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a  b  s  t  r  a  c  t

Mathematical  modelling  is fundamental  to  understand  the  dynamic  behavior  and  regulation  of  the  bio-
chemical  metabolisms  and  pathways  that  are  found  in  biological  systems.  Pathways  are  used  to describe
complex  processes  that  involve  many  parameters.  It  is  important  to have  an  accurate  and  complete  set
of  parameters  that  describe  the  characteristics  of  a given  model.  However,  measuring  these  parameters
is  typically  difficult  and  even  impossible  in some  cases.  Furthermore,  the  experimental  data  are  often
incomplete  and  also  suffer  from  experimental  noise.  These  shortcomings  make  it  challenging  to  identify
the  best-fit  parameters  that can  represent  the  actual  biological  processes  involved  in biological  systems.
Computational  approaches  are  required  to  estimate  these  parameters.  The  estimation  is converted  into
multimodal  optimization  problems  that  require  a global  optimization  algorithm  that  can  avoid  local  solu-
tions. These  local  solutions  can  lead  to a bad  fit  when  calibrating  with  a model.  Although  the  model  itself
can  potentially  match  a  set  of  experimental  data,  a high-performance  estimation  algorithm  is  required
to  improve  the  quality  of the  solutions.

This paper  describes  an improved  hybrid  of  particle  swarm  optimization  and the gravitational  search
algorithm  (IPSOGSA)  to improve  the efficiency  of a global  optimum  (the best  set  of kinetic  parameter
values)  search.  The  findings  suggest  that  the  proposed  algorithm  is  capable  of narrowing  down  the  search
space  by  exploiting  the  feasible  solution  areas.  Hence,  the proposed  algorithm  is  able  to achieve  a near-
optimal  set  of parameters  at  a fast convergence  speed.  The  proposed  algorithm  was  tested  and  evaluated

based  on  two  aspartate  pathways  that  were  obtained  from  the  BioModels  Database.  The  results  show
that  the  proposed  algorithm  outperformed  other  standard  optimization  algorithms  in  terms  of  accuracy
and  near-optimal  kinetic  parameter  estimation.  Nevertheless,  the proposed  algorithm  is  only  expected
to  work  well  in small  scale  systems.  In  addition,  the  results  of this  study  can  be used  to  estimate  kinetic
parameter  values  in  the  stage  of  model  selection  for different  experimental  conditions.

© 2017  Elsevier  B.V.  All  rights  reserved.
∗ Corresponding author.
E-mail address: saberi@umk.edu.my (M.S. Mohamad).

ttp://dx.doi.org/10.1016/j.biosystems.2017.09.013
303-2647/© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Explaining the complex network biological processes that are

characterized by dynamic behavior is one of the main issues
in systems biology (Lillacci and Khammash, 2010; Raue et al.,
2015). Pathways are used to describe the relationship between

dx.doi.org/10.1016/j.biosystems.2017.09.013
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2017.09.013&domain=pdf
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arameters as a means of understanding the complex processes
hat are involved in biological systems, and mathematical mod-
ls are commonly used to describe dynamic biological processes.
athematical models can generate and predict the outcomes of

he experimental hypotheses that can be employed to analyze
he processes. The application of these models has enabled the
onstruction of metabolic pathways. This phenomenon opens up
pportunities for the optimization of metabolite productions in
etabolic pathways (Ismail et al., 2015). Normally, these models

re based on time-derivative expressions, especially ordinary dif-
erential equations (ODE), that describe a change in a state or a
uantity of interest over time.

