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High-throughput AP-MS methods have allowed the identification of many protein complexes. However,
most post-processing methods of this type of data have been focused on detection of protein complexes and
not its subcomplexes. Here, we review the results of some existing methods that may allow subcomplex
detection and propose alternative methods in order to detect subcomplexes from AP-MS data. We assessed
and drew comparisons between the use of overlapping clustering methods, methods based in the
core-attachment model and our own prediction strategy (TRIBAL). The hypothesis behind TRIBAL is that
subcomplex-building information may be concealed in the multiple edges generated by an interaction
repeated in different contexts in raw data. The CACHET method offered the best results when the evaluation
of the predicted subcomplexes was carried out using both the hypergeometric and geometric scores.
TRIBAL offered the best performance when using a strict meet-min score.

T
he discovery of protein complexes through high-throughput co-purification methods has increased the
amount of available data to the extent that 43% of the reported protein complexes in interaction databases
are estimated to be a result of this kind of experiments (see Supplementary Code). Traditionally, it has been

argued that these methods produce high levels of noise1 although this claim has been contested2. Either way,
complex detection from affinity-purification (AP) high-throughput (HT) data is not a straightforward process
and to convert such data to a list of complexes demands the application of a series of post-processing steps that are
still an open field of research3.

Raw data from an AP experiment is essentially a list of bait proteins mapped to all the prey proteins that they
pulled out. Such a list is subject to false positives and false negatives (see Supplementary file, section 1, for a
detailed review) and it is traditionally corrected by scoring the interactions according to different methods that
measure the propensity of two proteins to interact given the background of interactions. Reliable interactions are
integrated into a network which is then clustered to generate protein complexes3,4. These methods became very
relevant as it was noticed that the differences between the conclusions of the first two main comprehensive maps
of the yeast complexome were mainly a result of the pre-processing methods they employed3,5.

The way in which the scoring step is done has adopted a multiplicity of forms. The socio-affinity index (SA)
scored the interaction between proteins i and j by including terms for how often i retrieves j and a term for how
often pairs of proteins are seen together as preys. These were calculated as the log-odds of the number of times the
proteins were observed together relative to what would be expected from their frequency in the data set6. Hart
et al. postulated a scoring system based on the use of a hypergeometric distribution relative to a matrix model of
interactions7. The Purification Enrichment score (PE) pointed out the limitants of the SA method, such as to
include only positive evidence and not the inability of a protein to be identified by another, and as being suitable
mainly for cases where all proteins were both baits and preys. Alternatively, the authors used a naı̈ve Bayes
classifier, which estimates the probability of one hypothesis (interaction is reliable) relative to the probability of a
second hypothesis (interaction is not reliable). The score was the log-ratio of these probabilities, computed using
Bayes’ theorem5. Finally, the Dice score was suggested as a simple alternative that focuses on comparing the co-
purification patterns of two proteins across all different purification experiments; this is, constructing a pull-
down matrix of proteins versus experiments and using a Dice index to compare each pair of protein profiles4.
Additional scoring systems have been proposed in recent years8,9.
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Regarding the clustering step, the options are even wider. The
classical AP HT studies5,6 used methods such as Markov Clustering
(MCL) and variations of Hierarchical Clustering3. However, many
novel clustering methods have been proposed since then. We will
review these methods below.

Finally, after scoring and clustering, the quality of the prediction
strategy is commonly evaluated by comparison of the list of predicted
complexes to a gold standard, that is, a manually curated database of
protein complexes. A good agreement with this gold standard
increases the confidence on the new complex predictions.

