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Abstract

We review the application of numerical techniques to investigate mathematical models of

phenomena in the biosciences using delay differential equations. We show that there are prima

facie reasons for using such models: (i) they have a richer mathematical framework (compared

with ordinary differential equations) for the analysis of biosystems dynamics, (ii) they display

better consistency with the nature of the underlying processes and predictive results. We

now have suitable computational techniques to treat numerically the emerging models for the

biosciences.

Keywords Delay differential equations, dynamical systems, biological systems, deterministic and

stochastic models, numerical modelling, parameter estimation, optimization.
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1 Introduction

Retarded functional differential equations (RFDEs),

y′(t) = f

(
t, y(t), y(α(t, y(t))),

∫ t

−∞

K(t, s, y(t), y(s))ds
)
, t ≥ t0, (1.1)

wherein α(t, y(t)) ≤ t and y(t) = ψ(t), t ≤ t0, form a class of equations which is, in some

sense, between ordinary differential equations (ODEs) and time-dependent partial differential equa-

tions (PDEs) such as reaction-diffusion equations. RFDEs (1.1) where the integral term is ab-

sent are usually called delay differential equations (DDEs) and they assume forms such as y ′(t) =

f (t, y(t), y(α(t, y(t)))) with α(t, y(t)) ≤ t. Neutral delay differential equations (NDDEs) are defined

by equations of the form

y′(t) = f (t, y(t), y(α(t, y(t))), y′(β(t, y(t)))) , where α(t, y(t)), β(t, y(t)) ≤ t,

although some authors consider only a subset of such equations. The introduction of the “lagging”

or “retarded” arguments α(t, y(t)), β(t, y(t)) is to reflect an “after-effect”; consider (as an example

of a time-lag) the gestation period in population modelling.

Our concern here is with the role of the numerical analysis of RFDEs in the biosciences. There are

three important components to our approach: first, the place of RFDEs in modelling in bioscience

(which involves an understanding of the underlying science), second, familiarity with the analytical

features of RFDEs, and third, familiarity with the numerics (an ability to obtain insight from

numerical analysis, and an awareness of key features in designing or implementing robust codes).

Like some other fields of analysis, research on qualitative analysis of RFDEs has profited greatly

by choosing test examples from theoretical biology. In order to develop appropriate computational

strategies and insight, numerical analysts, especially those producing codes, should classify the

various types of problems with delay (there are point delays, distributed delays, state-dependent

delays, integrals within or taken over the delay) and it is helpful to follow recent developments in the

life sciences to see what problems require further study. Note that the type of RFDEs that occur in

the physical sciences or engineering may be different from those that occur in bioscience, and some

of our remarks should be modified in the light of differences between the application areas.

Two classical references for DDEs are the books by Bellman & Cooke [21], and Elsgol’ts & Norkin

[60]. These are rich sources for analytical techniques and many interesting examples. Kolmanovskii

et al. [105, 106] gave a rigorous treatment of a wide class of problems. Starting from the first

edition, the monograph of Hale [83], (subsequently Hale & Verduyn Lunel [85]) is a standard source

on the theory of delay equations. Another substantial monograph is by Diekmann et al. [53]. Kuang

[107] and R. Banks [18] pay particular attention to problems in population dynamics; the former

also looked at neutral equations. Gopalsamy [73] and Györi & Ladas [78] addressed the question

of oscillations in delay differential equations. Early books by Cushing [48], Driver [58], Halanay

[84], MacDonald [110, 111], May [128], Maynard Smith [129], and Waltman [175] have been very

stimulating for the development of the field.

2 Mathematical Models with Delays

Delay equations generate (as do reaction-diffusion equations) infinite-dimensional dynamical sys-

tems; in both cases a solution is in general determined by an initial function rather than an initial

value. In both cases the “flow” has properties which leads to the existence of limit sets and global

attractors. On the other hand, there are clear differences between DDEs and PDEs. Whereas DDEs

may appear to somewhat simpler than PDEs. It is possible that PDEs with memory combine the

advantages of both types of equation as possible models.
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We are concerned with applications in the biosciences, but an early use of DDEs was to describe

technical devices, e.g. control circuits. In that context the delay is a measurable physical quantity

(for example, the time that the signal takes to travels to the controlled object, the reaction time,

and the time that the signal takes to return). There are parallels in the reaction of the body to

pain, for example.

In most applications in the life sciences a delay is introduced when there are some hidden variables

and processes which are not well understood but are known to cause a time-lag [45, 138]. Thus, a

delay may in fact represent a reaction chain or a transport process [64]. We shall see later that the

mathematical properties of DDEs justify such approximations. A well-known example is Cheyne-

Stokes breathing, discovered in the 19th century: some people show, under constant conditions,

periodic oscillations of breathing frequency [113]. This strange phenomenon can be considered to

be caused by a delay in the physiological circuit controlling the carbon dioxide level in the blood,

caused by cardiac insufficiency.

Delays occur naturally in biological systems, e.g., in the chemostat (a laboratory device [163] for

controlling the supply of nutrient to a growing population of micro-organisms). The use of ODEs to

model the chemostat carries the implication that changes occur instantaneously. This is a potential

deficiency of the ODE model. There are two sources of delays in the chemostat model: delays due

to the possibility that the organism stores the nutrient (so that the “free” nutrient concentration

does not reflect the nutrient available for growth); and delays due to the cell cycle; see [25], [24],

[40], [111] and [141]. However, in some cases, e.g., in simplistic ecological models, it seems that

delays have been introduced rather ad hoc, thus putting subsequent researchers on the wrong track,

as was remarked in [49]; one can suggest that better coordination between the modellers and the

biologists would reduce or eliminate this problem.

2.1 Some deterministic equations

Pursing1 the last theme, we note that Hutchinson [93] was one of the first mathematical modellers to

introduce a delay in a biological model, when he modified the classical model of Verhulst to account

for hatching and maturation periods. He pointed out that the observed oscillation in some kinds of

biological phenomena could be explained by a discrete time delay in the crowding or resource term.

He studied the rather simple equation

y′(t) = ry(t)

(
1− y(t− τ?)

K

)
, (2.1)

where the non-negative parameters r and K are known respectively as the intrinsic growth rate and

the environmental carrying capacity, and if τ? = 0 we recover the logistic differential equation. In

fact, although eqn (2.1) appears at first sight to be simple, the solution can display complicated

dynamics.

The incorporation by Hutchinson of the delay in eqn (2.1) allows one to model the appearance

of sustained oscillations in a single species population, without any predatory interaction of other

species. However, the underlying argument is somewhat questionable 2, and one may ask a number

of questions of this model: (i) How can it be that the present change in population size depends

exactly on the population size of time τ? units earlier? (ii) Why does the delay enter the removal

term −y2/K and not the production term y ? The first question has led people, commencing with

1The authors are indebted to Prof. Hadeler for his input to this section; see Acknowledgments in Section 7.
2There has been a tendency in the “mathematical ecology” literature to introduce delays into existing predator–

prey competition models on the basis of rather general arguments that the interacting species somehow rely on

resources that have been accumulated in the past. It can be somewhat difficult to separate genuine results for firmly-

grounded models from results for those rather arbitrary equations where an “artificial” delay is introduced with no

specific justification other than its impact on the solution.
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the early work of Volterra [172], to consider more general equations

y′(t) = ry(t)

(
1− 1

K

∫ 0

−τ?

y(t+ s)dσ(s)

)
. (2.2)

The second question can be answered by applying the theory of populations structured by age (or

structured by size). It is interesting that one can (see [35]) establish a connection between some

models of population dynamics using neutral delay differential equations and the widely accepted

Lotka-McKendrick model formulated as a hyperbolic PDE. The Sharpe-Lotka-McKendrick model,

and its extension due to Gurtin and MacCamy [131],

ut(t, a) + ua(t, a) + µ(a,W )u(t, a) = 0, u(t, 0) =

∫ ∞

0

b(a,W )u(t, a)da, (2.3)

provide the standard models in the theory of age-structured populations. Here u(t, a) is the density

of the population with respect to age a, the mortality µ and the fertility b depend on age and on some

functional W of the population density, traditionally the total population size W (t) =
∫∞
0
u(t, a)da.

The functions µ(a) and b(a) have the following typical features: The death function µ(a) may be

large for small a (high infant mortality), then level off to some plateau and finally become large for

large a. A maximum age can be incorporated by letting µ(a) → ∞ for a → a∗, where a∗ is some

finite value, or by simply discarding individuals with ages a > a∗. The birth function b(a) is zero

below a certain age, then becomes large in an interval of high fecundity, then returns to zero. This

assumption leads to population models in the form of delay equations. Assume that

• (i) there is a maturation age τ? > 0, separating juveniles from adults;

• (ii) µ(a) = µ0 + (µ1 − µ0)Hτ?(a);

• (iii) b(a) = b1Hτ?(a) + b2δτ?(a).

Here Hτ (·) is the Heaviside function (Hτ (α) = 0 for α < τ , Hτ (α) = 1 for α ≥ τ) and the

delta function δτ?(·) is its generalized derivative. For t ≥ τ?, the populations of juveniles U(t) =∫ τ?

0
u(t, a)da and adults V (t) =

∫∞
τ?
u(t, a)da satisfy a system of DDEs:

U ′(t) = b1V (t) + (b2 − 1)(b1 + b2µ1)e
−µ0τ?V (t− τ?) +

(b2 − 1)× b2e−µ0τ?V ′(t− τ?)− µ0U(t), (2.4)

V ′(t) = ((b1 + b2µ1)V (t− τ?) + b2V
′(t− τ?)) e−µ0τ? − µ1V (t). (2.5)

If we have initial data for the partial differential equation u0(a), and use the corresponding solution

u(t, a) to form U(t), V (t), then these two functions do not satisfy the system of eqns (2.4)-(2.5) for

t ∈ [0, τ?], but only for t ≥ τ? (after a time interval of length τ? which is, in some sense, needed to

“forget” the information contained in the initial data). For t ∈ [0, τ?], the variables U(t) and V (t)

satisfy a non-autonomous system of ODEs

U ′(t) = b1V (t) + (b2 − 1)u0(τ? − t)e−µ0t − µ0U(t), (2.6)

V ′(t) = u0(τ? − t)e−µ0t − µ1V (t). (2.7)

Using eqns (2.5), (2.7), one can compute V (t) without using U(t) (this is not the case if one allows

some fertility of juveniles). Eqn (2.5) is a neutral DDE for the adult population. The neutral

character of the equation is a consequence of the fertility peak at age τ? and is in no way artificial.