Generally, these models consist of a set of parameters that
escribe the physical properties of a dynamic system like the rate
f reactions. Measuring these parameters is usually difficult and
ven impossible in some cases (Fernández Slezak et al., 2010). The
arameters are often predicted based on fitting the estimated data
f the model output with experimental time-series data. The goal
f this fitting process is to minimize the errors between these
wo sets of data by adjusting the parameter values of the model
Rodriguez-Fernandez et al., 2006a). However, these experimen-
al data are often incomplete and suffer from experimental noise
Villaverde et al., 2015). This drawback makes it challenging to find
he best-fit parameters that adequately represent the actual biolog-
cal processes involved. It is crucial that the best parameter values
or the biochemical models are estimated and obtained by refining
he model parameter values (Schilling et al., 2016). These param-
ter values are usually identified and measured through costly
nd time-consuming wet-lab experiments (Tashkova et al., 2011).
lternatively, these parameters can also be estimated using compu-

ational approaches. Thus, the estimation of the parameters can be
onverted into multimodal optimization problems, and global opti-
ization algorithms are required to avoid local solutions (Banga,

008; Sun et al., 2012). These local solutions can lead to poorly
tting data that the model itself can potentially match accurately
ith a set of experimental data.

Global optimization algorithms employ stochastic searching
trategies to identify a set of possible solutions that are ran-
omly selected based on the given search space. Furthermore, these
lgorithms are widely used to estimate parameters for various bio-
ogical models (Chassagnole et al., 2001; Curien and Bastien, 2009;
alazzo and Bailey, 1990; Sun, 2012). Particle swarm optimization

PSO) (Ng et al., 2013; Shi and Eberhart, 1999), the Bee algorithm
BA) (Leong et al., 2013; Pham et al., 2006), the Firefly Algorithm
FA) (Yang, 2009), differential evolution (DE) (Chong et al., 2014),
catter search (SS)(Rodriguez-Fernandez et al., 2006b), simulated
nnealing (SA) (Villaverde et al., 2012), and others, have already
een used to estimate the parameters involved in various biologi-
al system models. The main advantages of these models are that
hey offer researchers the ability to find the best and easiest ways to
mplement solutions for high-dimensional problems. Despite these
dvantages, these algorithms often suffer from high computational
osts as they try to obtain a global optimum within the large search
pace (Baker et al., 2010; Fong, 2014; Sun, 2012). In addition, the
enerated solutions might not represent the actual near-optimal
olutions.

In multimodal optimization problems, PSO is often stuck in local
ptimal, which is the result of a poor global search. The standard
ravitational search algorithm (GSA) also has some drawbacks; for
xample, it has a poor convergence if the initial population is not
ell generated (Kumar and Sahoo, 2014). Moreover, it often incurs

 large computational cost due to the large searching space. Thus, a

ybrid of particle swarm optimization and the gravitational search
lgorithm (PSOGSA) is proposed, which combines the social think-
ng (gbest) ability of PSO with the exploration capability of GSA. This
ybrid is able to perform well in optimization problems, especially
s 162 (2017) 81–89

in minimization problems (Mirjalili and Hashim, 2010). Neverthe-
less, PSOGSA often incurs a high computational cost when obtaining
the global optimum solutions. Besides, the advantages of employ-
ing PSO capability in the hybrid in terms of its rapid convergence
speed are also weakened (Shanhe and Zhicheng, 2014). Standard
and previous algorithms of parameter estimation that have been
employed to deal with noisy data often suffer from such poor solu-
tions, and there are typically high errors between experimental
and estimated outputs. Hence, a high-performance optimization
algorithm is required to maintain fast convergence frequently and
improve the quality of the solutions.

This paper proposes an improved hybrid of PSOGSA (IPSOGSA).
This improvement has enhanced the search for a global optimum
(the best set of kinetic parameter values) by reducing the searching
space and focusing the search on the high possibility of feasible
solution areas. Hence, there are upsurges in the performance of
the proposed algorithm with the advantage of fast convergence in
obtaining the global optimum and near-optimum solutions.

The paper is structured as followed. First, we present a problem
formulation on the parameter estimation in kinetic model. Then, we
present the description of the proposed algorithm phases accom-
panied with the details on each phase. Next, the experimental setup
is explained and consists of the description of model case studies,
parameter setting and performance evaluation for the estimation
results. We  then present the result and discussion section that dis-
cuss the results and findings from this study. Finally, the paper is
summarized in the conclusion section.