Protein subcomplex detection is an interesting special case of the
more general complex prediction problem. A subcomplex can be
defined as a functional (or predicted) complex which is a subset of
a larger functional (or predicted) complex. In other words, the pro-
tein subunits of the subcomplex must be a subset of the protein
subunits of the larger complex. Subcomplexes have been approached
in different ways in the literature. One line of work depict them as
clusters lying inside bigger network clusters, this is, the most con-
nected region inside a bigger connected region, which is found using
clustering strategies tailored for that purpose10. Other authors pay
attention to the ‘‘cores’’ that repeat in several complexes and the
‘‘attachments’’ that make them different to each other6. Here the core
of a core-attachment structure could be considered as a subcomplex.
A similar approach focuses on studying multi-cluster and mono-
cluster proteins after applying overlapping clustering algorithms to
protein interaction networks11. Together with all these approaches,
the ‘‘subcomplex’’ term can also be used to strictly define a biologic-
ally-relevant subcomplex, i.e., the subcomplexes that have been
experimentally found to be functional and independent from the
complex that contain them. Examples of subcomplexes are the
TFIIK complex (related to the TFIIH complex), ADA-GCN5 com-
plex (with SAGA complex), pre-replication complex (with replica-
tion complex) and ribonuclease MRP (with ribonuclease P). We will
reserve the name ‘‘subcomplex’’ for these biologically meaningful
macromolecular structures, while we will refer to ‘‘subcomplex pre-
dictions’’ to denote specific subcomplex representations.

The problem of subcomplex detection from an AP experiment is
interesting due to the fact that we can find a high number of complex-
subcomplex pairs in protein interaction databases. For example, the
iRefIndex, which is a consolidation of 13 of the most popular protein
interaction databases, contains 8145 cases of complex-subcomplex
pairs12. But, at the same time, some of the algorithms used in the AP
complex prediction pipeline, such as MCL, are non-overlapping
clustering algorithms, making impossible any subcomplex detection.
New methods that face the subcomplex detection problem have
recently appeared but they need to be assessed and compared. The
first line of research would be the incorporation of overlapping clus-
tering algorithms to the complex detection pipeline. The second type
of methods is based on the core-attachment model. Further on, we
will introduce a third type of strategy in this paper and compare it to
the other two.

Regarding the first type of methods employed to detect subcom-
plexes in AP data, there are many available clustering algorithms that
could be applied to the networks resulting from the scoring step.
Most have been proposed following the assumption that complexes
can be reconstructed from highly densely connected regions in the
network13: RNSC and MCL are some important examples14. A review
of twelve of these algorithms15 claim that the best prediction method
is ‘‘Infomap’’, followed by ‘‘Fast modularity’’, and ‘‘Potts model
approach’’. However, it has also been argued that densely connected
regions do not reflect functional units; hence, alternative ways to look
at the complex prediction problem have been proposed13,16,17. In
addition, complex prediction algorithms have also evolved from
algorithms that generate non-intersecting or non-overlapping clus-
ters to algorithms that take into account the fact that protein com-
plexes share subunits with other complexes, i.e., overlapping

community detection algorithms. Some of these methods are
MCODE18, CFinder19, Link-communities10,20, OCG11, Cluster-
ONE21 and RSRGM17.

Regarding the second type of methods that allow subcomplex
detection, an early strategy to take into account the overlapping
nature of complexes and apply it to complex identification from
AP experiments was introduced by Gavin et al.6, who, after applying
the SA score to AP data, performed repeated hierarchical clustering
using different parameters to generate overlapping complexes that
they described as composed of common ‘‘cores’’ and ‘‘attachments’’.
Two recent papers,22 and23, present a review of current clustering
methods applied to protein complex identification. A group of meth-
ods, including CORE24, COACH25 and CACHET26, deserve a special
mention for explicitly incorporating the above-mentioned ‘‘core-
attachment’’ model (other methods include: Markov random fields27

and CODEC28).
In this paper, we will explore the detection of biologically relevant

