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Abstract

This paper deals with the elaboration of a feedback con-

trol algorithm for the control of an escaping robot engaged

in a pursuit-evasion game. The pursuer is a smart robot

moving with a control strategy that is unknown and unpre-

dictable to the evader. Our control strategy is based on the

use of geometric rules, where the equilibrium point charac-

terizing the distance pursuer-evader is kept unstable. The

designed control law acts mainly on the orientation angle.

However when the pursuer is maneuvering in the speed,

another feedback control law for the linear velocity is de-

signed for the evader in order to keep a minimum distance

from the pursuer.

1 Introduction

Wheeled mobile robot motion control is one of the most

challenging problems in robot control theory. This is due

to the fact that wheeled mobile robots present a typical

example of the nonholonomic mechanism, which reduces

the space of the control inputs. The control of a wheeled

mobile robot from a given initial configuration to a final

configuration is not a trivial task. For example it is not

possible to rigorously control the robot using linear inputs.

Furthermore it is stated by Brockett theorem ([1], [2]) that

mobile wheeled robots cannot be stabilized using smooth

static feedback law. To overcome this problem, three types

of controllers were suggested.

1. The first type uses smooth but time-varying controllers.

2. The second type uses time-invariant but non-smooth

controllers

3. The third type is a combination between the first and the

second type.

This paper deals with the control of a wheeled mobile robot

engaged in a pursuit-evasion game in a obstacle-free open

area. The problem of controlling an escaping robot is more

difficult than the problem of controlling a robot from an

initial to a final configuration, since the robot is continu-

ously chased by a smart pursuer and furthermore the strat-

egy of the pursuer is completely unknown to the escaping

robot. Moreover, the nonholonomic constraint renders the

problem much harder to solve.

One of the earliest works dealing with the evasion prob-

lem is presented in [4], where the players are a robot and

a rabbit. The robot moves with a constant speed in a pre-

determined path around a room. The rabbit tries to avoid

collision with the robot using a Min-Max strategy. This

problem is simpler than the problem considered here since

the robot is not smartly chasing the rabbit. Guidas et al.

[3] suggested a complete algorithm based on the search of

a finite graph for planning the motion of one or more pur-

suers to eventually see the evader. A game-theoretical ap-

proach framework for robot motion planning is suggested

by LaValle [5], [6]. Our approach is based on the use of the

geometry and the kinematics equations form the pursuer to

the evader rather than game theory. The resulting control

strategy is simple and can be implemented with minimum

cost. Our control law falls in the first category.
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2 Robot model

The escaping robot is modeled as a wheeled mobile robot

of the unicycle type, with the following kinematics equa-

tions:

ẋe = ue cosφe

ẏe = ue sinφe

φ̇e = ωe

(1)

where (xe, ye) are the escaping robot coordinates in the

Cartesian frame of coordinates, φe is the robot orientation

with respect to positive x-axis. A configuration of the robot

is given by the triple qe = [xe, ye, φe]
T . The control vari-

ables for the mobile robot are ue and ωe which are the lin-

ear and angular velocities, respectively. As we mentioned

previously, wheeled mobile robots present a non-integrable

constraint on the velocities. This constraint is called the

nonholonomic constraint. From equation (1), the nonholo-

nomic constraint states that:

ẋe sin φe = ẏe cosφe (2)

This constraint restricts the space of the possible velocities.

From a physical point of view equation (2) means that the

robot rolls freely without slipping in the perpendicular di-

rection.

The pursuer is also modeled as a wheeled mobile robot for

which the kinematics model is given by:

ẋp = up cosφp

ẏp = up sin φp

φ̇p = ωp

(3)

Similarly to the escaping robot, (xp, yp) are the pursuer

coordinates in the Cartesian plane, φp is the pursuer’s robot

orientation angle with respect to the positive x-axis. The

control inputs for the pursuer are up and ωp, which are

the linear and angular velocities also. We assume that the

robot pursuer aims to catch the escaping robot by using

some closed loop control law. This control law is unknown

to the evader. Let us denote by up,max the maximum linear

velocity for the pursuer and ue,max the maximum velocity

for the escaping robot. We also assume that the maximum

linear velocity is the same for both robots, i.e.,

up,max = ue,max (4)

In a similar way we assume that the minimum turning ra-

dius is the same for both robots. Of course, we assume

that both robots have an external vision system allowing

them to see the other robot and determine some important

quantities such as the velocity and the orientation angle.

Furthermore both robots have a local on-board intelligence

system allowing them to process the data obtained from the

sensors.

