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Abstract—With the increasing deployment of wind energy
technologies, innovative modern control theories, which utilize
linear time invariant models, are being developed. The potential
for the success of utilizing these theories is better with the
availability of concepts such as the variable speed wind trubines.
Such control theories are not only capable of increasing the
energy capture efficiency of the wind turbines, but also reducing
the number of measurements needed which in turn reduces the
operation and maintenance costs associated with the system.
In this paper, the general formulation of the Linear Quadratic
Gaussian Control (LQG) along with the design procedures and
the assumptions needed will be stated. Then, a numerical model
for the Controls Advacned Research Turbine (CART) that was
created and field tested by the National Renewable Energy
Laboratory (NREL) will be used to simulate LQG regulator
using MATLab script. At the end, the results obtained from
the simulation will be presented and the limitations of the LQG
controller will be discussed.

Index Terms—Linear Quadratic Gaussian, LQG, Kalman Fil-
ter, Estimation, Wind Turbine.

I. INTRODCUTION

The future plans for smart grid deployment , which mainly
depend on the concept of distributed generation, make wind
turbines more attractive solution, especially in regions with the
high average wind speed. The control methods of wind tur-
bines started by PI controllers which imposed many limitations
and operation and maintenance costs to the system. With the
advancement of modern control theory, it is now possible to
use linear state space models of the wind turbines to implement
control systems which are more powerful than PI controllers.
These modern control methods also reduced the maintenance
and operation cost by the utilization of Kalman Filters for state
estimation that reduced the number of the sensors necessary
to implement full state feedback controllers.

In section II of this paper, the general formulation of the
Linear Quadratic Gaussian Control (LQG) along with the de-
sign procedures and the assumptions needed will be stated. In
section III, National Renewable Energy Laboratory’s (NREL)
Controls Advacned Research Turbine (CART) features and
capabilities will be presented. In section IV, a numerical model
for CART that was created and field tested by NREL will
be used to simulate LQG regulator using MATLab script. In
section V, the results obtained from the simulation will be

presented and the limitations of the LQG controller will be
discussed.

II. LQG GENERAL FORM

Linear Quadratic Gaussian (LQG) design problem is rooted
in optimal stochastic control theory and has many applications
in the modern world which ranges from flight and missile
navigation control systems, medical porocesses controllers
and even nuclear power plants. It combines both concepts of
Linear Quadratic Regulators (LQR) for full state feedback and
Kalman Filters for state estimation. In this section, the state
space equations defining the LQG regulator along with the
statistical assumptions will be presented first. Then, the design
steps for finding the optimal state feedback gain (Kf ) and
optimal state estimation gain (Kk) will be listed. Finally, the
state space equations of the augmented system which closes
the loop will be presented.

The state space equations of the open loop plant for a
standard LQG problem is shown in 1.

ẋ(t) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t) + v(t)
(1)

where x(t) is the state vector, u(t) is the control input
vector, y(t) is the measured output vector, w(t) and v(t) are
stochastic white noise processes assoctiated with the process
and the measurement, respectively. The matrices A(state ma-
trix), B(control input gain matrix), G(plant noise gain matrix),
C(measured state matrix) are all Linear Time Invariant (LTI).
As shown in 2, both w(t) and v(t) are assumed to be white
gaussian noises with zero mean and the expected values of
the initial values of the states x(0) are assumed to be equal to
x̂o. From 3, w(t) and v(t) have covariance matrices of W and
V, respectively, and the cross covariance R12 is assumed to
be zero (w(t) and v(t) are uncorrelated) in order to simplify
many expressions and derivations. Finally, the initial values of
the states x(0) are assumed to be uncorrelated with both w(t)
and v(t), as shown in 4.