If this peak is absent, i.e., b2 = 0, then one gets the standard DDE

V ′(t) = b1V (t− τ?)e−µ0τ? − µ1V (t). (2.8)
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This equation allows the following interpretation: adults die with rate µ1 and produce offspring

with rate b1; the offspring enter the equation only at the age of maturity, diminished by a factor

e−µ0τ? , which takes into account juvenile mortality. A similar approach can be applied to yield a

nonlinear equation with state-dependent b1, µ1. For example, if we assume that the birth and the

death coefficients depend on W and we choose W = V , then instead of eqn (2.8) we have

V ′(t) =
{
e−µ0τ?b1

(
V (t− τ?)

)}
V (t− τ?)−

{
µ1 (V (t))

}
V (t). (2.9)

An equation of this form has been used in modelling an oscillating insect population (see [80] for

references). A framework for deriving delay models for age-structured populations can be found in

[35, 77, 131, 162, 165].

2.2 A stochastic approach

So far we have considered deterministic delay models for biological systems. There is increasing

evidence that better consistency with some phenomena can be provided if the effects of random

processes in the system are taken into account. We refer to some examples in modelling population

dynamics [141], blood cell production [117], immune responses [9, 121, 123, 130, 134], and neural

control mechanisms: pupil light reflex, human postural sway and visuomotor feedback [26, 109].

Indeed, the random perturbations which are present in the real world imply that deterministic

equations are often an idealization. For example, the neurological control systems operate in a noisy

environment, and the effect of noise on the nonlinear system dynamics needs to be considered in

the analysis of the experimental traces of the state variables (such as, the electro-encephalogram,

pupil area, displacement of the finger position in patients with Parkinson’s disease). To model

the dynamics of biological delay systems under random perturbations, stochastic delay differential

equations (SDDEs) are used:

dY (t) = f(t, Y (t), Y (t− τ?))dt+ g(t, Y (t))dW (t), (2.10)

Here, the first term on the right is the drift term and incorporates the time lag; the second term on

the right is the diffusion term. W (t) is a Wiener process having independent stationary Gaussian

increments with W (0) = 0, E{W (t) −W (0)} = 0, E{(W (t)−W (s))
2} = t − s, E{W (t)W (s)} =

min(t, s). There are two common interpretations of (2.10): it can be interpreted in the Itô sense or

in the Stratonovich sense according to whether, when it is is reformulated in integral equation form

as

Y (t) =

∫ t

0

f(s, Y (s), Y (s− τ?))ds+
∫ t

0

g(s, Y (s))dW (s), (2.11)

the second (stochastic) integral is taken in the Itô sense or in the Stratonovich sense. (If it is taken

as a Stratonovich integral it is normal to use the notation
∫ t

0
g(s, Y (s)) ◦ dW (s).)

SDDEs (2.10) take into account the effect of noise via the diffusion term, either in an additive

form, when g does not depend on the state Y (t), or otherwise in a multiplicative form. Under certain

conditions it can be shown that Equation (2.10) possesses a unique strong solution (we refer to the

standard texts on SDDEs [106, 119, 133]). In the definition given above the stochastic differential

equation is driven by white noise, where the concept of white noise is an idealization of a real

fluctuating signal, requiring no correlation at different time instances. Mathematically speaking, we

here have dW (t) = ξ(t)dt, where ξ(t) stands for a stationary Gaussian white noise process. Other

choices of driving processes, such as Poisson noise or coloured noise (usually modelled by a so-called

Ornstein-Uhlenbeck process) are also used and the characteristics (bandwidth, energy, law,..) of the

noise involved depend on the real-life phenomenon being modelled.

As noted, there exist two mathematically correct frameworks, namely the Itô and Stratonovich

calculus, to deal with (2.11). For additive noise there is no difference between the two interpretations
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of stochastic integrals. The choice of the stochastic calculus to be used again depends on the problem

that is modelled. However, as it is possible to recast a SDE formulated in one framework to one

formulated in the other one, the strengths of both calculi can be used to maximum benefit.

If one argues that in boimathematics the SDEs are generally serving as approximations to

stochastic difference equations with autocorrelated noise, the Itô calculus may provide the more

useful approximation. The Stratonovich framework may be more appropriate when the white noise

can be considered as the limiting case of a smooth real noise process. Further discussions about

appropriate modelling can be found in [116] and [169].

A well-documented example of a biological system where noise is an important component is the

pupil light reflex, which displays complicated dynamics [109]. Noise is introduced into the reflex

at the level of the brain-stem nuclei. The noise correlation time, the system response time and

the delay in signal transmission are all of the same order of magnitude, and indicative of coloured

noise. The spontaneously occurring aperiodic oscillations in the pupil area were explained with the

mathematical model:

y′(t) = −αy(t) + c
θn

θn + yn(t− τ?)
+ k, (2.12)

by assuming the effect of an additive or multiplicative coloured noise (respectively, k = k + η(t))

or c = c + η(t)). The long-term (compared to the size of the delay) numerical simulations of the

SDDE provided the only possible means to establish the assumption of a major role of the noise

in the dynamic behaviour. Longtin et al. [109] computed numerical approximations to sample

trajectories Y (t) using a combination of an integral Euler method for the equation defining the

Ornstein-Uhlenbeck process, and a fourth-order Runge-Kutta (RK) method with a linear interpo-

lation formula for the SDDE.

For another example of a SDDE, with the coloured noise entering equations multiplicatively, we

refer to the model of neurological diseases suggested in [26], where the noise process is produced

with a special electronic generator. The effect of additive white noise perturbations on the dynamics

of human postural sway was studied in [65], using a scalar SDDE:

dY (t) = αY (t)dt+ f(Y (t− τ?))dt+
√
2dξ(t)dt. (2.13)

With this model and a piecewise constant approximation of f , noise-induced transitions between

different limit cycle attractors were observed.

3 Studies of Biological Systems via Delay Models

Some non-stationary phenomena in biology (such as periodic oscillations, or instabilities) can be

explained by considering the effects of delays in model systems. Recently, it has been suggested

that delays can also have an opposite effect, i.e., they can damp out oscillations; this was shown

with models for coupled oscillators under the condition that the delays in mutual interactions exceed

a threshold value [152, 164]. It is generally accepted that the presence of delays in biological models

is a potent source of instabilities. This can manifest itself as the loss of stability of an otherwise

stable steady state if the delay exceeds a certain threshold (related to the dominant time-scale of a

system); see [143]. However, there also exists opposing evidence [128] that a time delay can enhance

stability, and short delays were shown to stabilize an otherwise unstable dynamical system [141, 143].

We seek to predict the qualitative properties of biological systems (equilibrium states, oscillations,

chaotic dynamics, etc.) from the intriguing feature of delay differential equations.

The study of predator-prey systems occupies a considerable portion of the biomathematical

literature, and the size of the book [73] reflects this interest. In research papers, the theoretical

discussion is frequently complemented by ad hoc computational results. We shall be somewhat
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selective in the areas of biomathematics that we detail, and in the following subsections we describe

qualitative and quantitative studies based on DDEs. The former stem from mathematical analysis.

A qualitative investigation informs the numerical analyst as well as the bioscientist but numerical

simulation is invaluable for quantitative studies. In turn, the mathematical insight produced by

numerical simulation can inform the analytical investigation and can guide the bioscientist both in

the design of experiments and in the construction of a theory.

3.1 Qualitative studies

A simple delay model of growth in cell populations is given by the following linear DDE (see, for

example, [13])

y′(t) = αy(t) + βy(t− τ?), (3.1)

This equation is widely used as a standard test equation in the analysis of numerical methods for

DDEs. The qualitative behaviour of (3.1) is well understood and can be summarized as follows:

the equilibrium solution y(t) ≡ 0 becomes unstable when the value of the delay exceeds the threshold

given by

τ# =
cos−1[−α/β]√

β2 − α2
(3.2)

and a Hopf bifurcation takes place with a period given by T =
2π√
β2 − α2

.

For a long time, the delayed logistic equation (2.1) was a subject of qualitative and numerical

studies in mathematical biology (see [18, 138, 110, 111] for extended discussions). This solution

y(t) converges monotonically to the carrying capacity K for 0 < rτ? <
1

e
; it converges to K in an

oscillatory fashion for
1

e
< rτ? <

π

2
; it oscillates in a stable limit cycle pattern for τ? >

π

2
; see [18].

The classical eqn (2.1) assumes (by a simple re-scaling of the variables) the form

y′(t) = −α (1 + y(t)) y(t− τ?) (y(t) > 0, t ≥ −τ?). (3.3)

This equation, known as Wright’s equation, has been investigated in number theory in connection

with the distribution of primes. In two papers [98, 99], Jones demonstrated how an analytical

approach and a computational approach can complement one another.

With x(t) = ln{y(t)}, and f(x) = ex − 1, eqn (3.3) can be transformed into the form

x′(t) = −αf (x(t− τ?)) . (3.4)

In the early 1970’s equations of the form (3.4), with f(0) = 0, f ′(0) = 1, f ′(x) > 0, and some

boundedness properties, became the standard equations for qualitative analysis; see Nussbaum

[145] and references therein on earlier work. If we extended (3.4) by including a feedback term we

arrive at an equation of the form

w′(t) = −νw(t) + αf (w(t− τ?)) ; (3.5)

this equation was used to explain bursting in neurons by delays and also used as a model of blood

cell dynamics [2, 113, 115]. For this equation, the existence of nontrivial periodic solutions has

been shown by Hadeler and Tomiuk [82]. Eqn (3.5) depends on (apart from the delay τ?) the two

parameters ν and α. By re-scaling the variables and introducing ε = 1, one can cast the problem

into the form

εw′(t) = −w(t) + f (w(t− τ?)) . (3.6)

Eqn (3.6) can be viewed as a singular perturbation of the discrete dynamical system w(t) =

f (w(t− τ?)), which for any fixed t is an explicit recurrence relation.
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In the standard form of Wright’s equation the bifurcation is backward (the 3/2-theorem [144,

173, 174] says that the zero solution is globally stable for α ∈ (0, 3/2) but unstable for some α > 0,

α < π/2). Hence there is an unstable branch of periodic solutions emanating from x = 0 at α = π/2.