Mobile robots are also underactuated (underactuated sys-

tems occur typically from the nonholonomic constraint),

for underactuated systems, the control space is smaller

than the configuration space. This is the situation for mo-

bile robots where there are only two inputs (linear velocity

and steering angle) to control the robot’s three degrees-of-

freedom. In this paper, our aim is to design a closed loop

control law which allows the escaping robot to escape from

its predators. Our control strategy is based on the use of the

pursuer-evader kinematics equations combined with some

geometric rules. Figure 1 shows the escape-pursuit geom-

etry. The pursuer is denoted by the letter P and the evader

by E.

With reference to figure 1, we define the following

quantities:

(a) r is the relative distance between the escaping robot and

the pursuer reference points. We define the line joining E

and P by the line of sight.

(b) The angle of the line of sight σ represents the angle be-

tween the positive x-axis and the line of sight. This angle

is given by

σ = tan−1

(

ye − yp

xe − xp

)

(5)

It is clear that σ depends on the pursuer and the evader

coordinates. We also define the angle δ for both the pursuer

and the escaping robots, where δ is the angle between the

line of sight and the velocity direction. In this case we

have:

σ = φ + δ (6)

This relation is valid for both the pursuer and the evader.
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Figure 1: Pursuit-evasion geometry

Let us consider the distance in the Cartesian plane between

the escaping robot to the pursuer

xep = xp − xe

yep = yp − ye

(7)

with

x2

ep + y2

ep = r2

ep (8)

The aim of the pursuer is to drive xep and yep to zero at the

same time, while the aim of the escaping robot is keep at

least xep 6= 0 or yep 6= 0.

We consider the velocity from the pursuer to the target with

respect to the x-axis and the y-axis. By taking the deriva-

tive of (7) with respect to time, we get

ẋep = ẋp − ẋe

ẏep = ẏp − ẏe

(9)

By taking into account the kinematics equations for the

pursuer and the target we get

ẋep = up cosφp − ue cosφe

ẏep = up sin φp − ue sin φe

(10)

The system of equations (10) presents a system of differ-

ential equations. Recall that the control variables are ue

and φe. In the same way up and φp are used by the smart

pursuer in order to intercept the escaping robot. The pairs

(up, φp) and (ue, φe) depend mutually on each other.

3 Control strategy for the escaping

robot

Our control strategy for the robot angular velocity is based

on the use of the kinematics equations and geometrical

rules. The principle of our control strategy is to make the

velocity of the escaping robot lying on the line joining the

escaping robot and the pursuer. We suggest to use the fol-

lowing control strategy

φe = σ (t) ± π (11)

This control strategy is illustrated in figure 2. According

to equation (11), the velocity of the evader lies on the line

of sight joining the escaping robot with the pursuer, but it

is directed in the opposite direction. Recall that the angle

σ depends explicitly on the pursuer and the evader control

strategies.

Under the control law (11), the kinematics equations for

the escaping robot are given by

ẋe = −ue cosσ

ẏe = −ue sin σ

φ̇e = ωe = σ̇

(12)

It is worth noting the control strategy given by (11) de-

pends explicitly on the pursuer’s maneuvers, since the line

of sight angle depends on the pursuer’s steering angle (and

coordinates). Similarly to the escaping robot, the pursuer

has two control variables, namely, the linear and angular

velocities. The control law (11) considers that the pursuer

is maneuvering only in the angular velocity. In the next

section, we take into account the pursuer linear velocity.

We consider two cases, namely when the pursuer is mov-

ing with a constant and time-variant velocity.

3.1 Pursuer moving with a constant velocity

If the pursuer is moving with a constant linear velocity,

then the control strategy requires the robot also to move

with a constant linear velocity, i.e.,

ve = constant
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Figure 2: Evasion strategy

where ve satisfies the following relationship

ve = kvp (13)

with |k| ≥ 1. Here the only control variable is the robot’s

orientation angle.

3.2 Pursuer moving with time varying veloc-

ity

In the case where the pursuer is maneuvering with time

varying velocity, the control law given by (11) is not

enough to guarantee the escape. In this case it is neces-

sary for the escaping robot to keep a given distance from

the pursuer. To accomplish this task, the escaping robot

will move with time varying velocity. So it is necessary to

design a closed loop control law for ve. To accomplish this

task, we suggest three different approaches.

1. The escaping robot keeps a constant distance from the

pursuer.

2. The escaping robot keeps a constant distance from the

pursuer with respect to the x-axis.

3. The escaping robot keeps a constant distance from the

pursuer with respect to the y-axis.

These three approaches will be discussed in the following

paragraphs.

3.2.1 Constant distance from the pursuer

The relative range between the pursuer and the evader is

given by

ṙ = up cos (φp − λ) − ue cos (φe − λ)

This can be obtained using a simple change of variable (for

details see [7]). Under the suggested control law, we have

ṙ = up cos (φp − λ) + ue

In order to keep a constant distance from the pursuer, the

escaping robot must be controlled in order to satisfy ṙ =

0. This is accomplished by choosing the following closed

loop for the escaping robot’s velocity

ue = −up cos (φp − λ) (14)

Observe that in this case, the evader velocity is always

smaller than the pursuer velocity in absolute value.