E[x(0)] = x̂o

E[w(t)] = 0

E[v(t)] = 0

(2)



E[w(t)w(τ)
T
] =

{
W, if t = τ

0, if t 6= τ

E[v(t)v(τ)
T
] =

{
V, if t = τ

0, if t 6= τ

E[w(t)v(τ)
T
] =

{
R12, if t = τ

0, if t 6= τ

(3)

E[x(0)w(t)
T
] = 0

E[x(0)v(t)
T
] = 0

(4)

In real world control design problems, it is rarely possible
to have access to all states of the system which are needed for
full state feedback. Instead, access is only possible to specific
measured outputs of the system. If these measurements carry
enough information about the states of the system, then a
state observer using Kalman Filter could be implemented to
estimate all states of the system. This observer is capable of
rejecting disturbances of the system by acting as a low pass
filter. The main inputs to the observer are the control input
(u(t)) and the system output (y(t)). The state space equations
of the Kalman Filter are shown in 5. It should be noticed that
it uses the same state space matrices (A, B and C) as the main
system and the estimated states (x̂(t)) are used as the system
states [1].

˙̂x(t) = (A−KkC)x̂(t) +Bu(t) +Kky(t)

ŷ(t) = Cx̂(t)
(5)

From Fig.1, it should be noticed that LQG is formed by
connecting the system and the Kalman Filter through the
optimal state estimation gain (Kk) and then creating full
state feedback by using the estimated states (x̂(t)) which
passed through the optimal feedback gain (Kf ). Because of
the stochastic seperation principle, the previoulsy mentioned
gain could be designed individually.

The design process starts with checking controllability and
observability of the pairs (A, B) and (A, C), respectively, as
shown in 6. These criterias are necessary for the existance of
the solutions for the equations used to find the optimal gains.
Then, the optimal state estimation gain (Kk) is calculated as
shown in 7c, where Pk is a positive semi-definite mtarix and
the solution of the Filter Algebraic Riccati Equation (FARE)
shown in 7b. This solution ensures a minimum value of
the cost function shown in 7a. After that, the optimal state
feedback gain (Kf ) is calculated as shown in 8c, where Pf is
a positive semi-definite matrix and the solution of the Control
Algebraic Riccati Equation (CARE) shown in 8b. This solution
ensures a minimum value of the cost function shown in 8a.

Unlike FARE, which requires only noise covariances W
and V, CARE requires two weighing matrices: Qf (symmetric
positive semi-definite) and Rf (symmetric positive definite).
These weighing matrices provide a means to trade-off op-
posing objectives: state regulation and control usage. They
could be selected based on trial and error approach with some

engineering sense, or by using the method shown in 9 or by
using Bryson’s Rule shown in 10. Bryson’s Rule related the
reciprocal of the maximum squared values of the states with
Qf and the reciprocal of the maximum squared values of the
control inputs with Rf .

After finding the optimal gains, the closed loop system
could be created by augmenting the system with Kalman
Filter resulting in the new model shown in 11. The augmented
system model which include the dynamics of the system and
the state estimation error e(t) [2].

Step 1: Optimal gain existance criteria:

(A,B) is Controllable

(A,C) is Observable
(6)

Step 2: Optimal State Estimation Gain Calculation:

Jk = E
{
(x− x̂)T (x− x̂)

}
(7a)

APk + PkA
T +GWGT − PkC

TV −1CPk = 0 (7b)
Kk = PkC

TV −1 (7c)

Step 3: Optimal State Feedback Gain Calculation and
Weighing Matrices Selection:

Jf =

∫ T

0

(zTQfz + uTRfu)dt (8a)

ATPf + PfA− PfBR
−1
f BTPf +Qf = 0 (8b)

Kf = R−1
f BTPf (8c)

Q = CTC

R = ρI
(9)

Qii =
1

Max (x2ii)

Rii =
1

Max (u2ii)

(10)

Step 4: Linear Quadratic Gaussian Regulator by combining
Optimal State Estimation and Optimal State Feedback:

[
ẋ(t)
ė(t)

]
=

[
A−BKf BKf

0 A−KkC

] [
x(t)
e(t)

]
+

[
G 0
G −Kk

] [
w(t)
v(t)