2. Materials and algorithms

The problems that are inherent in biological system estimation
will be briefly formulated and explained in this section before the
IPSOGSA and experimental setups are explained.

2.1. Problem formulated

The aim of the parameter estimation problem is to attain the
near-optimal set of parameters that can minimize the differences
between the estimated model output and the experimental time
series data. Usually, the nonlinear least squares error function is
implemented to minimize differences. Parameter estimation for
biological systems can be expressed as per Eqs. (1)–(3) (Lillacci and
Khammash, 2010). Where s is the compound in the biochemical sys-
tem model s(x), which comprises a set of parameters x = {x1,x2,.xn}
where n is the number of parameters. The reaction rate of com-
pound s can be represented as a series ODE in the following form:

ds

dt
= g (s (u,  x) , t) , (1)

s (t0) = s(0) ,  (2)

y = h (s (u, x) , t) + e, (3)

where g and h are the nonlinear functions, t is the sampling time,
and e is the generated measurement noise by random Gaussian
noise N(0,1), while y is the rate of reaction and s (x) is the biochem-
ical compounds with set of parameter x. On the other hand, u is the
input signal to the reaction of s process.

2.2. An improved hybrid of particle swarm optimization and the
gravitational search algorithm (IPSOGSA)

In PSOGSA, the standard PSO has been improved through mod-

ifying the process by which acceleration is calculated, before
employing this to update the velocity and population process. As
with PSO, this hybrid also carries other operations, such as ini-
tialization, update velocity, and position. This hybrid adopts the
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Fig. 1. The flowchart and pseudocode of IPSOG

rocess of acceleration in GSA by using gravitational theory to
pdate its velocity.

In IPSOGSA, the onlooker phase in the artificial bee colony (ABC)
lgorithm is applied within the PSOGSA. The onlooker phase of ABC
s a local search that utilizes high-possibility solutions to find the
ew neighboring best solutions (Karaboga and Akay, 2009). Thus,

PSOGSA is proposed as a means of searching for any solution in
igh-probability areas. Fig. 1 presents the detail of an improved
ersion of the IPSOGSA.

.2.1. Initialization Phase
In the first step of the initialization phase, the initial position of

he population on the problem boundary is randomly generated,
s shown in Eq. (4). Each individual position (x) is a representa-
ion of the candidate set of kinetic parameter values of the target

etabolites. The initialization of the population is illustrated in
ig. 2.
osition = R and (n, m) × (up − low) + low (4)

here the position is the position of individuals in a population,
and represents the n x m matrix with normally distributed random
ote: Dotted line describes the improved part).

values between 0 and 1. The representations of n and m are the
number of individuals and the number of kinetic parameters to
be estimated respectively. Whereas up and low are the upper and
lower boundaries of each search space respectively.

2.2.2. Evaluation phase
In the evaluation phase, each individual in a population is

assessed based on their fitness. The fitness cost is the sum of squares
error between the experimental and simulated data. Thus, the least
squares error is used, as per Eq. (5). Fig. 3 shows the details of the
evaluation process.

f (x) = min

n∑
i

(
yexp
i

− yi
)2

(5)
where n is the total number of samples (maximum generation
value) and i is the index variable. Whereas yexp is experimental
time series data and y is estimated time series data.
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Fig. 2. Initialization of random population.
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Fig. 3. Evaluatio

.2.3. Probability Phase (Improved part)
In this phase, each probability value of the individual is based on

heir fitness. The probability values indicate the chance of the indi-
idual solutions within the feasible solution areas. The probability
alculation of the individuals relies on Eq. (6). The individuals with

 higher probability will have a higher chance of being selected.
he selection criterion is based on a random number between 0
nd 1 for each iteration. As the proposed algorithm is a stochastic
ethod, the position of global solution (optimal) is unknown for

ach iteration. Hence, the random condition is used instead of prior
efined condition as the selection criterion. Once an individual is
elected, a new individual will be generated within the selected
eighborhood using Eq. (7). If the fitness of the newly generated

ndividual is better than the current one, it will replace the current
ne or vice versa. The selection of individual fitness depends on
reedy selection. Then, the global best values are chosen based on
he minimum fitness value that is generated within the population.
he highlighted element of Fig. 1 shows the summarization in this
hase.