This branch can be computed by combining a Poincaré-map (with a priori unknown period) with

Newton’s method; see [81]. The unstable branch enters the stable branch at a turning point; in

other words, stable and unstable branches start from a saddle-node bifurcation at the turning point.

The stable branch continues for increasing α and may undergo secondary bifurcations, depending

on the nonlinearity. These secondary bifurcations are typically transcritical, but may be backward

and such that new saddle-node bifurcations appear. For certain classes of f in eqn (3.4) the lowest

secondary bifurcation has been thoroughly investigated by Dormayer [56], who showed that for

an odd right hand side function f : f(−x) = −f(x), there are solutions with period 4τ?. The

underlying connection to embedded discrete dynamical systems leads to results on the existence of

periodic solutions and global attractors for general constant delay differential equations of the form

y′(t) = f (y(t), y(t− τ?)).
As far as (3.5), with a constant τ? > 0, is concerned: for every ν ≥ 0, there is a critical αν such

that the zero solution is stable for α ∈ (−ν, αν), and unstable for α > αν . For τ? = 1 and ν = 0, the

critical value is α0 = π/2. Thus, for α > αν , the constant solution becomes unstable, and a stable

periodic solution appears. This transition can also be treated as a Hopf bifurcation.

The occurrence of oscillatory or periodic solutions is of wide interest [100, 73]. He, Zhang &

Gopalsamy [88] considered equation of the form

y′(t) = y(t)f(t, y(t− τ?)), (3.7)

in modelling single species dynamics in a temporally changing environment. If f in eqn (3.7) is a

periodic function in t, we can get a periodic solution.

Gopalsamy3 [74] considered the neutral-delay equation of the form

y′(t) + by′(t− σ?) + ay(t− τ?) = 0. (3.8)

He proved that if a, b, τ , and σ are nonnegative constants and [a/(1 + b)](τ? − σ?)e > 1, then all

bounded solutions of (3.8 are oscillatory. His result was extended to the nonlinear case

y′(t) + f(y′(t− σ?)) + g(y(t− τ?)) = 0, (3.9)

where f and g are continuous functions. He proved that under the conditions yf(y) > 0 and

yg(y) > 0 for y 6= 0, 0 ≤ f(x)/x < b ≤ 1, g(x)/x ≥ a > 0, and [a/(1+ b)](τ?− σ?)e > 1, all bounded

solutions of (3.9) defined on [0,∞) are oscillatory.

So far, we have discussed delay equations with constant time-lag τ?. In remote control problems

it is easy to imagine situations where the delay is not constant but depends in some way on the

state of the system. If such state-dependence is introduced, we get a state-dependent DDE, y ′(t) =

f (y(t− τ(y(t)))), where τ : R → [0, τ̄ ] is a given function, with some upper bound τ̄ . For quite some

time the study of its qualitative features was inhibited by the fact that it is difficult to linearize this

equation about the zero solution. (If one tries a formal expansion then y′(t), which is still nonlinear

in y, appears on the right hand side.) Then it was discovered that for an adaptation of the existence

proof for periodic solutions one does not need an exact linearization. One can project the solution on

the unstable manifold of the problem with constant lag τ?(0) and still get ejectivity. This approach is

presented by Mallet-Paret [118]. Thus, as far as the main branch of periodic solutions is concerned,

the equation with state-dependent delay behaves about the same as a constant lag equation.

3We remark that we are aware of over 140 papers authored or coauthored by Gopalsamy that relate to delay

equations.
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In some biological applications the lag is governed by a differential equation (that models adap-

tion to the system state). As an example, one has systems of the form:

y′(t) = f (y(t− τ(t)))
τ ′(t) = g (y(t), τ(t)) ,

which, with g(y, τ) = g̃(y)− τ , have been studied recently in [4].

In an equation like (2.2) it is assumed that the lag has an upper bound. Although infinite lags

are biologically unrealistic, it is sometimes mathematically convenient to allow for arbitrarily large

lags, as in the RFDE

y′(t) = f

(∫ 0

−∞

y(t+ s)dσ(s)

)
. (3.10)

(Equations of this form also appear in the theory of materials with memory.) The global properties of

such systems may depend strongly on the chosen state space. A particular class of problems consists

of systems of equations where the weight function σ is an exponential polynomial σ(s) = e−s; these

could be reduced to a system of ODEs of the form y′(t) = f(z(t)), z′(t) = y(t) + z(t), where

z(t) =
∫ 0

−∞
e−sy(t+ s)ds; see Fargue [66], Wörz-Busekros [177].

It was underlined, in [128], that solutions for distributed delay equations are generally easier to

obtain than solutions for discrete delay equations. A variety of analytical forms can be used for the

kernel function. If the kernel appears to be a convex combination of gamma distribution functions

Fm(t) =
tm−1am

(m− 1)!
e−at, a ∈ R,m ∈ N (3.11)

(non-integer m are considered in [86]) then the integro-differential equation is a reducible system

and can be transformed to an equivalent system of ODEs through a linear chain trick technique

[110, 111]. The delay kernels of this particular form are widely used in biological modelling as they

can be represented as ODE models. Consider, as an example,

y′(t) = b

∫ t

−∞

y(σ)Fm(t− σ)dσ − cy(t) (3.12)

Applying the linear chain trick technique its solution can be obtained with the following ODEs

y′(t) = bzm(t)− cy(t) (3.13)

z′1(t) = a (y(t)− z1(t)) (3.14)

z′i(t) = a (zi−1(t)− zi(t)) (3.15)

where i runs from 1 to m. The average time lag for the distributed delay model with kernel Fm(t) is

related to the parameters of the gamma distribution as < τ? >=
m

a
. Distributed delay models with

a gamma distribution kernel appear to be quite popular in modelling of the biological processes (see

Sec.3.2 for examples in chemostat systems, blood cell production, and virus infections).

We note, in passing, that Arino and Sánchez [5] discuss models of cell population kinetics that

can be presented as an “abstract” delay differential equations. Partial differential equations with

retarded argument have been recently suggested for population dynamics problems by Mackey and

Rudnicki [112] (a first order hyperbolic PDEs), Gourley and Bartuccelli [75], Kolesov and Rozov

[103], and Faria [67] (delayed parabolic equations of reaction-diffusion type).

3.2 Quantitative studies

An understanding of biological phenomena implies the ability to predict and control them, and

this understanding comes in several related stages: (i) formulation of mathematical models based
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on biological first principles, (ii) qualitative assessment of the models, (iii) numerical analysis and

computer simulation and (iv) biological interpretation. In the previous subsection we introduced

feasible types of delay equations and we now look at their application in the numerical modelling of

biological systems.

Mathematical problems in biology are derived under simplifying assumptions, which allow a

mathematical representation to be developed. More stringent assumptions lead to a more con-

sistent mathematical model, but one which is in general impossible to investigate explicitly, and

it is numerical analysis and computer modelling that allow one to approximate the solutions of

mathematically expressed biological problems. Of course, an increase in the complexity of mathe-

matical models should be correlated with the quality and amount of experimental data available,

and in studies of living systems this is not always the case. In this respect recent experience in

the systematic refinement of mathematical models for HIV infection seems to be quite remarkable

[89, 132].

Numerical studies using biomathematical models are undertaken in order to understand the

system dynamics, estimate relevant parameters from data, test competing hypotheses, and assess

the sensitivity to changes in parameters or variations in data and optimize its performance with the

least possible cost. These objectives are associated with an increasing complexity of the numerical

procedures.

Numerical modelling with RFDEs has been used for analysis and prediction in various branches

of biosciences: ecology, chemostat systems, epidemiology, immunology, compartmental studies, neu-

ral networks, to name just few of them. We shall now discuss various situations where we know

that numerical simulation has been used to advantage. Typically, the models represent a num-

ber of time-dependent state variables, each having a recognized biological interpretation, and a

corresponding complexity in the parameters. (There are some data to support the need for such

complexity.) Delay models formulated in mathematical biology represent several types of functional

differential equations; DDEs, NDDEs, integro-differential equations, threshold-type equations, re-

tarded PDEs and others. Recently, attention has also been given to implicit DDEs, for example

G (t, y(t), y(t− τ?), y′(t)) = 0, and to equations involving stochastic variables.

3.2.1 Ecology

Mathematical studies using delay models to study ecology are built upon various generalizations of

Volterra’s integro-differential system of predator-prey dynamics:

y′1(t) = b1y1
(
1− c11y1 − c12

∫∞
0
y2(t− s)k1(s)ds

)

y′2(t) = b2y2
(
−1 + c21

∫∞
0
y1(t− s)k2(s)ds

) (3.16)

where the y1(t), y2(t) represent the populations of the prey and the predator, and the parameters

specifying the birth and interaction rates are non-negative4 (see [48]). These equations can be

extended naturally to describe the dynamics of multi-species ecological systems. A recent example

using (3.16) is presented in [55], where the stability, direction of bifurcation, period and asymptotic

form of the periodic solutions (resulting from a Hopf bifurcation) are studied. The author considerd

the case of kernels ki(s) = aie
−ais. Extensive numerical simulations were carried out to investigate

the behaviour of the periodic orbits in the parameter region around the stability-instability boundary.

Models incorporating a distributed delay like that in the equation

y′(t) = −αy(t) +M0

(∫ t−τm

−∞

y(s)g(t− s) ds
)

4There are variations of these equations, including forms with differing limits of integration and forms that incor-

porate Stieltjes integrals, in the literature.
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are used in modelling ecological and chemostat systems, where the delay indicates that the growth

of a species depends on the past concentration of nutrients. For early studies of the chemostat see

references cited in the book by Smith & Waltman [163] and the recent exposition of delay models

given in Wolkowicz et al. [180]. We refer to recent work by Ruan & Wolkowicz [158] presenting

qualitative and numerical studies of Hopf bifurcation with, the average time delay as a bifurcation

parameter. In [180] both discrete and distributed delays were used in computer simulations. The

numerical simulations provided evidence that the delays representing the time-lag in the growth

of the species as a function of the past concentration of nutrient, enhance the predictions on the

transient behaviour, and with distributed delays the models are more realistic and accurate in

reproducing the observed dynamics. One can, however, face difficulties in introducing delays in

chemostat models as reported in Cunningham and Nisbet [47].

