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Abstract 
 

Despite several attempts to accurately predict 

duration and cost of projects, simulation models in use 

are still over simplified and nonrealistic. They often 

fail to cope with real-life scenarios and uncertainty. 

In this paper we use the proxel-based simulation 

method to analyze and predict duration of project 

schedules exhibiting high uncertainty due to typical 

on-the-fly human decision behavior. The proxel-based 

simulation is an approximate simulation method that is 

more precise than discrete-event simulation.   

To model uncertainty, we introduce a new type of 

task, state-dependent (floating) task that supports and 

demonstrates a high degree of uncertainty and depends 

on various parameters in the schedule. For example, 

the probability distribution of the duration of a task 

can change depending on the team that performs it. 

Thus, this kind of task can be used to model the 

frequent re-scheduling in a project. We use software 

development process to illustrate our approach.   

 

Keywords: Project scheduling, simulation, uncertainty, 

human resource allocation, on-the-fly decisions.  

 

1.  Introduction 
As projects grew in size, they also grew in 

complexity making effective project planning a hard 

task. It is mainly due to several interrelated factors that 

all have to be taken into consideration to predict in an 

accurate and precise way the cost and the duration of 

the project [1].    

Many attempts have been conducted to improve 

the project scheduling prediction [2-6], and each of 

them  endeavors  to offer an optimized schedule for a 

given project.  Simulation is one of the techniques  that 

has been successfully applied to project planning, e.g. 

in construction [7], where they use combined discrete-

event/continuous simulation.  

Duration of tasks in many project schedules cannot 

be modeled as deterministic [8], i.e. using fixed 

numbers. Consequently, probability distribution 

functions need to be utilized to describe durations of 

tasks. Even with this assumption, the obtained 

simulation models are still considered limited and non 

realistic. They fail to take into account the different 

interrelated factors and uncertainty that in practice lead 

to plan changes. As stated by Joslin and Poole, “the 

simulation will be unrealistic if the plan is static” [1].  

Human allocation uncertainty is seen as an example 

of a series of factors that can lead to a plan change.  

During the project run, based on the specific situations 

a team could be assigned a task that was originally 

assigned to another team if the latter one is unavailable 

(and the former team is available). The distribution 

function used to reflect the duration of the task most 

probably will be different to match the properties of the 

new task executers. Usually, teams have different levels 

of expertise which will in turn affect durations of tasks 

they perform. A practical simulation model should 

handle this dynamic aspect of a plan and anticipate 

possible changes.  

In this paper we move one step towards the more 

realistic modeling of project schedules. We allow both 

duration and sequence of tasks to be variable – based 

on available resources and depending on various on-

the-fly decisions by participants on the project. We 

simulate project schedules both with and without the 

possible on-the-fly decision scenarios. The objective of 

this is to study the effects of such changes in the project 

schedule and show their significance. Furthermore, we 

aim to provide an approach for accurate prediction of 

project schedule duration given the afore-described 

circumstances.  

We use Gantt charts and state-transition diagrams 

for modeling project schedules. We extend both 



formalisms to model what we term as state-dependent 

(floating) task. Floating task represents a task that 

models uncertainty in human resources allocation and 

is a subject to various on-the-fly decisions. We chose 

the proxel-based method for simulating the project 

schedules, as it has been successfully applied to this 

area [9, 10] and can provide highly accurate complete 

results. These attempts did not address the uncertainty 

issues of on-the-fly decisions and resource allocation. 

Input probability distribution functions can be fitted 

based on historical data for similar tasks and situations 

and may be adapted to concrete situations of projects. 

The estimation process would, obviously, require a 

high level of expertise.  

The remainder of this paper is structured as follows: 

In the next section we provide an overview of problems 

faced in the project scheduling simulation and we 

describe the proxel-based method. Further, we 

introduce the floating task model and our running 

example as a software development process. Then, we 

illustrate our simulation scenarios as well as our 

simulation results followed by a discussion on the 

importance of uncertainty and on-the-fly decision 

modeling in simulation model. Finally, we conclude.    

 

2. Problem Definition    
A project consists of a number of tasks (activities) 

where a predefined set of tasks has to be processed in 

order to complete the project. The tasks are in fact 

related by two constraints: 

1. Precedence constraints: usually in a project 

development tasks cannot be undertaken in any 

order and some tasks cannot start unless others 

have been already completed; and  

2. Resource sharing: performing tasks requires 

efficient resources‟ management. Such resources 

may include financial resources, inventory, 

human skills, production resources, information 

technology (IT), etc. 

The incorporation of uncertainty into project 

planning and scheduling has resulted in numerous 

research efforts, particularly focusing on uncertainty in 

task duration or cost  [4]. In our case, we are interested 

in the effect of human uncertainty factor, both in terms 

of on-the-fly decisions and resource allocation, on the 

duration of a project.  