i = 0.9 × min (fit)
fiti

+ 0.1 (6)

here pi is the probability for individual i, and fiti is the fitness value
f that particular ith individual. Then, min (fit) is the minimum
tness value (current global near-optimal) in the population.
ij = xij + �ij
(
xij − xkj

)
(7)

here k and i are the indexes of individuals. Whereas j is the index
f solution dimensions and the value of �ij is a random number
ess calculation.

between [-1, 1], which controls the generated neighbor individual.
Then, xij is the selected individual and xkj is the randomly selected
individual. In this equation, vij is the newly generated individual.

2.2.4. Acceleration phase
In this phase, the accelerations are calculated as per the calcula-

tion employed in standard GSA (Rashedi et al., 2009) and PSOGSA
(Mirjalili and Hashim, 2010). The acceleration calculation is based
on the law of motion, where the acceleration of an individual is
proportional to the resultant force and is inverse to the mass. The
resultant force and the mass of the individual are calculated as
shown in Eqs. (8) and (13) respectively.

Fi =
n∑

j=1,j /= i

randjFij (8)

where Fi is the total of Fij (resultant force) that acts on the individual
i from individual j and n is the total number of individuals. The
resultant force is calculated as shown in Eqs. (9) and (10).

G = G0exp
(

−  ̨ × iter

maxiter

)
, (9)

Fij = G
MpiMai
Rij + ε

(
xj − xi

)
(10)
where Mp and Ma are the passive and active gravitational mass
related to individual i, G is the gravitational constant and R is the
Euclidian distance between individuals i and j. Then, x is the position
of an individual. Whereas G0 and � are respectively the initial value
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f gravitational constant and a constant, iter is the current iteration
nd maxiter is the maximum number of iterations.

For each individual, the mass is calculated using Eqs. (11)–(13).

ai = Mpi = Mii = Mi, (11)

i =
fiti − worst

best − worst
,  (12)

i =
mi∑n
i=1mi

(13)

here Ma is the active gravitational mass, Mp is the passive gravita-
ional mass, Mi is the inertia mass, and M is the mass of ith individual.

hereas fit is the fitness value of ith individual, worst is the cur-
ent worst fitness and best is the current best fitness in the current
teration.

Then, each individual acceleration is calculated using Eq. (14).

ci =
Fi
Mi

(14)

here ac,  F, and M are the acceleration, force, and mass of the
ndividuals, respectively. Whereas i is the index of the individuals

.2.5. Update position phase
In this phase, the individual positions based on the velocity of

he individuals are updated using Eq. (15). Then, the position of the
ndividuals is updated, as shown in Eq. (16). The updating process
s repeated until the criteria are met.

i(t + 1) = Vi(t) + c1 xrandxaci(t) + c2 xrandx(gbest−xi(t)) (15)

here Vi(t) is the velocity of individual i at iteration t, w is a weight-
ng function, rand is a random number between 0 and 1, aci(t) is the
cceleration of individual i at iteration t, and gbest is the best solu-
ion so far. The symbols c1 and c2 are weighting factors. The values
f i and t are the index of individuals and iterations respectively,
hereas xi(t) is the position of individual i at iteration t.

i(t + 1) = xi(t)+Vi(t + 1) (16)

here xi(t) represents the position of an individual i at iteration t,
nd Vi(t + 1) represents the velocity of the individuals that were
erived from Eq. (15).

.3. Model and experimental setup

We  applied our estimation algorithm on two aspartate biochem-
cal pathways (Christophe Chassagnole et al., 2002; Curien and
astien, 2009). This section explains both the estimation and the
imulation setups.

