The intersection graph of gamma sets in the total graph of a commutative ring II

T. Asir∗
T. Tamizh Chelvam†

ICM 2012, 11-14 March, Al Ain

Abstract
T. Tamizh Chelvam and T. Asir [15] studied the intersection graph of gamma sets in the total graph of a commutative Artin ring. The intersection graph $I_T\Gamma(R)$ of gamma sets in the total graph of a commutative ring R, is the undirected graph with vertex as collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if $u \cap v \neq \emptyset$. In this paper, we continue our interest on $I_T\Gamma(R)$ and actually we study about Eulerian and Hamiltonian nature of $I_T\Gamma(R)$. Further, we focus on certain graph theoretic parameters of $I_T\Gamma(R)$ like the independence number and the clique number of $I_T\Gamma(R)$. Some of the results proved in this paper generalize the results proved in [13]. Keywords: Artin ring, total graph, intersection graph, Hamiltonian, independence number.

1 Introduction
The present paper is a sequel to [15] and so the notations introduced in the introduction of [15] will remain in force. Thus throughout this paper, R denotes a commutative ring with identity $1 \neq 0$, $2 = 1 + 1$ and $Z(R)$ denotes the the set of all zero divisors of R. For any $a \in R$, $Ann(a) = \{x \in R : ax = 0\}$ is the annihilator ideal of a in R and the ideal generated by a is denoted by (a). Throughout this paper, let I be an annihilator ideal with $|R/I|$ is finite and $|R/I| = \min\{|R/J| : J$ is an annihilator ideal of $R\}$. Let us take $|I| = \lambda$, $|Z(R)| = \alpha$, $|R/Z(R)| = \beta$ and $|R/I| = \mu$. For a general reference on rings, we refer to Kaplansky [7].

Anderson and Badawi [2] introduced the concept of the total graph corresponding to a commutative ring. The total graph of R, denoted by $T_T(R)$, is the undirected graph with vertices R, and for distinct $x, y \in R$, the vertices x and y are adjacent if $x + y \in Z(R)$. There after various research articles have been published on the total graph of a commutative ring [1, 9, 11, 12, 14]. The intersection graph of gamma sets in the total graph of a commutative ring R is the undirected graph with vertex as collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if $u \cap v \neq \emptyset$. Now we continue the investigation of interplay between some graph-theoretic properties of $I_T(R)$ and the ring-theoretic properties of R.

Let $G = (V, E)$ be a finite graph with vertex set V and edge set E. A subset S of V is called a dominating set in G if every vertex in $V - S$ is adjacent to at least one vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G and such a dominating set is called γ-set of G. A set of vertices in G is said to be independent if no two vertices in the set are adjacent. The independence number $\beta_0(G)$, is the maximum cardinality of an independent set in G. The clique number $\omega(G)$, is the number of vertices in a

∗Supported through INSPIRE programme by the Department of Science and Technology, Government of India.
†by a Major Research Project of the University Grants Commission, Government of India.
largest complete subgraph of G. Let G_1 and G_2 be two graphs. The union of G_1 and G_2, denoted by $G_1 \cup G_2$, is a graph with vertex set $V(G_1) \cup V(G_2)$ and edge-set $E(G_1) \cup E(G_2)$. For graph theory parameters, we refer reader to [6].

Theorem 1 [15, Theorem 2.4] Let R be a commutative Artin ring which is not an integral domain. Assume that I_i‘s ($i = 1, 2, \ldots, t$) are the annihilator ideals of R such that $|R/I_i| = \mu$ is finite and minimum, and $R/I_i = \{a_{ij} + I_i : 1 \leq j \leq \mu\}$ for each i, $1 \leq i \leq t$. Then $\{x_1, x_2, \ldots, x_\mu\}$ is a γ-set of $\Gamma(R)$ if and only if $x_j \in a_{ij} + I_i$ for $j = 1, \ldots, \mu$ and for some fixed i.