subcomplexes from AP data through some of the above-mentioned
techniques, and suggest a new strategy which might be able to
improve them. We will evaluate the use of some recent methods that
are able to detect ‘‘nested communities’’ or ‘‘hierarchies’’, in order to
prove whether or not these nested communities can detect biologic-
ally meaningful subcomplexes, while we introduce a new method to
identify subcomplexes from AP data. We start from the premise that
most of the previous procedures remove the multi-edge nature of
pull-down data in an interaction network (i.e., bait-prey co-occur-
rences), which is the network signature of a subcomplex. For
example, some scoring methods reduce all co-appearances of a bait
and a prey protein to one single weighted interaction, whereas some
clustering methods explicitly remove any subcomplex candidates.
An example of this is the Leu4–Leu9 interaction from Gavin’s data-
set6: This interaction does not end up in any complexes when using
the PE score, whilst the SA scores produce three complexes and the
Dice score produces 2 complexes containing Leu4, Leu9 and a few
more subunits. A Leu4–Leu9 complex does not appear in the results
with any scoring method and, in fact, Leu4 and Leu9 are the subunits
of the alpha-isopropylmalate synthase. This demonstrates how a
highly scored copurification, which happens to be a complex, may
get filtered out by the clustering method. Here we introduce TRIBAL
(TRIad-Based ALgorithm), a novel method to identify subcomplexes
from AP data that preserves and exploits this co-occurrence
information.

Results
TRIBAL algorithm. In order to predict subcomplexes, we have
designed a simple strategy that keeps the multi-edge information
after the scoring and clustering steps, assuming that such informa-
tion could include subcomplex information to some yet undeter-
mined extent.

The first step of our algorithm is the generation of a pull-down
matrix in order to compare purification patterns; this is similar to
what is done in Zhang et al., but, instead of recording the purification
or non-purification of a protein per experiment, we recorded the co-
purification of pairs of proteins per experiment. This way, the Dice
score is not used to compare patterns of purification between pro-
teins but patterns of co-purification between pairs of proteins.

Each interaction between a bait and a pair of co-purifying preys
will be scored using a Dice index, and the ones above the cutoff (we
will explain cutoff selection below) will be considered reliable.

Each reliable interaction (formed by three proteins) will be con-
verted to a graph, using a spoke model representation, i.e., the bait
will have an edge to each of the two prey proteins. All of these triads
are integrated into a purification network. Unlike other methods, the
conversion from triads of proteins to a network will generate mul-
tiple (repeated) edges. We have kept the multi-edge nature of this
network, as this was our initial goal.

www.nature.com/scientificreports
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We then take one set of known or predicted complexes as a tem-
plate and we insert the multiple edges inside the complexes. The
proteins with multiple edges inside a complex will be predicted to
be a subcomplex. Figure 1 summarizes these four steps.

In order to select the best cutoff value for the modified Dice score
and the best template for the final step, the performance of the
method was assessed by applying it to different templates and 11
different cutoff values of the modified Dice reliability score, ranging
from 0.0001 to 0.2. This range was selected due to the size of the
resulting PIN: Below 0.001, the size of the PINs does not increase,
whereas, after 0.2, PINs then contain a small amount of edges (less
than 1000). The best setup for TRIBAL (the one that maximizes the
precision and the number of validated subcomplex predictions, while
minimizes the size of the network) is the set of predicted complexes
using Link communities clustering plus PE scoring, with a cutoff
value of the reliability score of 0.05. In this case, TRIBAL predicts
18 subcomplexes with a precision of 100%. Details regarding tem-
plate and cutoff selection can be found in the Supplementary file
(section 3).

Complex and subcomplex predictions. Protein complex predic-
tions using each combination of scoring and overlapping cluster-
ing methods were performed. First, we scored Gavin’s raw data

using four of the most popular scoring systems: The SA score6, the
Hart score7, the PE score5 and the ‘‘Dice’’ score4 (see Methods). We
used the cutoff values defined in the original papers (SA , 4, Hart .
0.01, PE ,5 1.5, Dice ,5 0.15) and we obtained four lists of reliable
edges. The size of these lists varied from 6528 edges for Hart to 18278
for PE, including 14004 for SA and 16447 for Dice.

The edge lists were used to generate four Protein Interaction
Networks (PINs). PIN-Dice contains 2192 nodes and 16447 edges,
PIN-Hart contains 639 nodes and 6528 edges, PIN-PE contains 2344
nodes and 18278 edges, and PIN-SA contains 2005 nodes and 14004
edges.

The four PINs were clustered using two different overlap-detect-
ing clustering methods: ‘‘Link-communities’’10,20 and ‘‘OCG’’11. A
description of the results can be observed in the Supplementary file
(Supplementary Table 1).