As a running example, we consider a software 

development project. Typical requirements descriptions 

might include the task lists for people, and allocation 

schedules for resources.  

Workforce allocation is seen as an important step in 

any software project management. It is the phase where  

all relevant elements of the software development 

process are taken into consideration for allocating 

software developers to the different project tasks [11].  

While an  initial allocation of software developers is 

calculated based on initial requirements, it is frequent 

that workforce adjustments during project performance 

becomes necessary for several reasons : (1) projections 

recalculation, based on the current workforce size, and  

the current development productivity [11], (2) number 

of remaining requirements to be implemented, and (3) 

requirements volatility. 

Because of the above-mentioned reasons, it may 

happen that a team is assigned to a task that was 

originally assigned to another team during the 

workforce adjustment. Such scenario is in fact not easy 

to consider during the project scheduling. First, it is 

difficult to know when such adjustment will happen. 

This decision will be taken on-the-fly. Second, and 

more importantly, different teams have distinct 

expertise. Put in other words, the time that would take 

team A and team B to finish a task is not necessarily 

the same. It is frequent that the one of the teams may 

need to acquire the necessary expertise to achieve the 

task. When predicting the duration of project 

schedules, such scenarios should be considered.   

The objective of our approach is to compute the 

probability distribution function of the duration of the 

project schedule taking into consideration human 

resource allocation uncertainty and typical on-the-fly 

decision behaviors. Our target is to observe the 

duration of the project in conjunction with on-the-fly 

decision scenarios for maximizing utilization of 

available personnel resources to achieve business 

goals.  

 

3. The Proxel-Based Method  
The proxel-based method [12, 13] is a relatively 

novel simulation method, whose underlying stochastic 

process is a discrete-time Markov chain [14] and 

implements the method of supplementary variables 

[15]. The method, however, is not limited to 

Markovian models. On the opposite, it allows for a 

general class of stochastic models to be analyzed 

regardless of the involved probability distribution 

functions. In other words, the proxel-based method 

combines the accuracy of numerical methods with the 

modeling power of discrete-event simulation. 

The proxel-based method is based on expanding the 

definition of a state by including additional parameters 

which trace the relevant quantities in one model 

through a previously chosen time step. Typically this 

includes, but is not limited to, age intensities of the 

relevant transitions. The expansion implies that all 

parameters pertinent for calculating probabilities for  



future development of a model are identified and 

included in the state definition of the model.  

Proxels (stands for probability elements), as basic 

computational units of the algorithm, follow 

dynamically all possible expansions of one model. The 

state-space of the model is built on-the-fly, as 

illustrated in Figure 1, by observing every possible 

transiting state and assigning a probability value to it 

(Pr in the figure stands for the probability value of the 

proxel). Basically, the state space is built by observing 

all possible options of what can happen at the next time 

step. The first option is for the model to transit to 

another discrete state in the next time step, according to 

the associated transitions. The second option is that the 

model stays in the same discrete state, which results in 

a new proxel too. Zero-probability states are not stored 

and, as a result, no further investigated. This implies 

that only the truly reachable (i.e. tangible) states of the 

model are stored and consequently expanded. At the 

end of a proxel-based simulation run, a transient 

solution is obtained which outlines the probability of 

every state at every point in time, as discretized 

through the chosen size of the time step. It is important 

to notice that one source of error of the proxel-based 

method comes from the assumption that the model 

makes at most one state change within one time step. 

This error is elaborated in [13]. 
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Figure 1. Illustration of the development of the 

proxel-based simulation algorithm 

 

Each proxel carries the probability of the state that it 

describes. Probabilities are calculated using the 

instantaneous rate function (IRF), also known as hazard 

rate function. The IRF approximates the probability 

that an event will happen within a predetermined 

elementary time step, given that it has been pending for 

a certain amount of time  (indicated as „age intensity‟). 

It is calculated from the probability density function (f) 

and the cumulative distribution function (F) using the 

following formula: 

 () = 
)(1

)(





F

f


 

(1) 

As all state-space based methods, this method also 

suffers from the state-space explosion problem [16], 

but it can be predicted and controlled by calculating the 

lifetimes of discrete states in the model. In addition, its 

efficiency and accuracy can be further improved by 

employing discrete phases and extrapolation of 

solutions [17]. More on the proxel-based method can 

be found in [13]. 

 

4. State-dependent (floating) task 
4.1 Vital vs. non-vital tasks 

To formalize uncertainty we define the highly 

uncertain state-dependent task, for which we allow any 

relevant parameters determine its duration. We term 

this type of task as floating task. Its duration 

probability distribution is a complex function that 

among other factors depends also on the team that 

performs the task (its previous training, number of 

participants, etc.).  