Lemma 2 [15, Lemma 3.3] Let R be a finite commutative ring and I_i ($i = 1, 2, \ldots, t$) be annihilator ideals in R such that $|R/I_i|$ is minimum. Let $|I_i| = \lambda$, $|R/I_i| = \mu$ and $k = |\{x \in R : 2x = 0\}|$. Then

(i)
$$|V(\Gamma_{TT}(R))| = \begin{cases}
2^{\frac{|R| - k}{2}} & \text{if } R \text{ is an integral domain} \\
\lambda^\mu & \text{if } t = 1 \\
2\mu^\mu - \mu!(\frac{\lambda}{\mu})^\mu & \text{if } t = 2.
\end{cases}$$

Moreover if $t \geq 3$, then $|V(\Gamma_{TT}(R))| \geq 2\mu^\mu - \mu!(\frac{\lambda}{\mu})^\mu > \lambda^\mu$.

(ii) If $t = 1$, then $\deg(v) = \sum_{i=1}^{\mu} [\lambda^{\mu-i}(\lambda - 1)^{i-1}] - 1$ for all $v \in V(\Gamma_{TT}(R))$. Further if $\mu = 2$, then $\deg(v) = |R| - 2$ for all v.

(iii) If $t \geq 2$, then $\deg(v) \geq \sum_{i=1}^{\mu} [\lambda^{\mu-i}(\lambda - 1)^{i-1}] - 1 + (\frac{\lambda}{\mu})\lambda^{\mu-2}$ for all $v \in V(\Gamma_{TT}(R))$.

2 Eulerian and Hamiltonian nature of $\Gamma_{TT}(R)$

In this section, we are interested in the Eulerian and Hamiltonian nature of $\Gamma_{TT}(R)$. Throughout this section, we assume that $|R| \geq 4$ in order to avoid $|V(\Gamma_{TT}(R))| \leq 3$. We begin this section with a result concerning Eulerian nature of $\Gamma_{TT}(R)$.

Theorem 3 Let R be a finite commutative ring with $|R| \geq 4$ and I be the unique annihilator ideal in R such that $|R/I|$ is minimum. Then $\Gamma_{TT}(R)$ is Eulerian if and only if R is not a field.

Proof If R is a field, then $\Gamma_{TT}(R)$ is a complete graph with even number of vertices and so is not Eulerian. Assume that R is not a field. Let $|I| = \lambda$ and $|R/I| = \mu$. If λ is odd, then $\lambda^{\mu-1}$ is odd and so by Lemma 2(ii), $\deg(v)$ is even for all $v \in V(\Gamma_{TT}(R))$. If λ is even, then $(\lambda - 1)^{\mu-2}$ is odd and so by Lemma 2(ii), $\deg(v)$ is even for all $v \in V(\Gamma_{TT}(R))$. Hence $\Gamma_{TT}(R)$ is Eulerian. \[\Box\]

In 1969, Lovász[8] posed that whether every finite connected vertex-transitive graph has a Hamilton path. However, the general problem of finding Hamilton paths and cycles in highly symmetric graphs may be much older. After all these years, a connected vertex-transitive graph without a Hamilton path is yet to be produced. Moreover, only four connected vertex-transitive graphs (having at least three vertices) not having a Hamilton cycle are known to exist: the Petersen graph, the Coxeter graph, and the two graphs obtained from them by replacing each vertex with a triangle. Particular attention has been given to Cayley graphs. For example, one may easily see that connected Cayley graphs of abelian groups have a Hamilton cycle. As seen in Theorem 4.1 [15], $\Gamma_{TT}(R)$ is a vertex-transitive graph if R contains only one annihilator ideal.
Let \(|R/I| \) is finite and minimum. Further \(I_{TT}(R) \) is a union of vertex-transitive subgraphs of \(I_{TT}(R) \). Thus a natural question is whether \(I_{TT}(R) \) is Hamiltonian or not. In this regard, we prove that \(I_{TT}(R) \) is Hamiltonian and so we get a class of vertex-transitive Hamiltonian graphs. Hence a subclass of \(I_{TT}(R) \) for various commutative rings \(R \), satisfies Lovász conjecture.

In order to prove that \(I_{TT}(R) \) is Hamiltonian, we start with a lemma which is used frequently.