In this study, Copasi (Schaber, 2012) and SBtoolbox (Schmidt,
007) for MATLAB were used as the main software. The aspar-
ate biochemical pathways were retrieved from an online database
nown as the BioModel. The proposed algorithm for parameter
stimation in biological models was evaluated using the aspartate
iosynthesis pathway of the A.thaliana model (Curien and Bastien,
009) and threonine biosynthesis pathway of the E. coli model
Christophe Chassagnole et al., 2002). The target metabolites, the
soleucine (Ile) and homoserine phosphate (HSP) metabolite, were
ocused on these pathways. Copasi software was used to analyze
he pathways and the kinetic parameter involved in target metabo-
ites. Then, the proposed algorithm was implemented in SBtoolbox
s an optimization algorithm in estimating the kinetic parameter
alues that previously derived. Next, the near-optimal set of kinetic

arameter values was estimated for both metabolites. These kinetic
arameter values were substituted into the ODE of the metabolites.

The ODE is important as these equations are solved to gen-
rate the time series data. Then, evaluating and comparing the
s 162 (2017) 81–89 85

performances with the output of time series data among estima-
tion algorithms facilitated the identification of the near-optimal set
of parameter values. The estimation results of the kinetic parame-
ter values were based on 30 runs and 100 iterations per run for
each of the algorithms to obtain the best set of kinetic param-
eter values. The values for the control parameters in algorithms
used were np = 10 x D (Chong et al., 2014; Ng et al., 2013), G0 = 1,
� = 23 (Mirjalili and Hashim, 2010; Rashedi et al., 2009), c1 = 0.5,
and c2 = 1.5 (Mirjalili and Hashim, 2010). Additionally, np was the
number of populations, and D was  the dimension of the problems
that described the number of kinetic parameters to be estimated.
G0 and � were descending coefficients used in acceleration cal-
culations. The values c1 and c2 were the weighting factors used in
update velocity for IPSGOSA, PSOGSA, and PSO. For the initial guess,
the assigned values were based on existing literature data (Chong
et al., 2014; Ng et al., 2013).

In the aspartate metabolism of A.thaliana pathway model
(Curien and Bastien, 2009), the target metabolite focused is
Isoleucine (Ile). Ile is involved in three reactions. First, it acts
as a reactant in Ile aminoacyl-tRNA synthetase enzyme reaction
(vileTRNA); second, Ile acts as a modifier in threonine deaminase;
and the third reaction is the product of the threonine deaminase
enzyme reaction (vtd). On top of that, there is also a parameter
involved in the reaction of vileTRNA, namely V Ile RS,  with a value of
0.43. In this model, the value of V Ile RS is based on V Aa RS (global
parameter) that is involved in the aminoacyl-tRNA synthetase reac-
tion for Isoleucine, Lysine, and Threonine in the model (Curien and
Bastien, 2009). Eqs. (17)–(19) show the ODE, which describe the
changes in the concentration of isoleucine over time in the model.

d[Ile]
dt

= vtd − vileTRNA (17)

where

vtd = c1 × TD × Thr

× TD k app exp

1 +
(

Ile

TD Ile Ki no Val app exp+ Vtd  TD  Val  Ka1  app  exp  ×Val
Vtd  TD  Val  Ka2  app  exp  ×Val

)TD k app exp

(18)

vileTRNA = c1 × V Ile RS × Ile

Ile tRNA Ile Km + Ile
(19)

c1=1
Ile = Concentration of isoleucine
V Ile RS = 0.43 (global parameter)
TD = Concentration of threonine deaminase
Thr = Concentration of threonine
Val Concentration of valine
For the aspartate metabolism of E. coli pathways model

(Chassagnole et al., 2001), the target metabolite focused on HSP.
There two  reactions are derived from the involvement of the HSP
metabolite. Both operate as a reactant in threonine synthase (vtsy),
and a product in homoserine kinase enzyme reaction (vhk). Eqs.
(20)–(22) highlight how the ODE describes the changes in the con-
centration of HSP over time in the model. Table 1 shows the list of
kinetic parameters to be estimated for Isoleucine and HSP metabo-
lites.

d[HSP]
dt

= vtsy − vhk (20)
where

vtsy = compartment × vm5 × hsp

hsp + k5hsp
(21)
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Table 1
Kinetic parameters to be estimated.