Various classes of differential equations are used as building blocks for increasingly complex

models, with a recent example of a mixed model coming from parasitology [36]. To describe the

dynamics of the host-parasitoid interaction an age-structured model has been suggested that com-

bines the McKendrick - von Foerster equation (a first order hyperbolic PDE) for the juvenile host

population, an ODE for the adult host population and a delay differential equation for the adult

parasitoid population. A fixed lag appears in the production term of the parasitoid population.

The phenomenon studied concerned the mechanism of oscillations in the populations of hosts and

parasitoids. Numerical simulations suggested that there are multiple attractors in much of the pa-

rameter space and revealed a range of dynamics that can be produced with the model. Evidence

was provided that it is the delayed density dependence in the parasitoid birth rate that can induce

the cycles, in addition to the classic Lotka-Volterra consumer-resource cycles. The delayed feedback

cycles result from periodic variation in the survival of cohorts through the juvenile class caused by

the age-dependent processes.

We note that reaction-diffusion systems with delays in the reaction terms have been used recently

in population models, for example the Lotka-Volterra competition system [75]. The distributed

delays were approximated by gamma distribution functions (m = 1, 2). Parameter domains for

instability (stability diagrams) of the spatially-uniform steady state solution were examined by

computational means in conjunction with the argument principle. It was found that for fixed lags

the stability diagrams have a much more complicated structure than for distributed delays. Another

reaction-diffusion parabolic equation with delay was used for modelling the predator-prey system

taking into account the migration of the predator and with a delay represents the length of time to

mature to adulthood [103].

3.2.2 Epidemiology

Amongst the first to produce a theory of epidemics were Kermack and McKendrick [102]; they used

mathematical models to study the spread of infections in populations. In modelling disease trans-

mission the population is usually considered to be subdivided into disjoint epidemiological classes

(or compartments) of individuals in relation to the infectious disease, for example: susceptible S,

exposed E, infectious I and removed R, individuals. The development of the infection is repre-

sented by transitions between these classes. In the epidemiological models the waiting times in the

compartments must be specified and the assumption of a constant period of stay of individuals in

any of the compartments leads to delay differential equations. We cite some recent examples of

delay models using fixed delays to represent the duration of the infectious period in the SIS-model

[91], the immune period (SIRS-model) [92], or the periods of latency and temporary immunity

(SEIRS-model) [44]. The case of a distributed duration of the latent period was studied with a

distributed delay SIR-model by Beretta and Takeuchi [23]. In epidemic models that seek to take

into account the age structure of the population, the lag represents the maturation period [79]. The
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major effect of delays in the epidemic models is considered to make them less stable than the anal-

ogous models without delays [91]. The characteristics of infection dynamics being examined with

the delay models are the existence and stability of the steady states associated with a disease-free

situation or with epidemics. To this end one derives analytically the threshold parameters (such

as the basic reproductive number) which specify sufficient conditions for asymptotic stability of the

steady states or the appearance of periodic solutions. The numerical studies are usually carried

out to support analytical results and provide some insight into more general situations which are

difficult to treat analytically. It was reported in [72] that the numerical simulations SEIRS model

with delay differential equations were performed in XPPAUT [61]. For other references on epidemic

models with delays we refer to the recent papers by van der Driessche [171], and by Hethcote and

van der Driessche [91].

3.2.3 Immunology

Immunology presents many examples of mathematical models formulated using DDEs starting from

simple models of the humoral immune response suggested by Dibrov et al. [50] and Marchuk [121].

We refer to [121, 122, 136, 151] as sources for numerous references on delay models formulated in

immunology.

Marchuk and associates [9], [10], [30], [32], [101], [121]–[125], [157], [161] developed a hierarchy

of immune response models of increasing complexity to account for the various details of the within-

host defense responses to pathogens. The delays are used in the functional terms describing the

proliferation and differentiation of lymphocytes, and represent the time needed for cells to divide,

mature (i.e., express certain genes), or become destined to die. Whereas a basic model of an

infectious disease has only one time-lag, more sophisticated mathematical models [121, 161] for

viral-bacterial infections in lungs, or for T-cell division incorporate about ten delays. The numerical

approaches to assimilation with the models of real data on the within-host immune responses and

pathogen dynamics allowed the researchers to quantify a number of relevant parameters of pathogen-

host interaction for human infections caused by influenza A [32], hepatitis B viruses [124, 125, 161],

bacterial infections in the lung [101, 121, 157], mixed infections [127] and murine LCMV [30, 59]

and influenza [121] infections.

We shall summarize the approach of Marchuk and his associates. Motivated by the need to

solve constant lag models arising in immunology reliably and efficiently, two adaptive numerical

codes were developed [34, 121]; these were based (i) on embedded Runge-Kutta-Fehlberg methods

of order 4/5 supplemented by the Hermite interpolation, and (ii) on Gear’s DIFSUB [71], which

uses the variable order variable step-size Adams-Bashforth-Moulton or BDF methods to advance

the solution and the Nordsieck interpolation technique to approximate the variables with delays

[34, 121].

A typical data set characterizing immune responses can display a large variation in scale but with

each datum being equally significant. To fit these types of data sets, the classical “least-squares”

minimization of the sum of squared residuals appeared to be inefficient as it gives undue weight to

a small change in large data value. The approach based on the log least-squares, i.e., fitting the

logarithm of data and model prediction (see eqn (5.2)), improves the tractability of the parameter

identification problem. The corresponding functional, providing a metric in RN
+ , was proved to be

efficient by other parameter estimation studies in immunology [132, 137].

Fitting of a large scale nonlinear model to data is a difficult task, and a good initial guess for

the optimized parameters is of great importance. The parameter estimates can be improved by a

sequential process of finding the best-fit parameter values for subsets of the data, where the subsets

are obtained by subdividing the observation interval. The decomposition of the original identification

problem into a set of simpler optimization subproblems on smaller time intervals is based upon the
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precise idea on which processes are active during the smaller observation intervals. As the size of

the subintervals increases, the best-fit parameter values can be improved in a step-by-step manner

[33, 125]. For some specific issues arising in numerical parameter estimation with delay equations

we refer to Sec.5

Another experience of fitting with time-lag equations in immunology is provided by Mohler et al.

who developed compartmental models for lymphocyte migration [68, 135]. In studies of the compart-

mentalized systems, the delays represent (i) the time that cells reside in a particular compartment,

or (ii) the transit times through compartments, or (iii) the duration of inter-compartmental trans-

fer. The model in [68] was used to match quantitatively the data on lymphocytes in various relevant

organs of the immune system; it employs ten constant lags. Experimentalists have the means to

observe cell recirculation within the body by radioactive labelling and tracing the dynamics of ra-

dioactivity distribution to various organs of the immune system. The problem of interest is how

to estimate the lymphocyte intra- and inter-compartment transfer rates using the given data. A

combination of compartmental analysis and numerical modelling allowed the parameters represent-

ing the directional permeabilities to be estimated; these characterize the flow rates in the various

circulatory vessels and organs in different regions of the body. The linear models

y′(t) = Ay(t), y′(t) = A(t)y(t), y′(t) = Ay(t) +
∑

Bjy(t− τj) (3.17)

were employed to model lymphocyte circulation. The fit of the time-delay model was shown to be

better than that provided by autonomous and non-autonomous ODE models. The common problem

with the linear compartmental models was that they gave a biased fit with a systematic deviation

from the data during the initial “response” phase and the “steady state” phase (either overshooting

or undershooting). It was established that a non-linear ODE model, with nonlinearities representing

a saturation of diffusion-rate-flow into organ from blood at high concentration of lymphocytes in

the organ, gives a better approximation to the data than the linear counterparts. This again

provides the evidence that an increase in complexity of mathematical models can lead to a better

quantitative consistency with real data. Later, a similar linear system of DDEs was suggested to fit

the experimental data on lymphocyte trafficking through sub-compartments within a single lymph

node [135]. For other compartmental models using delays see Györi & Ladas [78].

The most recent example of constant-lag equations in immunology is the model of humoral

immune response to Hemophilus influenza by provided Rundell et al. [160]. They take into account

the fine structure of the humoral immune response, introduce several time-lags and a dozen variables,

and provide an up-to-date framework for the analysis and control of the infection dynamics. The

parameter identification problem for the nonlinear model was treated as a sequence of ‘reduced’

parameter identification problems by splitting the observation interval into a sequence of smaller

subintervals (over each of which some reduced subset of parameters and equations are dominant).

The design variables included the dosage of bacterial antigen administered, and the interval between

immunization.

The pneumonia caused by H. Influenza presents a problem for hosts with immune deficiencies,

such as AIDS patients. To cure the infection, intravenous treatment with antibiotics is used. In the

latter paper, numerical simulations were carried out to investigate the efficacy of several vaccination

scenarios aimed to establish a long-lasting protection against the bacteria mediated by the neutraliz-

ing antibody. A simple two dimensional predator-prey model, involving populations of bacteria and

antibodies, with a delay in the antibody production term, was advanced to determine an optimal

strategy for the drug delivery [159]. Numerical experiments with the model established a nonlinear

dependence of the protective time period on the interval between immunizations and dosage, and

suggested a sufficient strategy to provide two years of protection for a 18 month old child. The

numerical approach to the optimal control problem (see Sec.7) allowed the authors to find a control
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function-drug treatment regime which demonstrated a shorter recovery time, required 6% less drug

administration and 3-times lower peak drug concentration. The model suggested continuous drug

administration, as opposed to the standard approach based on periodic dosages. A sensitivity anal-

ysis indicated the robustness of the predicted control function with respect to parameter variation,

although the range of parameter variation was not specified.

3.2.4 HIV (Human immunodeficiency virus)

The mathematical study of the within-host dynamics of HIV infection has received more attention

during recent years than that of other infectious diseases. Estimates with simple models, based on

ODEs, of the turnover of virus and infected cells revealed that HIV infection is a highly dynamic

process, although the viral load and cell counts in infected patients can be in a quasi-steady state

for years. This discovery was a breakthrough in understanding the nature of HIV and AIDS. The

estimated value of 6 hrs for the viral half-life is considered, however, to be an upper bound, and the

key problem (which is still outstanding) is to get an improved estimate [132]. It was suggested that a

model of HIV infection that accounts for detailed aspects of an intracellular delay in virus production

should give more accurate estimates. It was shown that adding more realism (associated with an

increase in mathematical complexity) to the models by considering a fixed lag modification and,

later on, including a distributed delay, could give better accuracy in estimating the viral clearance

rate provided detailed patient data are available.