Lemma 4 Let \(R \) be a commutative Artin ring which is not an integral domain and \(I_i \) \((i = 1, \ldots, t)\) be the annihilator ideals in \(R \) such that \(|R/I_i| = \mu \) is finite and minimum. Let \(\bigcup_{i=1}^{t} I_i = \{a_1, \ldots, a_r\}, A_1 = \{v \in V(I_{TT}(R)) : a_1 \in v\} \) and \(A_k = \{v \in V(I_{TT}(R)) : a_k \in v \text{ and } v \notin \bigcup_{m=1}^{k-1} A_m\} \) for \(2 \leq k \leq r \). Then \(A_k \) is complete and \(A_k \cup A_{\ell} \) is connected as subgraphs of \(I_{TT}(R) \) for \(k \neq \ell, 1 \leq k, \ell \leq r \).

Proof Since \(R \) is Artin, \(R \cong R_1 \times \cdots \times R_n \) where each \(R_p \) is a local ring with \(Z(R_p) = m_p \) for \(p = 1, \ldots, n \). Note that every maximal annihilator ideal in \(R \) is of the form \(R_1 \times \cdots \times R_{p-1} \times m_p \times R_{p+1} \times \cdots \times R_n \) for \(p = 1, \ldots, n \). In view of this \(I_i = R_1 \times \cdots \times R_{i-1} \times m_i \times R_{i+1} \times \cdots \times R_n \) for \(i = 1, \ldots, t \). Since \(|R/I_i| = \mu, |R_i/m_i| = \mu \), and so let \(R_i/m_i = \{x_{1i} + m_i = m_i, x_{2i} + m_i, \ldots, x_{mi} + m_i\} \) with \(x_{ji} \in R_i \) for \(j = 1, \ldots, m_i \) and \(i = 1, \ldots, t \). Let \(y_{ij} = (b_1, b_2, \ldots, b_{i-1}, x_{ij}, b_{i+1}, \ldots, b_n) \in R_1 \times \cdots \times R_n \) where \(b_p \in R_p \). Then \(R/I_i = \{y_{ij} + I_i : 1 \leq j \leq \mu\} \) for \(i = 1, \ldots, t \). By the choice \(x_{1i} \in m_i, y_{i1} \in I_i \) for \(i = 1, \ldots, t \). Since \(a_k \in v \) for every \(v \in A_k, < A_k > \subseteq I_{TT}(R) \) is complete.

To prove the other part, first we show that for each \(c \in \bigcup_{i=1}^{k-1} A_m \) and so \(u \not\in A_k \). Since \(z_\mu \) is an arbitrary, for each \(c \in \bigcup_{i=1}^{k-1} A_m \) and so \(u \not\in A_k \). Since \(z_\mu \) is an arbitrary, for each \(c \in \bigcup_{i=1}^{k-1} A_m \) and so \(u \not\in A_k \). Since \(z_\mu \) is an arbitrary, for each \(c \in \bigcup_{i=1}^{k-1} A_m \) and so \(u \not\in A_k \). Since \(z_\mu \) is an arbitrary, for each \(c \in \bigcup_{i=1}^{k-1} A_m \) and so \(u \not\in A_k \). Since \(z_\mu \) is an arbitrary, for each \(c \in \bigcup_{i=1}^{k-1} A_m \) and so \(u \not\in A_k \). Since \(z_\mu \) is an arbitrary, for each \(c \in \bigcup_{i=1}^{k-1} A_m \) and so \(u \not\in A_k \).

The following theorem concerns about the existence of a Hamiltonian cycle in \(I_{TT}(R) \).

Theorem 5 Let \(R \) be a commutative Artin ring with \(|R| \geq 4 \) and \(I \) be an annihilator ideal of \(R \) such that \(|R/I| \) is minimum. Then \(I_{TT}(R) \) is Hamiltonian.

Proof When \(R \) is an integral domain, \(I_{TT}(R) \) is complete and so trivially Hamiltonian. Let \(R \) be a commutative Artin ring which is not an integral domain. As per the notations of Lemma 4, \(A_k \subseteq I_{TT}(R) \) is complete and \(A_k \cup A_{\ell} \) is connected for all \(k \neq \ell \).

Let \(B = (x_{12} + m_1) \times (x_{22} + m_2) \times \cdots \times (x_{j2} + m_j) \times R_{12} \times \cdots \times R_{n1} \).

