
 

 

  
Abstract—Detecting protein-protein interactions is a central 

problem in computational biology and aberrant such interactions may 
have implicated in a number of neurological disorders. As a result, 
the prediction of protein-protein interactions has recently received 
considerable attention from biologist around the globe. 
Computational tools that are capable of effectively identifying 
protein-protein interactions are much needed. In this paper, we 
propose a method to detect protein-protein interaction based on 
substring similarity measure. Two protein sequences may interact by 
the mean of the similarities of the substrings they contain. When 
applied on the currently available protein-protein interaction data for 
the yeast Saccharomyces cerevisiae, the proposed method delivered 
reasonable improvement over the existing ones. 
 

Keywords—Protein-Protein Interaction, support vector machine, 
feature extraction, pairwise alignment, Smith-Waterman score 

I. INTRODUCTION 
HE more we know about the molecular biology of the 
cell, the more we see genes and proteins as part of 

networks or pathways instead of as isolated entities, and their 
function as a variable dependent of the cellular context and 
not only of the individual properties [1]. This is the reason 
why biologists are making the transition from studying 
structure-function relationships in individual protein families 
to high-throughput investigation of entire cellular networks 
[2]. The goal remains to elucidate the structure, interactions 
and functions of all proteins within cells and organisms. The 
expectation is that this will provide a fuller appreciation of 
cellular processes and networks at the protein level, ultimately 
leading to a better understanding of disease mechanisms and 
suggesting new means for intervention [3]. To solve this 
problem, vast of approaches have already been developed for 
predicting physical interactions which may lead to the 
identification of the functional relationships between proteins. 
Some of the earliest techniques predict interacting proteins 
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through the similarity of expression profiles [4], coordination 
of occurrence of gene products in genomes, description of 
similarity of phylogenetic profiles [5] or trees [6], and 
studying the patterns of domain fusion [7]. However, it has 
been noted that these methods predict protein–protein 
interactions in a general sense, meaning joint involvement in a 
certain biological process, and not necessarily actual physical 
interaction [8].  

Most of the recent works focus on employing the protein 
domain knowledge to predict the protein-protein interaction. 
The motivation for this choice is that molecular interactions 
are typically mediated by a great variety of interacting 
domains [9]. It is thus logical to assume that the patterns of 
domain occurrence in interacting proteins provide useful 
information for training protein-protein interaction prediction 
methods.  

One of the previous works introduced was based on the 
assumption that protein–protein interactions are evolutionary 
conserved. It involves the use of high-quality protein 
interaction map with interacting domain information as input 
to predict an interaction map in another organism [10]. Kim et 
al. [11] developed a statistical scoring system to measure the 
intractability between protein domains which could be used to 
predict protein-protein interaction. In other study, the notion 
of potentially interacting domain pair (PID) was introduced to 
describe domain pairs that occur in interacting proteins more 
frequently than would be expected by chance. In a similar 
approach, Ng et al. [12] described an integrative approach to 
computationally derive putative domain interactions from 
multiple data sources, including rosetta stone sequences, 
protein interactions, and protein complexes. Gomez et al. [13] 
constructed an attraction-repulsion model associated with 
Pfam domains along the length of each protein. 

Most the above methods focus on domain structure and 
none of them consider all the sequence information to predict 
the protein-protein interaction. We understand that protein 
domains are highly informative for predicting protein-protein 
interaction as it reflects the potential structural relationships 
between proteins, however, other sequence parts (not currying 
any domain knowledge) may contribute to the information by 
showing how different two proteins are.  

In this paper, we present a simple yet effective method to 
predict protein-protein interaction. The idea is to predict 
protein-protein interaction through sequence similarity. Two 
protein sequences may interact by the mean of the similarities 
of the substrings they contain. This work is motivated by the 
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observation that the Smith-Waterman (SW), algorithm [14], 
which measures the similarity score between two sequences 
by a local gapped alignment, provides a relevant measure of 
similarity between protein sequences. This similarity 
incorporates biological knowledge about protein evolutionary 
structural relationships [15]. 