]

y(t) =
[
C 0

] [x(t)
e(t)

]
+
[
0 1

] [w(t)
v(t)

]
(11)
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Fig. 1. LQG regulator block diagram

III. CONTROLS ADVACNED RESEARCH TURBINE (CART)

The numerical example that will be discussed in the next
section is based on a linear model of the Controls Advacned
Research Turbine (CART) which is used by the National
Wind Technology Center (NWTC) that is operated by the
National Renewable Energy Laboratory (NREL) and located
at Boulder, Colorado. Researchers at NWTC tackles wind in-
dustry engineering challenges ranging from atmospheric fluid
mechanics and aerodynamics, dynamics, structures, fatigue,
power systems and electronics and wind turbine engineering
applications [3].

CART is a modified Westinghouse WGT-600, 600-KW,
2-bladed, horizontal-axis research wind turbine capable of
operating in constant speed or variable speed mode [4]. It is
used by the researchers at NREL’s NWTC as a test bed for
exploring potential control innovations and field test advanced
control systems. These control designs could be implemented
by writing an ANSI-C based program on a dedicated personal
computer that is connected to the turbine sensors and actuators.
The turbine is instrumneted with more than 80 sensors with
measurements being recorded at a rate of 100 Hz. These
sensors are used to record the dynamic state of the turbine
and they fall in one of three categories: Performance (torque
and power sensors), loads (strain gauges, accelerometers and
position sensors) or meteorological (wind speed, direction,
temperature and pressure) [5].

One of the unique capabilities of CART is that beside the
conventional collective pitching technique, it is possible to

implement the individual pitching technique. In the collective
pitching technique each of the blades are picthed by the
same amount and this controlls the symmetric loading on the
rotor. But in the individual pitching technique, each blade is
individually pitched and this offers a control over both the
symmetric and asymmetric loading on the rotor [6]. Because
of the access to all sensors data and actuators and the flexible
capabilities of CART, researchers at NWTC could implement
infinite combinations of control systems.

IV. NUMERICAL EXAMPLE USING MATLAB

In [7], several Linear Time Invariant (LTI) state space
models of CART were created which varied in their complex-
ities between 1-state model to 9-state model. In this paper,
the 3-state model was considered because of its simplicity
and because this model is both controllable and observable
(minimal) which are both conditions needed for designing
LQG controllers. The numerical model shown below was
created for CART by NWTC after linearizing the motion
equations of the turbine’s considered states at a control design
point of 18 m/s for wind speed, 12 degress for rotor collective
pitch and 42 RPM for rotor speed. The main objective of the
controller is to operate the machine as a variable speed wind
turbine in region 3 by applying constant torque to the generator
by maintaining a constant rotor speed through the collective
rotor blade pitching.

The control input u(t) of the considered model is the
collective blade pitch angle and the states are the rotor speed
x1(t), drive train (shaft) torsional spring force x2(t) and the
generator speed x3(t). The disturbances are the turbine system
noise w(t) and the measurement noise v(t). For the sake of
simplicity, both turbine and measurement noises were assumed
to have the same magnitude as the wind but in the case of
turbine system noise, it was scaled by the matrix G. The
non-zero first row of the control input gain B indicates that
the control input (rotor collective pitch) affects the system by
changing the rotor speed which affetcs the other states through
the coupling caused by the state gain matrix A. Also, from
matrix C, it should be noticed that the only measurement taken
is the generator speed.

The simualtion of LQG controller for CART was done using
MATLab by following the design steps shown in section II
and by using the numerical model’s matrices shown below.
The design started by checking the controllability and the
observability of the pairs (A, B) and (A, C), respectively.
Then, the optimal state estimation gain (Kk) was calculated
using the noise covariances shown below. Sizing the optimal
state feedback gain was found using a trial and error approach
by changing the weighing matrices (Qf and Rf ). The best
response of the generator speed at which it stabilized at steady
state when perturbed by step changes in wind speed was found
at the values of the weighing matrices shown below. If the
maximum limits of all states and control inputs were available,
which was not the case for CART, then Bryson’s rule could
be used to initialize the weighting matrices as shown below
[8]. After that, the closed loop system of the LQG regulator



was created by augmenting the turbine system with the state
estimator. The inputs to the closed loop regulating system
are turbine system noise w(t) and the measurement noise
v(t) which were generated as a normally distributed random
number by MATLab to represent the white gaussian noise.
The peroformance of the closed loop LQG system will be
discussed next.