Suppose \(|B| \geq 3 \) and let \(c_1, c_2, c_3 \in B \). By proof of Lemma 4, for each \(k = 1, \ldots, r \), there exists \(\{u_k, v_k, w_k\} \subseteq A_k \) such that \(c_1 \in u_k, c_2 \in v_k \) and \(c_3 \in w_k \). Now start with the vertex \(u_1 \in A_1 \) and pass on to a vertex \(u_2 \in A_2 \), traverse the vertices in \(< A_2 > \) through a spanning path in \(< A_2 > \) ending at \(v_2 \in A_2 \). Then pass on to \(< A_3 >, < A_4 >, < A_5 >, \ldots, < A_{r-1} > \) to get a Hamiltonian path ending at \(v_{r-1} \in A_{r-1} \) or \(v_{r-1} \in A_{r-1} \), say \(u_{r-1} \in A_{r-1} \). Now pass on...
to the vertex $u_r \in A_r$, traverse vertices in $< A_r >$ through a spanning path in $< A_r >$ ending at $w_r \in A_r$. Then pass on to the vertex $w_1 \in A_1$, traverse vertices in $< A_1 >$ through a spanning path in $< A_1 >$ and ending at u_1 gives a required Hamiltonian cycle in $I_{TT}(R)$.

Suppose $|B| \leq 2$. If R is local, then $|x_{\mu} + Z(R)| = 2$ and so $R \cong \mathbb{Z}_2$ or $\mathbb{Z}_2[x]/(x^2)$. In this case $I_{TT}(R) = C_4$. If R is not local, then $|x_{\mu_i} + m_i| = 1$ for $i = 1, 2, \ldots, t$, and so $R \cong \mathbb{Z}_2 \times \ldots \times \mathbb{Z}_2$. Now, for each element $y \in R$, there is $v \in A_1$ such that $y \in v$ and A_r is a singleton set. Thus as discussed above one can get a Hamiltonian cycle in $I_{TT}(R)$.

\section{Independent and Clique numbers of $I_{TT}(R)$}

In this section, we obtain the values of independence and clique numbers of $I_{TT}(R)$. First we find the vertex and edge independence numbers of $I_{TT}(R)$.

Lemma 6 Let R be a finite commutative ring, I be an annihilator ideal in R with $|R/I| = \mu$ is minimum and $|I| = \lambda$. Then the independence number $\beta_0(I_{TT}(R)) = \lambda$.

Proof Let $I = \{a_1, \ldots, a_{\lambda}\}$ and $R/I = \{I, x_1+I, \ldots, x_{\mu-1}+I\}$. Let $u_i = \{a_i, x_1+a_i, \ldots, x_{\mu-1}+a_i\}$ for $i = 1, \ldots, \lambda$ and $S = \{u_1, u_2, \ldots, u_{\lambda}\}$. Then S is an independence set in $I_{TT}(R)$ and subsets in S is a partition of R. Hence S is a maximum independent set in $I_{TT}(R)$.

\hfill \Box

Lemma 7 Let R be a finite commutative ring. Then the edge independence number $\alpha'(I_{TT}(R)) = \left\lceil \frac{|V(I_{TT}(R))|}{2} \right\rceil$. In particular $I_{TT}(R)$ has a perfect matching if and only if $|V(I_{TT}(R))|$ is even.

Proof If R is an integral domain, then $I_{TT}(R)$ is a complete graph with even number of vertices and so $\alpha'(I_{TT}(R)) = \frac{|V(I_{TT}(R))|}{2}$. Assume that R is not an integral domain. Let I_i’s be annihilator ideals in R such that $|R/I_i|$ is minimum for $i = 1, \ldots, t$ and $\bigcup_{i=1}^{t} I_i = \{a_1, \ldots, a_r\}$.

Let $A_1 = \{v \in V(I_{TT}(R)) : a_1 \in v\}$ and $A_j = \{v \in V(I_{TT}(R)) : a_k \in v$ and $v \notin \bigcup_{m=1}^{k-1} A_m\}$ for $2 \leq j \leq r$.