II. ALGORITHM 
 The proposed algorithm uses a transformation that converts 
protein sequence into fixed-dimensional representative feature 

vectors, where each feature records the sensitivity of a set of 
substrings of amino acids to the protein sequences of interest. 
These features are then used in conjunction with support 
vector machines (SVM) to predict the possible interactions 
between proteins. The overview of the algorithm which we 
call it Substring Scoring (SubSS) Method is presented in Fig 
1. In the proceeding sections we will discuss the SubSS 
algorithm in details. 
 

 
Fig. 1 algorithm overview 
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A. Data Preparation (generation of interacting and non 
interacting protein sequences) 
This step starts by generating a dataset of interacting and non 
interacting protein pairs. For the interacting pair, it is simply 
obtained from the Database of Interacting Protein (DIP). 
However, obtaining identified and standard non-interacting 
proteins pairs remains to be the concern of all researchers 
working in predicting protein-protein interaction. Therefore, 
in our case we use a random method to generate proteins 
pairs, and then delete all pairs that appear in DIP. This is 
acceptable for the purposes of comparing the feature 
representation since the resulting inaccuracy will be 
approximately uniform with respect to each feature 
representation [16].  
 Two protein sequences ),...,,( 112111 naaap =  

and ),...,,( 222212 maaap = , where na1  refers to the 
thn amino acid in protein sequence 1p , are represented 

as ),...,,,,...,,( 22221112111 nnpos aaaaaaseq = , if the pair 

1p and 2p  are confidently interact with each other. Where 

1posseq shows that the new first protein sequence created by 

concatenating the two interacting pair 1p and 2p is placed in 

the positive class. However, if the two protein pair 1p and 2p  
are not interacting with each other then it’s represented as 

),...,,,,...,,( 22221112111 nnneg aaaaaaseq = , where 1negseq  

shows that the new first protein sequence created by 
concatenating the non-interacting pair 1p and 2p is placed in 
the negative class. 
 

B.  Creation of the amino acids substrings 
In this step, we consider each protein sequence as a string 

of amino acids and then, we try to find out all possible 
substrings that the protein sequence contains. Unlike the string 
kernel method used for protein homology detection [17], we 
consider only the contiguous substrings. This goal can easily 
be achieved by simply shifting a window of a length 1>k , 
over the protein training examples. This process can be 
illustrated as follows: 

 
If we have a protein sequence 
>YAL030W SNC1 SGDID:S0000028 
MSSSTPFDPYALSEHDEERPQNVQSKSRTAELQAEIDDTVGIM
RDNINKVAERGERLTSIEDKADNLAVSAQGFKRGANRVRKA
MWYKDLKMKMCLALVIIILLVVIIVPIAVHFSR* 
 
Assuming 20=k , yields 6 substrings (note that the last 
substring is not necessary equal to k , however, it should not 
be a problem since we test the sensitivity against all the 
protein sequences of the interest). 
 
>YAL030W sub 1 
MSSSTPFDPYALSEHDEERP 
>YAL030W sub 2 

QNVQSKSRTAELQAEIDDTV 
>YAL030W sub 3 
GIMRDNINKVAERGERLTSI 
>YAL030W sub 4 
EDKADNLAVSAQGFKRGANR 
>YAL030W sub 5 
VRKAMWYKDLKMKMCLALVI 
>YAL030W sub 6 
IILLVVIIVPIAVHFSR* 

 

C. Feature Sensitivity Measure 
The sensitivity of each feature is measured using a simple 

pairwise sequence similarity algorithm. Smith-Waterman 
algorithm [14] is used to measure the sensitivity score 
between each substring generated in the previous step and the 
protein sequence. The score generated here is eventually used 
as a representation of the protein sequence. Our expectation 
here is to show that two proteins are likely to interact if they 
contain similar substrings of amino acids. The feature vector 
for each protein is thus formulated as follows: 

 

     

),...,,(
:

),...,,(
),...,,(

21

222212

112111

mnmmm

n

n

sssp

sssp
sssp

=

=
=

             (1) 

 
 Where mnmm sss ,...,, 21  represent the scores of n  

substrings against a total number of m proteins. Proteins 1p  

and 2p  are likely to interact if they contain similar substrings 
of amino acids. It’s believed that, the possibility of two 
proteins to interact with each other is associated with their 
structural and functional similarities. Please note that, the idea 
of using protein substring sequence or pairwise is not novel, 
as many research have already been done to detect protein 
homology as a way to identify functional relationships [17], 
[18] and [19]. 

