p̂)
[
y(tj , p̂)− yj

]
= 0, (6.6)

where S(t, p̂) is defined via equation (6.3).

For simplicity, denote

Φp :=
∂

∂p
Φ, Φpp :=

∂2

∂p∂pT
Φ.

Now Φp is a function of the parameter estimates p̂ and the observations yj , so that

Φp(p̂,y1,y2, . . . ,yN ) = 0, (6.7)

and p̂ = p̂(y1,y2, . . . ,yN ).

Differentiating equation (6.7) with respect to yj yields,

Φpp

∂p̂

∂yj

+Φy
j
p = 0, (6.8)
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where, from (6.6),

Φpp = 2
N∑

j=1

ST(tj , p̂)S(tj , p̂) + 2
N∑

j=1

RT(tj , p̂)
(
IL ⊗

[
y(tj , p̂)− yj

] )
, (6.9)

Φy
j
p = −2S(tj , p̂), (6.10)

and R :=
∂2

∂p∂pT
y(t, p̂) is defined by (6.4).

Solving equation (6.8) for the ∂p̂/∂yj , we have

∂p̂

∂yj

= −
[
Φpp

]−1

Φy
j
p

=
[ N∑

j=1

ST(tj , p̂)S(tj , p̂) +

N∑

j=1

RT(tj , p̂)
(
IL ⊗

[
y(tj , p̂)− yj

] )]−1

S(tj , p̂) .(6.11)

Assume that y(ti, p̂) is close to the observed value yi, so that the second term in the right hand

side of equation (6.11) can be neglected. Then

∂p̂

∂yj

≈
[ N∑

i=1

ST(ti, p̂)S(ti, p̂)
]−1

S(tj , p̂). (6.12)

Equation (6.12) shows that increasing S(t, p̂) ≡ ∂y(t,p̂)
∂p

(the sensitivity of the state variable with

respect to the unknown parameter) decreases the sensitivity, ∂p̂

∂y
j

, of the parameter estimate to

observation. A desirable property of the model (1.1) is that the sensitivity of the parameter estimate

to the observation should be small in order to minimize the effects of observation noise on the

parameter estimate.

In practice solving the variational equations like (6.3) and (6.4) can represent a major computing

problem. The M dimensional system (6.3) requires the Jacobian of the model equation (1.1) and

at the same time equation (6.3) must be solved simultaneously with (1.1). This is a challenging

problem when M and L are large and when the model equations are stiff.
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7 Appendices

7.1 Some notation

Suppose that, for each t ≥ t0, a(t,q) is a scalar quantity dependent upon the column vector q ∈ Rm,

a(t,q) ∈ Rn is a (column) vector dependent upon q, and A(t,q) ∈ Rn×m and B(t,q) ∈ Rm×l are

also matrices dependent upon q. We define the gradient as a column vector,

∂

∂q
a(t,q) :=

[ ∂

∂q1
a(t,q),

∂

∂q2
a(t,q), · · · , ∂

∂qm
a(t,q)

]T

∈ Rm×1. (7.1)

The corresponding row vector is written as

{ ∂

∂q

}T

a(t,q) :=
[ ∂

∂q1
a(t,q),

∂

∂q2
a(t,q), · · · , ∂

∂qm
a(t,q)

]
∈ R1×m. (7.2)
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In a similar manner we define the matrix
{ ∂

∂q

}T

a(t,q) :=
[ ∂

∂q1
a(t,q),

∂

∂q2
a(t,q), · · · , ∂

∂qm
a(t,q)

]
≡ A(t,q) ∈ Rn×m, (7.3)

which allows us to define the Hessian matrix as
{ ∂2

∂q∂qT

}
a(t,q) :=

{ ∂

∂q

}{ ∂

∂q

}T

a(t,q). (7.4)

We may also define, in terms of (7.3),

{ ∂2

∂q∂qT

}
a(t,q) :=

∂

∂q
A(t,q) ∈ Rmn×m, (7.5)

∂(AB)
∂q

=
∂A
∂q
B +

(
Im ⊗A

)∂B
∂q

∈ Rmn×l, (7.6)

where Im is an m×m identity matrix, and q is an m−component column vector; see [10].

7.2 The second order sensitivity coefficients for (2.1)

We here present the variational equations for the sensitivity coefficients, rij , of second order for the

model (2.1). They comprise a set of coupled neutral delay differential equations:

d

dt
r11(t,p) = s1(t,p) + ρ0r11(t,p) + ρ1r11(t− τ,p) + ρ2r

′
11(t− τ,p),

d

dt
r12(t,p) = s2(t,p) + ρ0r12(t,p) + s1(t− τ,p) + ρ1r12(t− τ,p) + ρ2r

′
12(t− τ,p),

d

dt
r13(t,p) = s3(t,p) + ρ0r13(t,p) + ρ1r13(t− τ,p) + s′1(t− τ,p) + ρ2r

′
13(t− τ,p),

d

dt
r14(t,p) = ρ0r14(t,p) + ρ1r14(t− τ,p) + ρ2r

′
14(t− τ,p),

d

dt
r15(t,p) = s5(t,p) + ρ0r15(t,p) + ρ1r15(t− τ,p)− ρ1s

′
1(t− τ,p) +

ρ2r
′
15(t− τ,p)− ρ2s

′′
1(t− τ,p),

d

dt
r22(t,p) = ρ0r22(t,p) + s2(t− τ,p) + ρ1r22(t− τ,p) + ρ2r

′
22(t− τ,p),

d

dt
r23(t,p) = ρ0r23(t,p) + s3(t− τ,p) + ρ1r23(t− τ,p) + s′2(t− τ,p) + ρ2r

′
23(t− τ,p)

d

dt
r24(t,p) = ρ0r24(t,p) + ρ1r24(t− τ,p) + ρ2r

′
24(t− τ,p),

d

dt
r25(t,p) = ρ0r25(t,p) + s5(t− τ,p) + ρ1r25(t− τ,p)− s′2(t− τ,p)−

ρ1s
′
2(t− τ,p) + ρ2r

′
25(t− τ,p)− ρ2s

′′
2(t− τ,p),

d

dt
r33(t,p) = ρ0r33(t,p) + ρ1r33(t− τ,p) + s′3(t− τ,p) + ρ2r

′
33(t− τ,p),

d

dt
r34(t,p) = ρ0r34(t,p) + ρ1r34(t− τ,p) + ρ2r

′
34(t− τ,p),

d

dt
r35(t,p) = ρ0r35(t,p) + ρ1r35(t− τ,p)− ρ1s

′
3(t− τ,p) +

s′5(t− τ,p) + ρ2r
′
25(t− τ,p)− y′′(t− τ,p)− ρ2s

′′
3(t− τ,p),

d

dt
r44(t,p) = ρ0r44(t,p) + ρ1r44(t− τ,p) + ρ2r

′
44(t− τ,p),

d

dt
r45(t,p) = ρ0r45(t,p) + ρ1r45(t− τ,p)− ρ1s

′
4(t− τ,p)

+ ρ2r
′
45(t− τ,p)− ρ2s

′′
4(t− τ,p),

d

dt
r55(t,p) = ρ0r55(t,p) + ρ1r55(t− τ,p) + ρ1z

′(t− τ,p)− 2ρ1s
′
5(t− τ,p),

+ρ2r
′
55(t− τ,p) + ρ2z

′′(t− τ,p)− 2ρ2s
′′
5(t− τ,p).
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The associated initial functions are

rij(t,p) =
∂2ψ

∂pi∂pj
for t ≤ 0.
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