Herz et al. have recently shown [89] that explicit consideration of the delay between infection

of a cell and the production of new viruses is necessary to estimate reliably the turn-over of HIV

and HBV (Hepatitis B Virus) in infected patients. In [132] the approach was further refined by

including continuously distributed intra-cellular delays. The delay distribution was assumed to

be a gamma distribution. The authors noticed that, although there is no particular biological or

mechanistic justification for it, the gamma distribution provides a suitable approximation of bell-

shaped distribution curves. In this case the set of integro-differential equations used as a model

can be converted into an equivalent set of ordinary differential equations using a linear chain trick

technique (see Sec.3.1). The resulting system of ODEs was approximated numerically using a

fixed step-size mesh and Euler or fourth order RK methods. The increased complexity of the

model needs to be supported by clinical data, and the authors examined whether the parameters of

the model including the time delay can be reliably estimated from data sets that include realistic

levels of noise. Numerical minimization of the log least-squares functional was performed using

the Levenberg-Marquardt algorithm with finite difference approximation of the partial derivatives.

Parameter estimation results indicate that a number of optimal solutions exist and a good initial

guess for the delay is needed in order to obtain more accurate estimates for the viral clearance rate

from detailed patient data.

A similar problem of reliable estimates of HIV turnover rate is addressed by Grossman et al.

[76]. They argue that a realistic model of HIV infection should take into account that infected cells

producing the virus die after a certain time lag, rather than decay exponentially. They suggest a set

of ODE equations, modelling the cell death as a transition between several sequential phases. This

ODE model is equivalent, in view of the linear chain trick technique, to a distributed delay model

with a gamma distribution function (m = 4).

3.2.5 Physiology

The great potential of simple DDEs in capturing complex dynamics observed in physiological systems

was convincingly shown in a series of related works by an der Heiden, Bélair, Glass, Mackey and

co-workers [1, 2, 3, 113, 114, 142]. A key element in the models is an assumption that either the rate
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of production or the rate of elimination are nonlinear functions of the past state of the following

general form

f(yτ?) =
ym(t− τ?)

θ + yn(t− τ?)
(3.18)

with m ≤ n and n ≥ 1. DDEs with time-lags appearing in the non-linear terms were used to model

(i) the human respiration system and regulation of blood concentration of CO2 (periodic breathing

and prediction of low- and large amplitude oscillations; see [19]); (ii) the production of blood cells

(periodic and chaotic regimes); (iii) hormone regulation in the endocrine system (period-doubling

bifurcations and chaotic solutions); (iv) recurrent inhibition in neural networks (multiple steady

states, periodic solutions and transition to chaos [3]).

Respiratory control represents an important physiological system where delay equations are used

to study the control mechanism and unstable patterns of ventilation (see as, examples, the work

by Glass and Mackey [113], Revow et al. [153], Cooke and Turi [43] and references therein). The

delays represent the transport time between the lung and the peripheral and central chemoreceptors.

Models of different degrees of complexity have been formulated and the general view is that, due

to the complexity of the real system and the presence of multiple delays, the only feasible way

to understand the behaviour is through computational means. In [153], a mathematical model of

respiratory control in newborn infants is formulated using a dozen nonlinear equations for CO2 and

O2 concentration in the lung, tissue, heart and large arteries, extracellular fluid and brain (regarded

as separate “compartments”). This model is considered as a framework for testing hypotheses

on maturation processes in the neonatal respiratory system. A simplified nonlinear delay model

considering the dynamics of the arterial CO2 and O2 was suggested in [43] and used in the qualitative

study of the effect of transport delay on the stability of the unique steady state in the model. When

the lag is greater than a certain threshold value, instability takes place and yields irregular patterns

in the dynamics of the system.

The study of haematological diseases is a field where time- and state-dependent DDEs have been

used to formulate physiologically realistic mathematical models. The dynamics of haematopoiesis

was modelled with a state-dependent delay model in [117]. The delay variable appears in the

equation describing the age at which blood cells die by apoptosis, i.e., by a programmed cell-death

process. The modelling efforts were focussed on understanding the origin of periodic haematological

diseases. The studies included both a qualitative analysis of a Hopf bifurcation and the estimation

of parameters using real-life data. This allowed a quantitative comparison between the data and

predictions concerning the period and amplitude of oscillations in the number of erythrocytes and

the erythropoietin level. Numerical simulations were used to analyze how the model reproduces the

effect of a loss of blood cells (in humans) and the oscillations in erythrocyte number resulting from

regular application of auto-antibodies (in rabbits). In both situations, real data were available that

allowed adjustment of some relevant parameters, such as the time of maturation and the destruction

rate of blood cells.

The same authors recently advanced a mathematical model of granulopoiesis formulated using

a non-linear integro-differential equation [87]:

y′(t) = −αy(t) +M0

(∫ t−τm

−∞

y(s)g(t− s) ds
)
, (3.19)

where τm is the minimal maturation time-lag and the kernel is defined by the gamma distribution

function. The production term is assumed to be a monotone decreasing function of its argument,

and the slope of this function is a major control parameter (feedback mechanism) determining the

stability of the equilibrium state. In numerical simulations the authors made use of a Hill function

to represent the function M0(·) and reported that use of a non-integer value of the parameter m in
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the gamma distribution function provides a good fit to typical data sets. The primary objective with

this model was to test hypotheses concerning whether the oscillations in blood counts of neutrophils

observed in the progress of a disease originate from a loss of stability in the peripheral control system

of neutrophil production, rather than in the stem cell compartment. Mathematically, the transition

from a normal state to a diseased state can be associated with a loss of stability of the unique

steady state in the model (3.19) and a supercritical bifurcation of a periodic solution. An elegant

combination of three types of analysis: logical (clinical data and phenomenology), qualitative (local

stability and Hopf bifurcation) and numerical, provided the necessary basis to decide between the

above hypotheses, on the origin of cyclical neutropenia. Numerical examination of the solution

of the model allowed an investigation of whether the relevant characteristics of clinically observed

disease (the period and amplitude of oscillations in cell numbers) can be obtained under a systematic

variation of parameters, within their physiological ranges. Again, a linear chain trick technique was

used to check the numerical approximation scheme for the integro-differential model, since for integer

values of the gamma distribution parameter m the model could be represented as an ODE system.

In the modelling of haematopoiesis undertaken by Mackey and co-authors [113, 117], particular

attention is always paid to the numerical methods used to produce the solution. The first constant

lag models were solved by a predictor-corrector method with a fixed step-size [113]. To check the

solution, both smaller step-sizes and a RK scheme were utilized. For the state-dependent DDEs

arising in erythropoiesis modelling a modified fourth order RK scheme with fixed step-size with

a linear interpolation for the delayed variable between grid points [117]. To treat numerically the

integro-differential equations modelling the dynamics of cyclical neutropenia, the method chosen in

[87] was based upon the trapezoidal scheme used to advance in time and to evaluate the integral

term in the equation. It should be noted that the authors took care to test the accuracy of the

resulting numerical method.

3.2.6 Neural networks

The modelling of neural networks (NN) is an important area of application of delay equations. It

was Hopfield who, in 1984, introduced a continuous version of the circuit equations for a network

of N neurons, represented by saturating voltage amplifiers. The lags in the model of the living

nervous system can represent the synaptic processing time or the time it takes for action potential

to propagate along axons. In artificial NNs the delays arise from the hardware implementation due

to finite switching and transmission times of circuit units. Marcus and Westrevelt were the first

to include the delay in Hopfield’s equations [126]. Various generalizations of the Hopfield-type NN

models with delay have been recently analyzed (see [41], [27], [54], [57], [90], [147] and [181]) A

‘standard’ delayed Hopfield neural network model is:

Ciy
′
i(t) = −

yi(t)

Ri

+

n∑

1

Tijfj (yj(t− τj)) + Ii, i = 1, ..., N. (3.20)

The variable uj(t) represents the voltage on the input of the ith neuron, the values Ci > 0, Ri > 0

are certain parameters, τj represent the lags, f is a transfer function (assumed to be a sigmoid one

with maximum slope at y = 0), the values Ii represent the external input and the matrix T = (Tij)

specifies the network architecture corresponding to the connection strength between neurons.

In some applications of NNs, such as associative memory, it is important that the model admits

the existence of many steady states and to that purpose a non-monotone activation function f

gives an advantage. The existence of global attractors in signal processing, parallel computing and

optimization problems, is of primary importance. The delayed Hopfield models display complicated

behaviour, and the origin of instabilities in NNs is in the focus of qualitative and numerical studies.

These studies seek to relate the values of the delay, the network structure/connection topology and



Baker, Bocharov & Rihan 217

the properties of the function f in eqn (3.20) to the stability of steady states, and the emergence

of sustained or transient oscillations. Whereas oscillatory patterns observed in the activity of the

nervous system are quite natural for the respiration control system, in artificial NNs (that rely on

convergence to a steady state) it is important that the real delays do not affect the local or global

stability and only minimally change the transient regime. As a general rule, there is a threshold

in the value of the lag at which a delay-induced instability occurs and leads to oscillations. The

numerical simulations proved to be instructive in understanding complicated dynamics of the NNs

as presented in [147]. The authors of the latter paper examined the origin of long-lasting transient

oscillations in an excitatory (positive feedback) ring neural network, a closed chain in which each

unit is connected unidirectionally to the next one. Ring systems appear, for example, in studies of

feedback in systems controlling gene expression. It is suggested that the delay-induced oscillations

are long-lasting transients, and according to the proposed mechanism the continuous delayed NNs

behaves transiently as a discrete-time network and asymptotically as a continuous-time network

without delay. The shorter the duration of charge-discharge time of the neurons, Ci in eqn (3.20),

the longer is the duration of oscillations. For the numerical approximation of the model the authors

refer to two independent methods: (i) solution of the initial value problem by the Gear predictor-

corrector formula adapted to DDEs and (ii) solution of the equivalent integral representation using

the trapezoidal formula. We note in passing that the first delayed Hopfield model was treated with

an Euler method [126]. A recent model for neural reflex mechanisms [8] is an example of an implicit

DDE of the type

εy′(t) = −α(εy′(t))y(t) + f(y(t− τ?)). (3.21)

The need for such models is related to the fact that neuromuscular reflexes with retarded nega-

tive feedback have different rates depending on the direction of movement. Both the qualitative

properties and the numerical analysis of such equations represent a challenge that remains to be

addressed.