Metabolite Isoleucine HSP

List of kinetic parameter involved Vtd TD k app exp Vtsy vm5
Vtd TD Ile Ki no Val app exp Vtsy k5hsp
Vtd TD Val Ka1 app exp Vhk vm4f
Vtd TD Val Ka2 app exp Vhk lys
Vtd TD nH app exp Vhk k4lys
VileTRNA Ile tRNAS Ile Km Vhk k4atp

Vhk k4ihs

c
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Vhk k4hs
Vhk k4thr
Vhk k4iatp

vhk =
vm4f × hs × atp

(1 + lys
k4lys ) × (atp + k4atp × (1 + hs

k4ihs )) × (hs + k4hs × (1 + thr
k4thr ) × (1 + atp

k4iatp ))

(22)

ompartment = 1
hsp = Concentration of homoserine phosphate
lys = Concentration of lysine
atp = Concentration of ATP
hs = Concentration of homoserine
thr = Concentration of threonine
Once the set of kinetic parameter values are estimated, the time

eries data is generated based on the solving ODE equation for each
etabolite. These generated data are used as the performance of

he estimated result for each algorithm. The performance of each
stimation result is evaluated using sample standard deviation and
oot mean squared error (RMSE). The estimation results are based
n the fitted model with the experimental data, where the STD and
MSE values are calculated according to Eqs. (23)–(26).

Error rate, e =
n∑
i=1

(
yexp
i

− yi
)2

(23)

Mean = A =
∑n

i=1e

n
(24)

TD =
∑n

i=1

(
(yexp
i

− yi)
2 − A

)2

n − 1
(25)

MSE =

√√√√1
n

n∑
i=1

(
yexp
i

− yi
)2

(26)

here n is the number of rows of experimental time series data
alues, i is the index variable, and yexp

i
and yi are experimental and

stimated time series data respectively.
In addition, the evaluation is also done by comparing the pre-
ictive ability of each estimation result. In assessing the predictive
bility of the estimated model results, Prediction Sum of Squares
PRESS) evaluation is used to cross-validate each of the model
stimated (Bartoli, 2009; Tarpey, 2000 Tarpey, 2000). PRESS is a

able 2
inetic parameters estimated for isoleucine.

Algorithm/Kinetic Parameter IPSOGSA PSO

Vtd TD k app exp 0.017135 0.0
Vtd  TD Ile Ki no Val app exp 18.744 19.
Vtd  TD Val Ka1 app exp 55.662 85.
Vtd  TD Val Ka2 app exp 595.02 626
Vtd  TD nH app exp 0.96763 10.
VileTRNA Ile tRNAS Ile Km 11.099 17.
s 162 (2017) 81–89

measurement based on the leave one out technique (Allen, 1974).
The PRESS value is calculated based on Eq. (27).

PRESS =
n∑
i=1

(
yi − ŷi
1 − hii

)2

(27)

where n is the number of rows of time series values, i is the index
variable, and yi and ŷi are observation and estimated time series
(model) data for point i respectively. Whereas hii is the diagonal
element of the hat matrix.

3. Results and discussion

Once the estimated kinetic parameter values were collected, as
shown in Tables 2 and 4, they were substituted into the ODE in
the pathway models as explained in the previous section. Subse-
quently, the model outputs that can be generated will be further
evaluated for the performance of each estimation result, as shown
in Tables 3 and 5.