Suppose $|V(I_{TT}(R))|$ is even. If $|A_k|$ is even for all $k = 1, \ldots, r$, then $< A_i >$ has a perfect matching and hence $I_{TT}(R)$ has a perfect matching. If $|A_k|$ and $|A_\ell|$ are odd for some k, ℓ with $1 \leq k \neq \ell \leq r$. By Lemma 4, $< A_k \cup A_\ell >$ is connected for $k \neq \ell$ and so there exists $u \in A_k$ and $v \in A_\ell$ such that $uv \in E(I_{TT}(R))$. Consider a maximum matching M_k of $< A_k >$ not containing u and a maximum matching M_ℓ of $< A_\ell >$ not containing v, then $M_k \cup M_\ell \cup \{uv\}$ is a perfect matching of $< A_k \cup A_\ell >$. Proceeding in this way, one can get a perfect matching of $I_{TT}(R)$ and so $\alpha'(I_{TT}(R)) = \frac{|V(I_{TT}(R))|}{2}$. If $|V(I_{TT}(R))|$ is odd, then as proved above, we have $\alpha'(I_{TT}(R)) = \frac{|V(I_{TT}(R))|-1}{2}$.

\hfill \Box

Theorem 8 Let R be a finite commutative ring and I_i $(i = 1, \ldots, t)$ be the annihilator ideals in R such that $|R/I_i| = \mu$ is minimum and $|I_i| = \lambda$. Then the clique number $\omega(I_{TT}(R)) = \frac{|V(I_{TT}(R))|}{\lambda}$. In particular, if $k = |\{x \in R : 2x = 0\}|$, then

$$
\omega(I_{TT}(R)) = \begin{cases}
2^{\frac{|m-k|}{2}} & \text{if } R \text{ is an integral domain} \\
\lambda^{t-1} & \text{if } t = 1 \\
2\lambda^{t-1} - (\mu - 1)! (\frac{1}{\mu})^{t-1} & \text{if } t = 2
\end{cases}
$$
and $\omega(I_{TT}(R)) > \lambda^{\mu-1}$ if $t \geq 3$.

Proof If R is an integral domain, then $I_{TT}(R)$ is complete and so $\omega(I_{TT}(R)) = |V(I_{TT}(R))| = 2^{\frac{|R|-1}{2}}$. Assume that R is not an integral domain. Let $\bigcup_{i=1}^{t} I_i = \{a_1, \ldots, a_t \}$, $A_1 = \{v \in V(I_{TT}(R)) : a_1 \in v \}$ and $A_j = \{v \in V(I_{TT}(R)) : a_k \in v \text{ and } v \notin \bigcup_{m=1}^{k-1} A_m \}$ for $2 \leq j \leq r$.

Note that $<A_k>$ is complete and $|A_1| \geq |A_j|$ for all $2 \leq j \leq r$.

We claim that no vertex in $V(I_{TT}(R)) - A_1$ is adjacent to all vertices in A_1. For, let $u = \{x_1, \ldots, x_\mu \} \in V(I_{TT}(R)) - A_1$ and so $x_i \neq a_1$ for all i. Suppose u is a γ-set of $T_\Gamma(R)$ with respect to I_p for some p, $1 \leq p \leq t$. Assume that $a_1 \in y + I_p$. By Theorem 1, there exists some $j(1 \leq j \leq \mu)$ such that $x_j \in y + I_p$. Since $x_i \neq a_1$ for all i, $0 \neq z = a_1 - x_j \in I_p$. From this $w = \{x_1 + z, \ldots, x_{j-1} + z, a_1, x_{j+1} + z, \ldots, x_\mu + z \} \in A_1$ and w is not adjacent to u. Similarly one can prove that for any element $x \in R$ and $S = \{v \in V(I_{TT}(R)) : x \in v \}$, $<S>$ is a maximal clique. Also one can note that any maximal clique will be of this form. Thus $\omega(I_{TT}(R)) = |A_1|$.