3.2.7 Cell kinetics

Recently a biochemical model of the cell cycle, modelling the dynamics of concentration of two

peptides (cdc2 and cyclin) and their cdc2/cyclin complex, was formulated using delay equations

in [38]. The time-lag represents the duration of the transformation of the complex into the active

maturation promoting factor (MPF). The cell division is characterized by periodic fluctuations of

MPF activity and the level of free cyclin. The effect of various parameters on the stability of the

steady state occurring in the model and on Hopf bifurcation were examined both qualitatively and

numerically.

Growth of cell populations is a central issue in cell biology and provides a rich source of various

types of functional differential equation models. In [39], Byrne considered two ways of modifying

the standard model of avascular tumor growth by incorporating a time-delayed factor into the net

proliferation rate. Numerical and asymptotic techniques are used to show how the dynamics of the

growth of a tumor are affected by including such delay terms. In the first, the time-lag represents

the time taken for cells to undergo mitosis. Here the size of the lag does not affect the limiting

behaviour of the tumor; it simply modifies the details of its evolution. In the second case, the

lag represents the time for changes in the proliferation rate to stimulate compensatory changes in

apoptotic cell loss. Here, the delay can alter the tumor’s evolution dramatically.

Cell populations are, in general, not homogeneous, i.e., the cells differ in their age, maturity

level, activation status, duration of cell cycle, etc. The generic means for modelling structured pop-

ulation dynamics are provided by first order hyperbolic partial differential equations (see Sec. 2.1),

describing the dynamics of the density u(t, a) of cells at time t and with the “age” a (representing

for example position in the cell cycle). When the cells are initially uniformly distributed over the cell
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cycle then an exponential growth would be observed. Cell populations which are made synchronous

exhibit a step-like growth. The process of periodic synchronization needs special experimental con-

ditions, and one can model the corresponding external manipulations of cell culture with a delta

peak in the birth rate function b(a) at a = τ? (τ? is the period). As it was illustrated in Sec.2, the

total cell number N(t) =
∫∞
0
u(t, a)da satisfies, under this assumption, a neutral delay differential

equation.

The kinetics of cell division exhibit various dynamic patterns ranging from exponential increase

to prolonged step-like growth. Neutral DDEs have recently been shown to provide better qualitative

and quantitative consistency with the step-like growth patterns (observed under certain experimental

conditions in the, so called, synchronous cultures [13]) than ODEs or DDEs with constant time-lag.

Using a model formulated as an NDDE some relevant growth parameters of synchronous cultures

were estimated, including the fraction of cells that are dividing, the rate of commitment of cells to

cell division, the degree of synchronization of cells in the population, and the death rate of cells. The

numerical approach deals with a hierarchy of models, parameter estimates obtained from simpler

models being used as initial guess in more complex models. Neutral equations were also used [137]

to model the division of T-lymphocytes induced by Interleukin-2.

Recently, attention has been paid [112] to the analysis of cell population dynamics using retarded

partial differential equations (RPDEs) of hyperbolic type, in which there is a retardation in the time

variable:

∂u(t, a)

∂t
+
∂u(t, a)

∂a
= f (t, u(t, a), u(t− τ?, h(a))) (3.22)

with τ? > 0 and h(a) < a, for a > 0. The model considers cell populations with simultaneous

proliferation and maturation processes, where the kinetic/reaction terms are dependent on the cell

population at a previous time represented by a lag τ? and at a previous maturity level specified by

h(a). Models of this type have been advanced to describe the dynamics of the blood production

system [154, 155, 156]. So far, little is known about the qualitative behaviour (local and global

stability, for example) of the solutions to these equations. Numerical studies proved to be instruc-

tive in getting some insight into the possible dynamics of (3.22), with a maturation time-lag as

a critical parameter [46, 154, 155, 156]. In particular, evidence has been presented of temporal

and spatial oscillatory behaviour of convection and reaction-convection fronts, when the lag, either

temporal or related to maturation, exceeds a critical value corresponding to Hopf bifurcation of

the reaction equation. The model displayed a variety of regimes: homogeneous and non-stationary

modes, homogeneous oscillatory modes, regular and chaotic travelling modes, and pulse and front

propagation solutions. The computed dynamics were used to characterize delay-induced instabili-

ties and thresholds for the various regime transitions were identified. It was observed that many

of the time-dependent modes of the retarded PDE are directly associated with a limit cycle be-

haviour in the pure birth–and–death cell population balance equation. The underlying connection

to the properties of delay differential equation has been established in [112], they consider the DDE

z′ = f (t, z(t), z(t− τ?)) associated with (3.22) and show that the global stability of a solution of

the original RPDE can be reduced to the global stability of the corresponding DDE.

4 Numerical Methods for Delay Equations

We shall embark on a brief review of numerical strategies for DDEs. First we remark that some

of those undertaking numerical studies of delay equations in biology devise an indirect approach,

rather than use purpose-built numerical codes for DDEs; they try to reduce the study to that of a set

of ODEs. Thus they eliminate lag-terms from delay differential equations by introducing additional

variables on one of the following bases:
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(1) the methods of steps [21] allows one to represent a DDE equivalently on successive intervals

[0, τ?], [τ?, 2τ?], ..., [(N − 1)τ?, Nτ?] as successive systems of ODEs with increasing dimensions;

(2) a process represented by a delay can be approximated by introducing a number of intermediate

stages using an ODE system to mimic the transition through the stages [9, 10, 70, 121];

(3) the effect of the time-lag can be modelled by using “gearing up” variables [52].

We note, however, that the long-term dynamics of DDEs and of approximating finite-dimensional

ODEs can differ substantially. There are occasions when (2) (given above) may have appeal, but a

familiarity with numerical methods for DDEs will often reap dividends. If a system of DDEs has

no closed-form analytical solution, we advocate the application of direct numerical techniques to

approximate the solution. Even where there is a closed-form solution, numerical techniques can be

of use in forming hypotheses that can subsequently be established theoretically. Numerical methods

also have a role when estimating parameters in models (see Sec.5).

We now approach the issue systematically. To orientate the reader, we first consider the numerical

solution of an initial-value problem for a system of ordinary differential equations,

y′(t) = g(t,y(t)), t ≥ t0; y(t0) = y0. (4.1)

It is usual for numerical algorithms to provide approximate values ỹ(ti) at a sequence of points

(t0 < t1 < t2 < t3 · · · < tN ) determined by the algorithm using (say) estimates of the local

truncation error or of the defect. Supplementary approximations provide dense output that defines

approximate values ỹ(t) (densely defined) for t ∈ [t0, tN ]. Such ODE methods can be modified, with

varying degrees of success, to provide approximate solutions for DDEs. To indicate the principal

features, consider the initial function problem for the system of DDEs with parameter p:

y
′(t) = f(t,y(t),y(t− τ?),p), t ≥ t0; y(t) = ψ(t,p), t ∈ [t0 − τ?, t0], (4.2)

in which τ? > 0 does not vary with t. To find the solution y(t) for t ≥ t0 one has to specify the

initial function ψ on the interval t ∈ [t0 − τ?, t0]. (Its exact form depends on the problem and we

refer to the discussion of various forms of initial functions in cell growth to [13, 121].) A simplistic

approach to solving system (4.2) numerically consists of replacing (4.2) by the ‘ODE’

y′(t) = f(t,y(t), ỹ(t− τ?),p), for t ≥ tn, (ŷ(t− τ?) being supposed known,

where we assume that we compute ỹ(t) for t ≤ tn using dense-output techniques. At the risk of

over-simplification, numerical methods for DDEs (derived in this manner) amount, in essence, to a

combination of two basic elements: a method πq for approximation of delayed variables with order

q in the spirit of a dense-output routine, and an ODE-based p-th order method Φp to advance the

solution with a step-size hn (on the assumption τ? > hn). This said, a third feature of an adaptive

algorithm concerns the control of step-size and adaptation of the formulae or their implementation,

and some features of delay equations can seriously affect the reliability and performance of a naive

numerical method based on a pair (Φp, πq). In general, the solution to (4.2) is not smooth and

has jump discontinuities in its i-th derivatives at times ti = t0 + iτ?, i ∈ N+. The effect and

propagation of the jump discontinuities in the derivatives of the solution have to be addressed when

adapting any ODE solver to the problem with delays [16]. Theoretical analysis of the convergence

and asymptotic error expansion issues of the adapted method (Φp, πq) tells us that we require

q ≥ p − 1 in order to retain (asymptotically) the global convergence order and (q ≥ p) the error

expansion form characteristic of the ODE method [34].

The scenario outlined above can be modified to provide numerical methods for a wide range of

deterministic retarded differential equations. Note that rigorous development of effective numerical

techniques for stochastic DDEs is a relatively unexplored area requiring further attention from

numerical analysts.
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Underlying ODE type Dormand-Prince (5)4 Continuous 5th order Hermite

method Runge-Kutta Extension

Systems of Equations: Delay, Neutral Delays: State-independent and

& Volterra delay state-dependent delays

Discontinuity tracking: An option Error control: Step-size control with

asymptotically correct

estimator of local

truncation error

Programming language: FORTRAN 77 Floating point Can be increased using

precision: the -dbl option in some

fortran compilers

Table 4.1: Features of Archi code.

4.1 DDE solvers

From a modeller’s viewpoint, two historical periods in the production of numerical codes for delay

equations can be distinguished. During the first period, a number of experimental codes were devel-

oped by modellers or numerical analysts. The second period can be characterized by the availability

of more sophisticated DDE solvers. The Numerical Algorithms Group (Oxford) supported, in part,

the construction of the codes written by Paul (Archi) [149] and Willé (DELSOL) [179]. The major

problems that the designers of such codes try to accommodate are: automatic location or tracking of

the discontinuities in the solution or its derivatives, efficient handling of any “stiffness” (if possible),

dense output requirements, control strategy for the local and global error underlying the step-size

selection, the cost and consistency of interpolation technique for evaluating delayed terms (to name

but a few of them).