To introduce human decision uncertainty factors in 

project scheduling, we classify tasks into two 

categories, i.e. vital and non-vital, depending on their 

importance for the success of the project and the risk 

strategy of the project, i.e.: 

1) Vital tasks: these tasks are estimated as critical 

for the success of the project. They are assigned 

only to experienced professionals to reduce the 

risk of their failure. Consequently, vital tasks are 

assigned a single team responsible for their 

implementation (fixed resource allocation 

strategy). 

2) Non-vital tasks: these tasks are estimated as 

secondary for the success of the project. Non-

vital tasks can be assigned to more than one 

team. Any of the teams that become available 

can implement it in order to optimize the project 

duration and maximize resource utilization. 

Under certain circumstances, non-vital tasks can 

be cancelled as well. In general, non-vital tasks 

invite various on-the-fly decision scenarios.    

Whether a task is vital or non-vital tasks can be 

determined from the project requirements.  

If we consider our running example, it is well 

known in software requirements management that users 

and stakeholders establish priorities to the feature set. 

Typical priority levels are: critical, important, and 

useful [18]. When simulating project schedules, we 

propose to categorize the set of prioritized features as 



vital and non-vital tasks. It is obvious that a critical 

feature with high risk cannot be seen as non-vital task 

since non-vital task may be even cancelled while a 

useful feature can be seen as a non-vital task. 

Introducing feature risk level as factor to decide about 

the categorization of the different features into vital and 

not vital tasks is out of the scope of this paper. Such 

issues are seen as part of our future work.  

 

4.2 Simulation Model: Floating task  
In the following we present our sample model that 

we use to demonstrate our approach. The Gantt chart of 

the sample software development project schedule is 

shown in Figure 2. Each of the tasks corresponds to a 

software requirement. 

The project schedule has two software developer 

teams assigned (A and B) and commences by running 

two tasks (T1 and T2, both vital) in parallel. There is a 

third task (T3, non-vital) that originally needs to be 

executed by team A after they complete task T1, as 

team B is not trained to respond to this type of task. 

Only once all three tasks are finished the project can 

proceed to task T4 (vital), which is executed by both 

teams. However, it is a very typical scenario that if task 

T2 is completed in a very short time and T1 is far from 

finished then team B starts working on task T3 (since it 

is a non-vital task) instead of staying idle and task T3 

waiting for team A.  

Furthermore, if team A completes T1 shortly after 

team B has started to work on T3, then T3 can be 

cancelled (because T4 is vital and thus more important 

to be completed by both teams). Else, team A has to 

stay idle until team B completes task T3. This implies 

that the transition associated with the completion of 

task T1 by team A while team B is processing T3, is 

conditioned on the history (more specifically the age 

intensities) of the model. 

In our sample model we observe two possible 

decision scenarios, as described in the following: 

a) If duration of task T2 performed by team B is “very 

short” then start T3 by team B. 

b) If duration of T1 is “too long” and it completes 

“shortly after” team B started to work on T3, then 

T3 is cancelled and both teams start working on T4. 

 Apparently, there is fuzziness in the project 

schedule description (i.e. “far from finished”, “shortly 

after”) that requires adequate modeling. For that we use 

the following fuzzy function (however there is no limit 

as to what function can be used) [19]:   
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Figure 2. Gantt chart of the example model, 

floating task is encircled in red color 

 

5. Proxel-based simulation of extended 

project schedules 
In the following we provide the details of the 

proxel-based simulation of the sample project schedule 

that involves a floating task. This should serve as 

description of our approach through an example. 

Each task in the model has a name, a priority level 

(vital or non-vital), a duration probability distributions 

with respect to possible team association, and a set of 

pre-requisite tasks. The proxel format of the state of the 

project schedule encompasses the following 

parameters: 

 task vector {Ti}, where Ti is the task that team i 

is working on, or I for idle, 

 age intensity vector {i}, for tracking the 

duration of tasks, 

 probability value. 

Thus the format of the proxel is as follows: 
Proxel = (Task Vector, Age Intensity Vector, Probability) 

The initial proxel, i.e. the proxel that marks the initial 

state of the system would be ((T1, T2), (0, 0), 1.0). It 

describes the situation in which team A is working on 

task T1, and team B on task T2 with a probability of 

1.0. In the next time step the model can do each of the 

following developments: 

a) Task T1 is completed,  

b) Task T2 is completed, or 

c) None of the tasks are completed 

Resulting into the following three proxels: 

a) ((T3, T2), (0, Dt), p1) 

b) ((T1, T3), (Dt, 0), p2) 

c) ((T1, T2), (Dt, Dt), 1 - p1 - p2) 

In case (a), team A starts working on task T3, and also 

the corresponding age intensity is now reset to track the 

duration of T3. In case (b) team B takes over task T3, 



instead of sitting idle and waiting on team A to finish 

task T3. Case (c) shows the situation of both teams 

continuing what they have been doing before.  