  

D. Discriminating between interacting and non interacting 
protein sequences 

To discriminate between interacting and non interacting 
protein pairs, we employed support vector machine (SVM). 
SVM [20], [21] is a powerful classification algorithm and well 
suited the given task. It addresses the general problem of 
learning to discriminate between positive and negative 
members of a given class of n -dimensional vectors. The 
algorithm operates by mapping the given training set into a 
possibly high-dimensional feature space and attempting to 
learn a separating hyperplane between the positive and the 
negative examples for possible maximization of the margin 
between them [22]. The margin corresponds to the distance 
between the points residing on the two edges of the 
hyperplane. Having found such a plane, the SVM can then 
predict the classification of an unlabeled example. In fact, 
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much of the SVM's power comes from its criterion for 
selecting a separating plane when many candidate planes 
exist: the SVM chooses the plane that maintains a maximum 
margin from any point in the training set [19]. SVM classifiers 
do not require any complex parameters to be tuned and 
optimized, and they exhibit a great ability to generalize even 
when given a small number of training examples. The only 
significant parameters to be tuned are the choice of the kernel 
function and the soft-margin parameter (capacity or 
regularization parameter). The kernel projects the data to 
higher dimensional space to increase the computational 
ability.  The formulation of the SVM is described as follows: 
 Suppose our training set S consists of labeled input vectors 

),( ii yx , mi ...1=  where n
ix ℜ∈  and }1{±∈iy . We can 

specify a linear classification rule f by a pair ),( bw , where the 

normal vector nw ℜ∈ and the bias ℜ∈b , via   
 

       bbwxf += ),()(        (2) 
  

where a point x is classified as positive if 0)( >xf . 
Geometrically, the decision boundary is the hyperplane 
     

}0),(:{ =+ℜ∈ bxwx n       (3) 
 
The idea makes it possible to efficiently deal with vary high 
dimensional futures spaces is the use of kernels: 
 

 )()(),( zxzxK φφ ⋅=   for all Xzx ∈,    (4) 

 
whereφ is the mapping from X to an inner product feature 
space. We thus get the following optimization problem: 
 

    ∑ ∑
= =

−
m

i

m

ji
jijijii xxKyy

1 1,

),(
2
1max λλλ

λ
   (5) 

 
subject to the constraints 

     0≥iλ   ∑
=

=
m

i
ii y

1
0λ         (6) 

 

III. MATERIAL AND IMPLEMENTATION 
In this section, we describe the implementation and the 

materials used to test the algorithm on its ability to predict the 
protein-protein interaction. 

 

A. Data Used 
This step starts by generating a dataset of interacting and 

non interacting protein pairs. For the interacting pair, it is 
simply obtained from the Database of Interacting Protein 
(DIP). 

We obtained the protein interaction data from the Database 
of Interacting Proteins (DIP). The DIP database provides sets 

of manually created protein-protein interactions in 
Saccharomyces cerevisiae. The current version contains 4749 
proteins involved in 15675 interactions for which there is 
domain information. DIP also provides a high quality core set 
of 2609 yeast proteins that are involved in 6355 interactions 
which have been determined by at least one small-scale 
experiment or at least two independent experiments and 
predicted as positive by a scoring system [23]. Table I shows 
detailed description of the datasets that are comprised by DIP. 