Tables 2 and 4 show the kinetic parameters for both Ile and HSP
metabolites, which were estimated by IPSOGSA, PSOGSA, PSO, and
GSA. The estimated kinetic parameters that were determined by
PSO for Ile were obtained from prior parameter estimation stud-
ies that employed the same model (Ng et al., 2013). Whereas, the
estimated kinetic parameters for HSP by Improved Bee Memory
Differential Evolution (IBMDE) were also obtained from prior stud-
ies that implemented the same model (Chong et al., 2013). The
performance evaluation that used STD, RMSE, and PRESS for each
algorithm is shown in Table 3, and the results revealed that IPSOGSA
outperformed the other algorithms, obtaining the lowest STD value
of 0.072117863. Thus, this result indicates the extent by which the
IPSOGSA performs consistently compared to the other algorithms
for Ile. For the RMSE results, IPSOGSA again managed to obtain a
good result compared to the other algorithms by scoring the lowest
RMSE, 12.2125, followed by PSOGSA, PSO, and GSA, which scored
15.5251, 16.6551, and 67.48635144 respectively. Hence, this result
highlights the closeness of the error between the generated values
with the noisy experimental values (model fitting), with IPSOGSA
obtaining the lowest value of RMSE for the Ile metabolite. Fur-
thermore, the cross validation on the predictive ability for Ile also
shows that IPSOGSA is able to obtain a good score of 2.0375E+03 for
PRESS value, with IPSOGSA score being the best PRESS value among
algorithms in this study.

The results presented in Table 5 show that IBMDE is the score of
the smallest STD by scoring 2.37871E-05 compared to other algo-
rithms for HSP. In contrast, IPSOGSA manages to obtain a good
RMSE score by obtaining the lowest value of 0.030397571 followed
by PSOGSA, GSA, PSO, and IBMDE with the scores of 0.031181553,
0.032663132, 0.0350988, and 0.053665631 respectively. Hence,
this provides the measurement of the error of the model fitting

between estimated time series data with the experimental data.
For the predictive ability of the estimated results, PRESS score for
IBMDE is the best score with 0.0121 and IPSOGSA only score 0.0294
for HSP estimated results.

GSA PSO (Ng et al., 2013) GSA

15099 0.0123 0.016484
277 75.5376 269.83
764 460.8398 432.67
.28 352.7619 666.19

783 11.0296 10.913
271 19.998 16.764
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Table  3
Performance of estimation for isoleucine.

Note: Shaded cells represent the best result.

Table 4
Kinetic parameter estimated for HSP.

Algorithm/Kinetic Parameter IPSOGSA PSOGSA PSO GSA IBMDE (Chong et al., 2013)

vtsy vm5  0.0125 0.0206 0.0639 0.0121 0.181
vtsy  k5hsp 0.031 0.1601 0.8931 0.031 2.183
vhk vm4f 0.3826 0.1402 0.2945 1 62.174
vhk lys 2.5988 3.6474 4.6 4.2613 1.750
vhk  k4lys 17.4012 19.2087 56.5455 45.0903 109.980
vhk  k4atp 0.2239 0.3403 0.0118 0.238 0.110
vhk k4ihs 28.6036 27.9923 14.3461 2.5428 2.327
vhk  k4hs 0.011 0.094 0.91 0.5468 51.068
vhk  k4thr 6.3562 0.9907 2.0398 10.8505 4.164
vhk  k4iatp 12.2367 15.5189 41.0991 30.4361 248.351

Table 5
Performance of estimation for HSP.