The earliest, simple, numerical methods for DDEs (4.2) utilized the Euler or classical fourth-

order RK methods with a constant step-size, supplemented with linear interpolation schemes for the

retarded terms. Such adaptations provided minimally effective means for solving models numerically:

they had no error control, used fixed step-size, and had problems coping with “stiffness” (which is

still a challenge).

Numerical analysts are now in a position to cite published algorithms for the numerical solution

of DDEs. Recently, numerical analysts have developed a number of professional adaptive solvers

(based on LMM , RK or collocation schemes) producing numerical solutions for a wide range of

requested tolerances and various classes of problems with delays. The code Archi is (see Table 1)

based on the successful Dormand & Prince fifth-order RK method for ODEs due to Shampine [170]

and a fifth-order Hermite interpolant [146]. In addition to Archi [149], which is available from the

internet, we mention DDESTRIDE (Baker, Butcher & Paul [15]), DELSOL (Willé and Baker [179]),

DRKLAG6 (Corwin, Sarafyan & Thomson [42]), SNDDELM (by Jackiewicz & Lo [97]) and the code of

Enright and Hayashi [62].

Other approaches may be found in the literature. Fourth-order RK methods and two-point

Hermite-type interpolation polynomials were used by Neves [140], and algorithms based on fourth-

and seventh-order Runge-Kutta-Fehlberg methods together with Hermite interpolation polynomials

were presented by Oberle and Pesch [146]. Thompson [167] developed a code based on a continuously

embedded RK method of Sarafyan [168]. An algorithm based on a predictor-corrector mode of a

one-step collocation method at k Gaussian points has been constructed by Bellen and Zennaro [20].

An explicit RK method has been proposed by Paul [148] and Paul and Baker [150].

Some of the authors associated with progress made in the numerics of DDEs are (ordered al-

phabetically) Arndt, Ascher, Baker, Bellen, Bickart, Bock, Butcher, Corwin, Enright, Feldstein,
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in’t Hout, Iserles, Jackiewicz, Hayashi, van der Houwen, Neves, Oberle, Oppelstrup, Paul, Pesch,

Petzold, Roose, Roth, Sarafyan, Schlöder, Sommeijer, Spijker, Torelli, Thompson, Watanabe, Willé,

Zennaro; see [6, 7, 28, 29, 63, 69, 94, 96, 97, 139, 140, 146, 176, 178, 179, 182].

4.2 Stiffness

Several authors have reported difficulties in the numerical modelling of immune processes using delay

equations, which they identified as due to “stiffness”. Mohler [68] mentioned that an explicit fourth-

order RK integration method was “ inefficient” in treating his constant lag model, whereas Gear’s

algorithm based on BDFs did well. Bocharov et al. [34, 125] give examples of a variable stiffness

problem appearing in modelling the acute immune response. In simulating hepatitis B infection,

the “stiffness” emerges at about day 110 post infection, and is associated with the increase in sizes

of lymphocytes and antibody populations (by a factor of about 105) that accelerates the damping

of virus and infected cells by the same scale. The BDF -based codes performed nicely, whereas the

Adams- and explicit RK based codes failed to produce a numerical solution after the day indicated

because of very small step-sizes required; see Bocharov et al. [34].

The recent models of immune responses by Rundell et al. [159, 160] also generate apparently

stiff computational problems as one can conclude by analyzing the values of parameters being used.

Rundell et al. used the stiff solver ode15s from the SIMULINK collection.

Stiffness is a phenomenon identified in the numerical solution of ODEs, and is variously defined.

It is often characterized in terms of the largest and smallest real parts of the zeros of the stability

function corresponding to a stable solution. The main symptom of “stiffness” is that one requires a

highly stable numerical formula in order to use large step-sizes reliably. The same symptom could

be used to identify “stiffness” in the delay case. We refer to a forthcoming report by Baker and

Tian for a discussion of stiffness for DDEs.

The application of delay equations to biomodelling is in many cases associated with studies

of dynamical phenomena like oscillations, Hopf bifurcations, chaotic behaviour. Recent work on

the analysis of the periodic orbits in delay equations and their discretizations based on the RK

methods showed that the discretizations possess invariant curves when step-sizes are sufficiently

small [95]. Further studies of spurious numerical solutions of finite-difference approximations to the

delay equations, which can be generated at critical (bifurcation) values of model parameters are

needed.

5 Fitting Models and Parameter Estimation

Suppose that the general form of a suitable mathematical model,

y′(t) = f (t,y(t),y(α(t;p));p) (t ≥ t0)

y(t) = ψ(t,p) (t ≤ t0)
(5.1)

with solution y(t;p) is postulated as compatible with a set of (experimental) data, but the values

of the parameters p and their significance in the model are not known. In the simplest case,

α(t;p) = t − τ?; see eqn (4.2). The task of parameter estimation for such mathematical models is

one of minimizing a suitable objective function Φ(p) depending on the unknown parameters p ∈ RL

and the observed data {yj}Nj=1. In the case of delay models (4.2), this can additionally include

estimating τ?, the position of the initial time point t0 and the parameters of the initial function

ψ(·,p). Possible objective functions are, for example,

Φ(p) =

N∑

j=1

M∑

i=1

[
y(i)(tj ,p)− y(i)

j

]2
or Φ(p) =

N∑

j=1

M∑

i=1

[
log

(
y(i)
j

y(i)(tj ,p)

)]2

. (5.2)



Baker, Bocharov & Rihan 222

The first one is the least squares (LS) function, and we refer to the second choice as the log-least

squares (LLS) function. The LLS objective functions provide metrics in RM
+ and has been used for

parameter estimation of immune responses [33, 121, 132, 137].

The numerical technique for finding the best-fit parameter values for a given mathematical model

and objective function involves solving with high precision the model equations for the current values

of the parameters to compute Φ(p). The parameter values are then adjusted (by a minimization

routine, for example EOUPF in the NAG library, LMDIF from NETLIB or FMINS in MATLAB) so as to

reduce the value of the objective function (see [13, 14]).

5.1 Problems with parameter estimation in DDEs

One obvious difficulty with such procedures is that solutions of DDEs are not, in general, differ-

entiable with respect to variation of the lag (see Baker and Paul [11], Hartung and Turi [86], and

Ladeira [108]). As we noted earlier, discontinuities can arise in the solution of a DDE and its deriva-

tives. Such discontinuities, when they come from the initial point t0(p) and the initial function

ψ(t,p), may propagate into Φ(p) via the solution values {y(ζi,p)}. From the formulas (in a scalar

case)

(
∂Φ(ζi;p)

∂pl

)

±

= 2
N∑

j=1

[
y(ζj ;p)− yj

](∂y(ζj ;p)
∂pl

)

±

, (5.3)

(
∂2Φ(ζj ;p)

∂pl∂pm

)

±±

= 2

N∑

j=1

[(
∂y(ζj ;p)

∂pl

)

±

(
∂y(ζj ;p)

∂pm

)

±

+
[
y(ζj ;p)− yj

](∂2y(ζj ;p)

∂pl∂pm

)

±±

]
. (5.4)

It follows that, unless yi = y(ζi;p), jumps can arise in the first and second partial derivatives of

Φ(p) with respect to pl, if the first or the second partial derivatives of y(t,p), with respect to pl,

has a jump at t = ζi (one of the data-points). These jumps can propagate into the second derivative

of Φ(p) if the first derivative of y(t;p) with respect to pl has a jump at one of the data-points

t = ζi, even when yi = y(ζi;p). For more discussion about these issues we refer to [16]. For correct

numerical parameter estimation in DDEs attention has to be given to

• differentiability of the solution y(t;p) with respect to the parameters p,

• existence and position of the jump discontinuities,

• statistical nature of the observed data-points.

5.2 Analysis of the best fit: uniqueness, bias

A fundamental difference between DDE and ODEs is that solutions corresponding to different initial

function data can intersect. Of course, solutions that are computed with different parameters can

intersect in both the ODE and DDE case. In the context of the parameter estimation problem,

this implies that for a given set of {tj}Nj=1 and an arbitrary function f in (4.2), there is no reason

to suppose that there exists a unique minimizer p̂ of Φ(p). Indeed, it is easy to find examples for

non-unique best fit models; one requires only to find solutions for two different parameters that

agree at the points t1, t2, . . . , tN . In figure 5.1 we give an example of such a scenario, plotting

graphs of the solutions to the Hutchinson equation y′(t) = y(t) (a− y(t− 1)) , t > 0, with p = [a],

and 1 ≤ a ≤ 1.6. Considering its solutions for different a and the same initial function, we find that
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Figure 5.1: Intersection of solutions to the different DDEs can cause non-unique best fit in certain data.

a range of different values of parameter a gives solutions that intersect. If the data correspond to

the points of intersection, K is not uniquely determined. The question of what happens as N →∞
is of theoretical interest but could only be answered with precise assumptions on {ti} and f .

In general, the parameter estimation problem (4.2)&(5.2) is an example of nonlinear regression.

Difficulties may arise due to the fact that nonlinear regression models differ, in general, from linear

regression models in that the LS parameter estimates can be biased, non-normally distributed, and

have a variance exceeding the least possible variance. These characteristics depends on the model

(as well as the data and the best fit parameters) and it is necessary to assess the nonlinearity effect.

To estimate biases of parameter estimates one may take the approach (see [12])

• perturb the solution corresponding to the best-fit parameter p̂ ∈ RL with normally distributed

random errors of mean zero and error variance σ2 =
Φ(p̂)

N − L ;

• find the new best-fit parameters p̃;

• repeat this process a statistically significant number of times and check whether

|p̂−mean{p̃}| < 0.01|p̂|. (If so, then the LS estimates are not significantly biased, the effect

of non-linearity is not significant and the best-fit parameter estimates as well as their standard

deviation are confident.)

We give an example of parameter estimation for a simple delay growth model for fission yeast [13]

y′(t) = ρ1y(t− τ?), t ≥ 0,

y(t) = (2.25y0ρ2/ρ1)E(t+ 1.5), t ∈ [0, τ?), y(0) = y0,

(5.5)

where y0 stands for the initial number of cells, E(·) is a bell-shaped initial distribution function.