 
TABLE I 

THE PROTEIN INTERACTIONS OF YEAST S. CEREVISIAE IDENTIFIED BY WET-LAB 
EXPERIMENTS 

Number of 
Proteins 

Number of 
Interactions 

Number of 
Experiments 

Number of 
Interactions 

4749 15675 1 13653 
  2 1278 
  3 407 
  4 167 
  5 84 
  6+ 13653 

 

B. Data Processing 
We started processing the data by generating the substrings 

dataset. The number of substrings generated depends on the 
width of the window k . In our case we used different values 
of k  such as 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. 
Following the preparations of the amino acids substrings 
datasets, we start extracting the feature vectors by scoring 
each substring against the core set of the yeast proteins. This 
process transforms all the 2609 protein sequence into fix 
dimension of features using pairwise algorithm.  This feature 
extraction step uses Smith-Waterman [14] as implemented in 
FASTA [24]. In order to be consistent with the SVM-pairwise 
method [19], the substitution matrix is always the BLOSUM 
62 matrix and the gap parameters are always set to 11 and 1. 
Following the feature extraction step, we concatenate the 
feature vectors of proteins based on whether the pair is 
interacting or not. If the concatenating proteins are interacting 
we place them in a positive set, otherwise, they are placed in a 
negative set. When the positive and negative sets are prepared, 
we employ SVM to discriminate between the interacting and 
non-interacting proteins. In our implementation, we used 
Libsvm software implemented by Chang et al. [25]. In all the 
experiments, the soft-margin parameter was set to 10 and 
employed the Gaussian Radial Basis Function kernel (RBF 
kernel). The Gaussian Radial Basis function is used as it 
allows pockets of data to be classified which is more powerful 
way than just using a linear dot product. The function has the 

form
2||||),( zxezxK −−= γ , where Xzx ∈,  and 0>γ . In this 

case, the scaling parameter γ  was set to 0.001. Ten-fold 
cross-validation was used to measure the training accuracy. 
The entire set of training pairs was split into 10 folds so that 
each fold contained approximately equal number of positive 
and negative pairs. 
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The algorithm is developed using Perl. To make a positive 
interaction set, we represent an interaction pair by 
concatenating feature vectors of each proteins pair that are 
listed in the DIP-CORE as interacting proteins. All proteins in 
DIP-CORE were included which yielded 3002 protein pairs. 
Constructing a negative interaction set is not an easy task. 
This is due to the fact that there are no experimental data in 
which protein pairs have confirmed to be non-interacting pairs 
[16]. As a result, we used a random approach to construct the 
negative data set since no other valid option is available in the 
literature. The negative interaction set was constructed by 
generating random protein pairs. Then, all protein pairs that 
exist in DIP were eliminated. This random approach can 
generate as many as 20202318 potentially negative 
candidates. Hence, the number of positive protein pairs is 
quite small compared to that of potentially negative pairs. The 
excessive potentially negative examples in the training set 
may lead to yield many false negatives because many of the 
positive examples are ambiguously discriminative from the 
negative examples in the feature space. For this reason, a 
negative interaction set was constructed containing the same 
number of protein pairs as for the positive interaction set.   

IV. RESULTS 
The performance of system is measured by how well a 

system can recognize interacting protein pairs. In order to 
analyze the evaluation measures in protein-protein interaction 
prediction, we first explain the contingency table (Table II). 
The entries of the four cells of the contingency table and a 
number n are described as follows: 

 
tp =  number of interacting sequences classified interacting 
fn  =  number of non-interacting sequences classified 
interacting 
fp =  number of interacting sequences classified non- 
interacting 
tn =  number of non- interacting sequences classified non- 
interacting 
n =  tp + fn + fp + tn (Total number of sequences). 
 

TABLE II 
THE CONTINGENCY TABLE 

 Related Sequence Unrelated Sequence 
Classified Related True positives (tp) False negatives (fn) 
Classified Unrelated False positives (fp) True negatives (tn) 
 
The information encoded in the contingency table is used to 

calculate the protein-protein interaction evaluation measures. 
The performance of the algorithm is measured using two 
evaluation measures:  

- Cross-validation accuracy = 
n

tntp + , In this paradigm, 

the data are split into ten equal sized parts and 
calculates cross-validation accuracy. 