Note: Shaded cells represent the best result.
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Fig. 4 shows the convergence graph for both metabolites that
ere plotted based on the fitness values generated by the IPSOGSA,

SOGSA, GSA, and PSO estimation algorithms. For both Ile and
SP metabolites, the results show that the convergence speed of

PSOGSA is faster, and estimated a better solution than other algo-
ithms, especially for PSO and GSA for both pathway cases. The
onvergence graph for HSP estimation shows that PSO and GSA
re unable to improve their solution after some time, particularly
round sixty iterations. Regardless, IPSOGSA and PSOGSA still can
mprove the solution in the same iteration. These demonstrate the
actor that both PSO and GSA are stuck at one of the local optimal in

nding the global solution. Moreover, this result is also mainly due

o the fact that the IPSOGSA and standard PSOGSA can avoid the
ocal optimal problem (Mirjalili and Hashim, 2010). The ability to
void local optimal especially IPSOGSA is assisted by the probabil-
vergence graph for the Ile metabolite whereas the right panel shows a convergence

ity phase, where the chances of obtaining the improved solution
are increased. In addition, the result also shows that IPSOGSA
managed to identify the better solution than PSOGSA in less time
(iterations). This is because IPSOGSA has the ability to exploit the
high-possibility individuals. Fig. 5 shows the time-series concen-
tration graph based on the kinetic parameters that were obtained
by estimating the results of IPSOGSA. It also shows the dispersion of
the simulated time-series concentration on the experimental data.
Broadly speaking, the results for both the Ile and HSP metabolite
show that IPSOGSA was able to obtain a good result for model fitting
especially in terms of the RMSE score. This indicates that IPSOGSA

can generate more stable results in the model fitting process than
PSOGSA, GSA, and PSO. Although the cross-validation on the pre-
dictive ability of the estimated model by IPSOGSA is only good in
the Ile metabolite, the overall performance of IPSOGSA outperforms
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ther algorithms in both case studies, especially in the fitted model
ith experimental data.

Based on the previous discussion, this study shows that IPSOGSA
s able to obtain a near-optimal set of kinetic parameter values for
oth metabolites. The result also indicates that the estimated model

s consistent with the noisy data. Meanwhile, the other three algo-
ithms failed to achieve the required consistency, especially PSO
nd GSA, both of which failed to avoid the local optimal prob-
em and this led to a poor performance in terms of the STD and
MSE scores. Furthermore, the convergence graph results proved
hat IPSOGSA has the ability to find the feasible solution areas and,
herefore, can accelerate the process of finding near-optimal solu-
ions. This feature proved that IPSOGSA is more promising than
ther standard algorithms.

. Conclusion

IPSOGSA was employed successfully in this study to reduce the
pace to obtain near-optimal solutions. This algorithm is driven by
ts ability to exploit the high-probability feasible solution areas,

hich can subsequently be employed to obtain the best result.
n terms of model fitting accuracy, the estimated results of the
PSOGSA were more closely matched with the noisy data than the
SOGSA, GSA, and PSO algorithms. In addition, the IPSOGSA demon-
trated the ability to avoid bad solutions or local optima, and this
lso contributed to the strong performance of the estimated results.

n addition, the analysis of the results shows that IPSOGSA was able
o perform well in comparison to the other algorithms, although it
as hampered by noise and incomplete experimental data. More-

ver, the results of the IPSOGSA indicated that the small RMSE and
ated Ile metabolite concentration while the lower panel shows the estimated HSP

PRESS value can represent a good estimated result. In contrast,
for RMSE, the results estimated by IPSOGSA were more reliable
and accurate than those obtained through the application of the
other standard algorithms. In the large scale and complex mod-
els, the parameter estimation process is computationally expensive
and is indeed time-consuming. Thus, the proposed method will
not be applicable to more complex models due to time limita-
tion. Henceforth, IPSOGSA still needs to be tested in a larger kinetic
model that consists of more complex evolution equations. In con-
clusion, IPSOGSA is an estimation algorithm that can be highly
useful in areas of research that deal with noisy data; for example, in
the domains of electronic and electrical engineering. Furthermore,
IPSOGSA can also be implemented in other biochemical pathways
to obtain the near-optimal parameter values that can reduce the
model errors. The majority of the estimation algorithms require the
control parameters to be set. Therefore, a better approach, such as
enabling these control parameters to self-tune as a means of obtain-
ing more accurate and reliable results, is required to overcome this
limitation.
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