MATLab Simulation inputs for CART

x(t) =

x1(t)x2(t)
x3(t)

 where

 x1(t) : is rotor speed
x2(t) : is drive train torsion
x3(t) : is generator speed

u(t) =

[
w(t)
v(t)

]
where

{
w(t) : is turbine system noise
v(t) : is measurement noise

A =

−1.4454x10−1 −3.1078x10−6 0.0
2.6910x107 0.0 −2.6910x107

0.0 1.5601x10−5 0.0


B =

[
−3.4559 0.0 0.0

]T
C =

[
0 0 1

]
G =

[
7.8938x10−2 0.0 0.0

]T
W = E[w(t)w(τ)

T
] = 0.1 (Turbine system noise covariance)

V = E[v(t)v(τ)
T
] = 0.1 (Measurement noise covariance)

(12)

Results

Q =

1 0 0
0 1x10−13 0
0 0 1

 R = 1

Kk =
[
7.6282x10−3 1.2663x102 6.2859x10−2

]T
Kf =

[
−2.0336 −2.1225x10−7 6.6055x10−1

]
(13)

V. RESULTS AND DISCUSSION

Fig. 2 shows the generator speed and the pitch angle when
the wind speed is varying between 14 m/s to 20 m/s. As the
wind speed is increasing, the pitch angle is also increasing to
keep the generator speed at a constnt value of 42 RPM. From
the figure, it is clear that the generator is operating at 42 RPM
only at 18 m/s and when the pitch angle is 12 degrees, the
control design point. So, LQG regulator is not able to keep
the generator speed at 42 RPM even when the wind speed is
varying. This example clearly shows the robustness problem of
LQG controllers. According to [9] , control system robustness
is defined as the ability to maintain satisfactory stability or
performance characteristics in the presence of all conceivable
system parameter variations. In other words,a robust control
system works not only for the linear system which serves
as the plant model but it also works for the real physical
system with minor performance degradation [10]. Another
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Fig. 2. Wind turbine’s response to different wind speeds
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Fig. 3. Poles/Zeros plot of the closed loop system

reason might be models’ simplicity and uncertainty because
of the neglected high frequecny dynamics of the turbine. In
order to improve the robustness of the LQG regulator, one
could go further and design a Loop Transfer Recovery (LTR)
which recovers the robustness of Linear Quadratic Regulators
(LQR) and Kalman Filters.

Fig. 3 shows the pole/zero map of the closed loop system.
Since all poles lies in the left half plane, then the closed
loop system is stable. From Fig. 4, one should notice how the
LQG regulator successfully reduced the effect of the system
white gaussian noise w(t) (input 1) on the closed loop system.
Another observation is that the LQG at high frequencies the
effect of the measurement white gaussian noise v(t) is higher
in the closed loop system than in open loop system. One
explanation might be because the v(t) is being multiplied by
the optimal state estimation gain Kk in the final augmented
model shown in 11.

VI. CONCLUSION

In this paper, the general formulation of the Linear
Quadratic Gaussian Control (LQG) along with the design
procedures and the assumptions needed were stated. Then, a
numerical model for the Controls Advacned Research Turbine
(CART) was used to simulate LQG controller using MATLab
script. Then, the peroformance of the LQG regulator was
evaluated by plotting the time response of the system and the
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Fig. 4. bode plot of the open and closed loop systems

pole/zero map of the closed loop system. Finally, the bode
plot of both the open loop and the closed loop systems were
compared.
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