Estimated are the components of p = [ρ1, ρ2, τ?]. figure 5.2 shows the best-fit solution and the

shape of the LS function in the vicinity of the minima. Table 2 presents the analysis of the best-fit.
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Figure 5.2: a) Shows the best fit solution of time-lag model (5.5) with three parameters, fitted to the

observed data. b) Indicates local uniqueness of the best fit and the dependence of Φ on parameters

τ?, ρ1.

Best-fit, standard deviation, non-linear biases

τ̂? σ ρ̂1 σ ρ̂2 σ

5.45 0.038 0.443 0.014 0.864 0.019

τ̃? NLB(τ?) ρ̃1 NLB(ρ1) ρ̃2 NLB(ρ2)

5.446 0.0066% 0.4426 0.0284% 0.8645 0.0772%

table 2:Best-fit estimates p̂, mean of perturbed parameters p and their non-linear biases to the model (5.5),

NLB= ( p̂

p̃
− 1)× 100% .

6 Sensitivity Analysis: direct and adjoint methods for DDEs

Sensitivity analysis of mathematical models is an important tool for assessing their properties. The

following types of sensitivity can be investigated:

• sensitivity of the solution y(t, p̂) to changes in the parameter values p̂;

• sensitivity of the parameter estimates p̂ to variations in the observation data {tj ;yj}Nj=1;

• sensitivity of biologically meaningful functionals J(y) (see §6.2) that characterize the solution,
to variations in parameters.

6.1 Sensitivity coefficients

The first two types of sensitivity analysis are examined by direct methods and rely upon the com-

putation of the sensitivity coefficients si(t,p) =
∂y(t,p)

∂pi
, which characterize the effect of small

perturbations in the i-th parameter on the solution:

A(y(t, p̂), p̂)si(t, p̂) =
∂f

∂pi
, t ≥ 0, si(t, p̂) =

∂ψ

∂pi
, t ∈ [−τ?, 0]. (6.1)

The operator A ≡ d
dt
−
[
∂f
∂y

]
t
−
[

∂f
∂yτ?

]
t
Dτ? , represents the variational system of equations, [·]t

denotes a matrix-function evaluated at time t, and Dτ? is a backward shift operator. The overall
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sensitivity of the solution y(t, p̂) is given by the matrix-function S(t,p) = ∂y(t,p)
∂p

evaluated at p = p̂.

This function characterizes the sensitivity of parameter estimates to small variations in the i-th

datum yj via the formula:
∂p̂

∂yj

=

[
N∑

i=1

ST (ti, p̂)S(ti, p̂)

]−1

S(tj , p̂). Numerical sensitivity analysis

by the direct method requires solution of the model equations (4.2) (called the main system) and

the variational system (6.1) of M ×L equations taken jointly. This implies that for multiparameter

models, numerical methods for sparse systems of DDEs would be an advantage. The other issue

affecting the performance of numerical codes is the propagation of jumps in the derivatives of solution

of the main problem to the system of sensitivity equations. We refer to Baker and Rihan (to appear)

for additional details.

6.2 The adjoint equations

Consider, as an example, the quadratic functional and its first-order variation caused by perturba-

tions of the basic parameter set p̂ (where ŷ ≡ y(t, p̂))

J(ŷ) =

T∫

0

〈ŷ, ŷ〉dt, δJ(ŷ) = 2
∑

i

T∫

0

〈ŷ, si(t, p̂)δpi〉dt, (6.2)

where si(t, p̂) is a solution to (6.1) on [0, T ].

The sensitivity of non-linear functionals J(y) can be examined using an approach based on

adjoint equations; see Marchuk [120, 121]. The linear operator A in (6.1) acts on some Hilbert space

H with domain D(A). For A the adjoint operator A∗ can be introduced satisfying the Lagrange

identity 〈A(ŷ, p̂)s,w〉 = 〈s,A∗(ŷ, p̂)w〉, where 〈·, ·〉 is an inner product inH, s ∈ D(A), w ∈ D(A∗).
Using the solution w(t) of the adjoint problem

A∗(ŷ, p̂)w ≡ −dw(t)

dt
−
[
∂f

∂y

]T

t

w(t)−
[
∂f

∂yτ?

]T

t+τ?

w(t+ τ?) = y(t, p̂),

0 ≤ t ≤ T, w(t) = 0, t ∈ [T, T + τ?], (6.3)

the variation of J(y) takes the form δJ =
L∑

i=1

2

T∫

0

〈w, ∂f
∂pi

δpi〉dt. Thus, instead of solving an M ×L-

dimensional system of sensitivity equations within a direct approach to the sensitivity analysis, one

needs to solve, only once, the evolutionary problem for the main system and the adjoint problem,

each being of dimension M .

The approach above was used (see [31], [121]) to analyze the sensitivity of functionals for delay

models of influenza and hepatitis, each having about 10 (=M) state variables and 50 (= L) param-

eters including 5 time-lags. DIFSUB adapted for constant-lag DDEs [34], was used to perform the

numerical integration of the forward and backward (adjoint) evolutionary problems. Computational

results indicate that the numerical sensitivity analysis of complex systems using the adjoint equa-

tions requires careful selection of codes for DDEs with particular attention to the following issues:

(i) the adjoint problem inherits the jump discontinuities of the forward problem so the smoothness

of the matrix-function A∗ decreases as t approaches t0; (ii) the stiffness properties of the main and

adjoint problems are opposite and in general, both display variable stiffness behaviour; (iii) adap-

tive codes generate different step-size sequences for the main and adjoint problems and y(t) has to

be re-evaluated on every integration step of the adjoint problem; therefore, numerical schemes that

produce ‘cheap’ interpolation techniques (dense output) would give an advantage.
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7 Optimal Control Using Delay Models

Although there are many problems in the biosciences that can be addressed within an optimal

control framework for systems of DDEs (epidemics, harvesting, chemostat, treatment of diseases,

physiological control, vaccination) the amount of real-life experience [17, 104, 159] is quite small.

The general formulation of an optimal control problem (OCP) for delay system is as follows:

For a system with the state vector y(t,u) governed by a DDE find a control function u(t), defined

on [−τu, T ], that gives a minimum to the objective functional J0(u), where

y′(t) = f(t,y(t),y(t− τy),u(t),u(t− τu)), 0 ≤ t ≤ T, (7.1)

J0(u) = Φ0(y(T )) +

T∫

0

F0(t,y(t),y(t− τy),u(t),u(t− τu))dt (7.2)

subject to corresponding initial functions for the state and control vectors. Additional equality or

inequality constraint(s) can be imposed in terms of functionals Ji(u). The Pontryagin maximum

principle and the Bellman dynamic programming method are two frameworks for solving OCP. For

the computational treatment of time-delayed optimal control problems we refer to monographs by

Banks [17], Kolmanovskii et al. [104], Teo et al. [166]. OCPs using DDEs were studied in connection

with immune responses to infections.

In [37], delay models of the immune responses were used to find the optimal control regimes

of unfavourable disease outcomes. The objective functional was expressed in terms of the virus

population size, either at a given final time t = T , i.e., J0(u) = (V irus(T )), or a cumulative virus

amount over [0, T ]; in this case J0(u) =
T∫
0

V irus(t)dt. Specific features of the studies [37] are: (i)

delays appear only in state variables; (ii) linear scalar control functions appearing additively or

multiplicatively in one equation (for the virus) were considered; (iii) unconstrained problems were

treated. An original algorithm using non-classical variations of the control function was developed:

the system of model equations and the adjoint problem were solved by an adaptation of a fourth/fifth

order RK method with Hermite interpolation for the delayed terms. The control function was

approximated by a set of piecewise constant functions on a uniform mesh with the step-size being

an integer fraction of the delay. Control improvement was an iterative procedure using a constructive

form of necessary optimality conditions and spike variations of the current control function.

A humoral immune response model was considered in a recent paper [159] on determining optimal

intravenous drug delivery in AIDS patients. The objective was to find a control strategy that

minimizes the total drug administered, subject to the constraint that the patient recovers. The

control function, appearing non-linearly in the equations, was obtained numerically by applying

convex minimization techniques based on linear matrix inequalities (LMI), with the time-lag being

approximated by a fourth-order Bessel filter. The nonlinearities were addressed by transforming the

non-linear model to a linear-fractional representation. Gear’s algorithm in SIMULINK was adapted

to solve the DDEs and the LMI toolbox from MATLAB was used to compute the optimizer.

We refer in passing to another example of a control problem with delay models inspired by

recently proposed nonconventional approach to the anti-HIV drug administration [22]. A cohort of

drug loaded red blood cells (RBC) with density function u(t, a) at time t and age a ∈ R+ is injected

at time t = 0 into a patient. The cells with age a ≥ a∗ (a∗ > 120 days), called the senescent cells, are

phagocytosed by macrophages thus causing the drug to be absorbed. This process of drug delivery

can not be described by standard mathematical models in pharmacokinetics. The authors propose

a delay model which for the dynamics of (i) senescent loaded RBC (x1), (ii) macrophages which

are digesting the RBC (x2) and free for phagocytosis (x3), (iii) macrophages that can phagocytose

senescent RBC (x3) (that is they are not engaged at the moment t the digesting the RBC), and (iv)
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the average drug concentration in macrophages (x4). The drug has therapeutic effect as long as x4

satisfies: 0 < m ≤ x4(t) < M over a certain interval t ∈ [t1, t2]. The time-lag represents the digestion

time, which can be described as a fixed or a distributed delay. The initial age distribution of the

RBC can be experimentally preassigned, i.e., u(0, a) = φ(a), a ≥ 0 is a controllable characteristic,

and only a fraction α of the total cell number
∫ +∞

0
u(t, a)da are senescent cells. This function

appears additively as a control function in the equation for x1. The OCP for the delay model of

the drug treatment is: Choose the control function φ(a) in the interval [0, a∗] and the parameter

α such that ∆t = t2 − t1 → max, subject to (i) x4(t) < M for all t > 0, (ii) the condition that

u0 =
∫ a∗

0
φ(a)da/(1− α), u0 ∈ [n1, n2], be minimum. A qualitative analysis of the problem suggests

that one searches for a constant age distribution function as a solution to it.

The numerical approach to general nonlinear OCP for DDEs still remains a relatively unexplored

area and further research is needed to provide biomodellers with user-friendly adaptive packages.
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