To obtain, the value of $|A_1|$, let $v_1 = \{a_1, x_2, \ldots, x_\mu \}$ be an arbitrary vertex in A_1. By Theorem 1, there exists a least positive integer $i(1 \leq i \leq t)$ such that v_1 is a γ-set of $T_\Gamma(R)$ with respect to I_i. Let $I_i = \{0, b_2, b_3, \ldots, b_\lambda \}$ and $v_j = \{a_1 + b_j, x_2 + b_j, \ldots, x_\mu + b_j \}$ for $j = 2, 3, \ldots, \lambda$. From this construction, corresponding to each arbitrary vertex in A_1, one can associate $\lambda - 1$ vertices in $V(I_{TT}(R)) - A_1$. This gives a partition for $V(I_{TT}(R))$ into $|A_1|$ subsets each containing λ elements. Hence $\omega(I_{TT}(R)) = |A_1| = \frac{|V(I_{TT}(R))|}{\lambda}$. Particular cases from follow from Lemma 2. □

Let G be a graph. For any ℓ with $1 \leq \ell \leq \left\lfloor \frac{|V(G)|}{2} \right\rfloor$, $K_{\ell, \ell}$ is a subgraph of G. Further for some $\ell > \left\lfloor \frac{|V(G)|}{2} \right\rfloor$, $K_{\ell, \ell}$ may be a subgraph of G. Now we identify an upper bound for such a number ℓ, whenever $\mu = 2$.

Theorem 9 Let R be a finite commutative ring, $|R| > 2$ and I be an annihilator ideal of R with $|R/I| = 2$. Then the following are true:

(i) If R is either \mathbb{Z}_4 or $\frac{\mathbb{Z}_4[x]}{x^2}$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_6, then $K_{\ell, \ell}$ is a subgraph of $I_T(R)$ if and only if either $\ell = 1$ or 2.

(ii) If R is not isomorphic to the rings in (i), then $K_{\ell, \ell}$ is a subgraph of $I_{TT}(R)$ if and only if $1 \leq \ell \leq \left\lfloor \frac{\omega(I_{TT}(R))}{2} \right\rfloor$.

Proof (i) If R is either \mathbb{Z}_4 or $\frac{\mathbb{Z}_4[x]}{x^2}$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$, then by Example 3.1 [15], $\ell \leq 2$. If $R = \mathbb{Z}_6$, then the subgraph induced by vertices $\{0, 1\}, \{2, 3\}, \{0, 3\}$ and $\{1, 2\}$ is a maximal complete bi-partite graph of $I_{TT}(R)$ and so $\ell \leq 2$.

(ii) Let $|I| = \lambda$ and $|R/I| = \mu = 2$. If R is not isomorphic to the rings in (i), then $\lambda \geq 4$ and so by Theorem 8, $\omega(I_{TT}(R)) \geq \lambda^{\mu-1} \geq 4$.

Let $s = \left\lfloor \frac{\omega(I_{TT}(R))}{2} \right\rfloor + 1$ if $\omega(I_{TT}(R))$ is even

otherwise.

Suppose $K_{s,s}$ is a subgraph of $I_T(R)$ with vertex partition (X, Y). Let $X = \{u_1, \ldots, u_s \}$ and $Y = \{v_1, \ldots, v_s \}$. Since $\omega(I_{TT}(R)) \geq 4$, we get that $s \geq 3$. Note that each vertex in X as well as Y is a subset of R with two elements.

Suppose there is some $x \in u_1 \cap \ldots \cap u_s$. Since $|X| \geq 3$ and $|Y| \geq 3$, $x \in v_j \in Y$ for all j with $1 \leq j \leq s$. Hence K_{2s} is a subgraph of $I_{TT}(R)$ and so $\omega(I_{TT}(R)) \geq 2s$, a contradiction to $\omega(I_{TT}(R)) < 2s$.

Suppose there is some $x \in R$ and x is in some subsets in X, and $y \in R$ is in some other subsets in X. Now, there is at most only one vertex $\{x, y\} \in V(I_{TT}(R))$ which is adjacent to all the vertices X. That is, $\{x, y\}$ is the only vertex in Y, a contradiction to $|Y| \geq 3$. Therefore $K_{s,s}$ is not a subgraph of $I_{T}(R)$. □

Having obtained the upper bound for ℓ when $\mu = 2$, we propose the following open problem when $\mu \geq 3$.

Acknowledgements The authors are grateful to Prof. Syam for the invitation to participate actively in the ICM 2012. Also authors are very much thankful to Prof. Ayman Badawi for invitation to deliver a talk in the Special session on Commutative Algebra and Modules.

References