- We further more calculated the receiver operating 
characteristic (ROC) [26]. The ROC statistic is the 

integral of the ROC curve, which plots the True 
Positive Proportion, 

)( fntp
tptpp
+

= , versus the False 

Positive Proportion, 
)( fptp

tpfpp
+

= .  

-  
 Based on the above mentioned performance measures, our 
algorithm was able to achieve cross-validation accuracy of 
0.8457 and ROC score reaches 0.8892. This was the best 
performance based on a substring length of 30 amino acids. 
Different lengths are investigated to optimize the algorithm 
performance. Figs 2 (a), 2(b) and 3 show the comparison of 
different substring lengths and their performance based on 10-
fold cross validation and ROC. All the three figures show that, 
the length 30 is the perfect window size. We can also notice 
that as the window grow wider or smaller the performance 
decrease accordingly. 
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Fig. 2 comparing different window size values ( k ) based on the 
ROC scores 
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Fig. 3 comparing different window size values ( k ) based on 10-Fold 

cross validation accuracy. 
 

A. Comparing SubSS method with other existing works 
Comparing protein-protein interaction prediction systems 

with the other existing systems is always a difficult task. The 
reason is that, most of the authors used different type of data, 
experimental setup, and evaluation measures. In this section 
we will try to describe some of the good results achieved so 
far and compare them to our results. We will presents some of 
results achieved with an experimental work similar to ours in 
terms of the data used and experimental setup.   

Kim et al developed a statistical scoring system to measure 
the intractability between protein domains which could be 
used to predict protein-protein interaction. The prediction 
system gives about 50% sensitivity and more than 98% 
specificity. 

Ng et al. developed an integrative approach to 
computationally derive putative domain interactions from 
multiple data sources. He reported true positive value of 
58.97% and false positive value of 12.51%., which 
approximately yields sensitivity of 58.97%, specificity of 
82.5% and accuracy of 73.23%. 

Gomez et al. constructed an attraction-repulsion model 
associated with Pfam domains. The best result achieved in this 
study was a ROC score of 0.818. 

It’s clear that our algorithm is outperformed most of the 
existing methods with cross-validation accuracy of 84.57% 
and ROC score reaches 0.8892. 

V. CONCLUSION AND DISCUSSION 
Protein-protein interactions are operative at almost every 

level of cell function, in the structure of sub-cellular 
organelles, the transport machinery across the various 
biological membranes, packaging of chromatin, the network 
of sub-membrane filaments, muscle contraction, and signal 
transduction, regulation of gene expression, to name a few.  
The idea of this work is to predict protein-protein interaction 
through sequence similarity. Two protein sequences may 

interact by the mean of the similarities of the substrings they 
contain. The proposed algorithm termed SubSS, can 
effectively predict protein-protein interaction. The algorithm 
is able to outperform the currently available generic 
biochemical assays used for large-scale detection of protein-
protein interactions. SubSS algorithm achieved cross-
validation accuracy of 84.57% and ROC score reaches 0.8892. 
The accuracy of our algorithm comes from the combination of 
SVM algorithm and the Smith-Waterman score which have 
been developed to quantify the similarity of biological 
sequences. The SVM algorithm is based on a sound 
mathematical framework and has been shown to perform very 
well on many real-world applications [15]. The experimental 
work shows that, pairwise sequence comparison can be 
extremely powerful when used in conjunction with SVM. 

One significant characteristic of any protein-protein 
interaction prediction algorithm is whether the method is 
computationally efficient or not. In order to gauge the 
computational cost of the proposed approach, SubSS method 
has an important cost in terms of computation time. SubSS 
method includes an SVM optimization, which is roughly 
O(n2), where n is the number of training set examples. The 
feature sensitivity measure step of SubSS method involves 
computing n2 pairwise scores. Using Smith-Waterman, itself 
is computed by dynamic programming and each computation 
is O(m2), where m is the length of the longest training set 
sequence, yielding a total running time of O(n2m2). However, 
it can be worth the cost when one is interested in precision 
more than in speed.  

Finally, the success of applying the SubSS method on 
predicting protein-protein interaction encouraged us to plan 
future directions such as optimizing the substring width and 
finding suitable threshold score.  
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