3.2.2 Constant distance with respect to the x-axis

In this case ẋd = 0. The closed loop control law for the

escaping robot’s linear velocity is given as follows

ue = up

cosφp

cosφe

(15)

By considering this equation with the control law for the

steering angle, we get

ue = −up

cosφp

cosσ
(16)

with σ 6= π
2

+ kπ, k = 1, 2...

3.2.3 Constant distance with respect to the y-axis

In this case ẏd = 0, which results in the following closed

loop control law for the escaping robot linear velocity

ue = up

sin φp

sin φe

(17)
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Similarly to the previous case, by considering this equation

with the control law for the steering angle, we get

ue = −up

sin φp

sin σ
(18)

with σ 6= 0 + kπ, k = 1, 2...

In both equations (15) and (17), the escaping robot linear

velocity depends on the pursuer’s linear velocity and steer-

ing angle and of course the line of sight angle. Equation

(14) which guarentees a constant range is implemetable

without any problem, since it states that the evader velocity

is smaller than the pursuer’s velocity. However equations

(16) and (18) pose problem when the line of sight angle is

close to π
2

and zero, respectively.

In general the velocity of the escaping robot can be cho-

sen to vary proportionally to the pursuer velocity, ve (t) =

kvp (t) with k =constant and |k| ≥ 1.

By considering equation (10) and equation (11), we get for

ẋep and ẏep

ẋep = up cosφp + ue cosσ

ẏep = up sinφp + ue sin σ
(19)

By using equation (5) for the line of sight angle we get

ẋep = up cosφp + ue cos
(

tan−1 yep

xep

)

ẏep = up sin φp + ue sin
(

tan−1 yep

xep

)

xep (t0) = xep0

yep (t0) = yep0

(20)

where xep0 and yep0 the initial state. Equation (20) is a sys-

tem of nonlinear ordinary differential equation. The solu-

tion for this system provides the trajectory of the escaping

robot according to the pursuer maneuvers. Unfortunately

this system is highly nonlinear and no closed form solution

can be obtained in the general case. It is clear that our con-

trol strategy aims to keep the solution for system (20) far

away from its equilibrium point situated at the origin, i.e.,

keep the equilibrium point (xep, yep)=(0, 0) unstable.

4 About the nonholonomic con-

straint

The nonholonomic constraint states that the wheeled mo-

bile robot cannot move perpendicularly to its main axis.

This constraint renders the robot control more difficult

and challenging. If at the initial state we have φe (t0) =

π ± σ (t0), then the application of the control law (11) is

straightforward. Otherwise, when φe (t0) 6= π ± σ (t0) the

control law (11) cannot be implemented directly, in this

case it is necessary to drive the escaping robot to an orien-

tation angle that is equal to

φe (t) = σ (t) ± π (21)

at a given time. The application of the control law (11) be-

comes simple in this case. So in the case where φe0 (t) 6=

σ0 (t)±π, it is necessary to use a heading regulation phase

in order to drive the escaping robot orientation to its de-

sired orientation (σ (t) ± π) . Any control algorithm can

be used for this purpose. Note that if the escaping robot is

not caught during this phase, then it will never be caught

during the second phase.

5 Simulation

In order to test our control algorithm, we consider a simu-

lation example. We assume that initially equation (21) is

satisfied. The pursuer is using a smart pursuit law, and the

evader is using the control strategy described above. The

initial coordinates are the following

xp = 0, yp = 0

xe = 10, ye = 10
(22)

From (22) the initial line of sight angle is λ = π
4
rd. The

pursuer initial orientation is π
3
rd. The linear velocities for

the pursuer and the evader equal.

Simulation of the pursuit-evasion is shown in figure 3. The

pursuer changes its strategy at positions P1, P2 and P3.

The relative distance pursuer-evader is shown in figure 4.
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Figure 3: Path traveled by the pursuer and the evader

Figure 4: Relative range between the pursuer and the
evader during the pursuit

6 Conclusion

We presented an algorithm for the control of an escaping

robot. The escaping robot consists of a simple wheeled

mobile robot of the unicycle type. The escaping robot is

continuously chased by a smart robot which aims to ac-

complish the interception in minimum time. Our controll

startegy which consits of a closed loop control system is

based on the use of geometrical rules, where the equilib-

rium point characterizes the distance between the evader

and the pursuer is kept asymptotically unstable (asymptot-

ically stable when considering the backward evolution of

time). The control law is simple and can be implemented

easily in practice. Using simulation, we show that the con-

trol strategy allows to the evader to maneuver and escape

successfully to its predator.
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