Because of the on-the-fly decision scenarios, both 

(T3, T2) and (T1, T3) can transit to (T4, T4). If T1 is 

completed shortly after team B has started working on 

T3, then the model transits to (T4, T4) with the 

completion of T1. Else, it waits for team B to complete 

T3 before transiting to (T4, T4). For generating each 

new proxel, the durations of tasks in progress need to 

be investigated for the decision modeling. 

The state-transition diagram of the sample project 

schedule is shown in Figure 3. As depicted with the 

extra wide arrow , when team A is working on T1 

and team B on T3, the transition associated with the 

completion of T1 depends on the time that team B has 

already spent on working on task T3. If it was “too 

long” then team A will stay idle and wait for its 

completion. One the other hand, if team B has just 

started working on task T3, then it is interrupted and 

both teams start working on task T4 which leads to 

completing the project.   
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Figure 3. State-transition diagram of the 

project schedule 
 

The algorithm that we have developed represents an 

extension of the original proxel-based method [12, 13]. 

In particular, the differences can be summarized as: 

Before processing each transition, check all 

possibilities for possible flow changes based on proxel 

parameters. Generate subsequent proxels 

correspondingly.  

 

6. Experiments and Results 
6.1. Experimental Environment 

The experiments were run on a standard workstation 

with an Intel Core2Duo Processor at 2.0 GHz and 1 

GB RAM. The choice for Dt was 0.1 and the simulation 

was run up to time t = 20. This implies that the number 

of simulation steps was 200.  

The computation time for this experiment was ca. 4 

seconds. In the following we present the results, i.e. the 

statistics that were calculated during this simulation 

experiment. The input data is provided in Table 1. 

 

Table 1. Input data for the sample project 

schedule (N-Normal, U-Uniform) 
Team/task T1 T2 T3 T4 

A N(5, 1)  U(2, 4) 
U(0.5, 2) 

B  U(2, 10) N(7, 1.2) 

 

6.2. Experiments 
The goal of the experiments is to show the 

importance of modeling the effects of on-the-fly human 

decision behaviors on project schedules. For that 

purpose we first simulated the project schedule in an 

ideal scenario, i.e. excluding any intrusions during 

project running. Next, we simulated the project 

duration exposed to the hypothetical scenarios (both (a) 

and (b)) for on-the-fly project flow decisions. To study 

the effect of neglecting them, we compare both 

solutions and present the results with a chart. 

In Figure 4, we can see the probability distribution 

of project duration for all combination of on-the-fly 

decision scenarios. In order to represent closely the 

effect of their modeling and simulation, Figure 5 shows 

the difference of the two probability distributions, with 

and without on-the-fly decision scenarios. The results 

show that in our sample model, it goes up to ca. 0.28, 

which is far from negligible. 

 

 
Figure 4. Probability distribution of the 

duration of the project schedule with the 4 

possible combinations of scenarios 
 

 
Figure 5. Project schedule duration probability 

distributions difference for the ideal and 

project schedule with both scenarios 



 

7. Discussion 
The approach that we presented allows a higher 

degree of uncertainty in project schedules to be 

modeled and simulated. The uncertainty that we 

observe is in terms of duration of tasks, task allocation, 

as well as arbitrary on-the-fly decisions that influence 

the workflow. We all witness that these things happen 

almost every time and in every project. Thus, 

simulation models need to consider them in order to 

obtain accurate measures for the duration of project 

schedules. Very often, these factors are neglected, and 

by our example we showed what difference they can 

make. In our example model, the probability difference 

for the completion of the project reached ca. 0.27, and 

this is still just a toy model. In real project schedules it 

can be more extreme and thus it has to be taken into 

account. The question that arises is how to obtain the 

numbers that represent and model these behaviors. We 

believe that they can be modeled by historical data and 

tracking from previous projects of similar types. In 

addition, expert knowledge and common sense can 

help to a great extent. 

 

8. Summary and Outlook 
This paper presents a more realistic project schedule 

simulation and modeling approach that allows for a 

high level of uncertainty. The purpose of this 

simulation model is: (a) to model the uncertainty of 

human resources allocation to the different project 

tasks and (b) to take advantage of this uncertainty to 

simulate various on-the-fly human decisions and their 

impact on the project duration. 

To extend our work we plan to address the effect of 

these uncertainty factors on the productivity and 

budget, by adding value, effort and cost parameters. In 

addition, we intend to extend our simulation model to 

handle the effects of requirements volatility in software 

engineering.  
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