For comparison purposes, we also constructed clusters by using
traditional hierarchical clustering. Dice-H (Dice scoring and hier-
archical clustering) produces 2293 communities, Hart-H produces
544 and SA-H produces 608.

Subcomplex predictions using the above-mentioned overlapping
clustering strategies were generated by extracting all predicted com-
plexes which were contained (meet-min 5 1.0) by at least one other
predicted complex. The result was a prediction of 102 subcomplexes

Pull-down matrix of 
baits vs pairs of preys 

Comparison through the Dice 
score of the pull-down vectors 

Selection of reliable records 
(score above cutoff) 

Generation of a list of interactions 
(using a Spoke model) 

Location of predicted interactions inside a 
template of predicted complexes generated by a 

reliable clustering method 

Figure 1 | TRIBAL algorithm.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4262 | DOI: 10.1038/srep04262 3



by using Dice score and Link communities, 35 subcomplexes by PE
score and Link communities, 67 subcomplexes by SA score and Link
communities, 29 subcomplexes by Dice score and OCG, 7 subcom-
plexes by Hart score and OCG, and 34 subcomplexes by PE score and
OCG.

Subcomplexes predictions using the CACHET method were gen-
erated by removing all complexes without attachments and then
selecting the cores of the remaining complexes, as explained in
Methods. The result was 309 subcomplex predictions.

TRIBAL is a subcomplex prediction strategy, so all its predictions
are subcomplexes. TRIBAL was applied to Gavin’s dataset as
explained in Methods, producing 18 subcomplex predictions. It is
important to notice that the edges of the Dice-scored network are a
subset of the edges of the PE-network, and, even more, TRIBAL’s
edges are a subset of the Dice-score (and, therefore, PE) methods.
Therefore, TRIBAL seems to be generating a more strict network,
with edges already validated for other methods, but with the differ-
ence that we keep the multiple edges that the other methods have
removed.

Analysis of predictions. As explained in Methods, protein complex
predictions were compared to a MIPS gold standard. For compari-
son purposes, we added examples using traditional hierarchical

clustering. Table 1 summarizes the percentage of predicted
complexes that can be found in the MIPS reference set (i.e., the
Precision or PPV) and the percentage of MIPS complexes that can
be found at the predicted set (i.e., the Recall or Sensitivity), when
using a p-value smaller than 0.05 (after a hypergeometric test) to
determine a match. Some researchers might be more interested in
a few high precision results (despite having a high number of false
negatives or missing hits), and some others might be interested in a
high recall (many results, despite having a high number of false
positives). However, it is a common practice to find a balance
between false positives and false negatives, or between precision
and recall. There are several computational methods to do that,
and two of the most popular are the F-measure and the area under
the ROC curve. In the following tables, we show the first one. Results
suggest that PE schemes offer the best precision while OCG
outperforms Link communities in terms of recall. Therefore, it is
the PE score plus OCG clustering which offers the best F-measure.

Other studies use different methods to determine what a match is.
For example, Wu et al.26 use a ‘‘geometric index’’ (also called NA-
score) smaller than 0.2. The results under this alternative method can
be found in Table 2. In this case, results partially contradict the
previous analysis, and now Link communities has the best perform-
ance, with the best F-measure belonging to a combination of Dice

Table 1 | Precision and recall analysis for different complex prediction strategies, using the hypergeometric index as match criterion (p-value
, 0.05)

Methods #Predicted matches #All_Predicted_comp Precision #Reference_matches #All_Reference_comp Recall F-measure

Raw-non-
repeated

1280 1849 0.69 196 214 0.92 0.79

Raw-repeated 260 317 0.82 96 214 0.45 0.58
Dice-H 798 2293 0.35 201 214 0.94 0.51
Hart-H 200 544 0.37 198 214 0.92 0.53
PE-H 349 1353 0.26 202 214 0.94 0.40
SA-H 181 608 0.30 187 214 0.87 0.44
Dice-lcomm 559 770 0.73 165 214 0.77 0.75
PE-lcomm 489 553 0.88 126 214 0.59 0.71
SA-lcomm 468 694 0.67 154 214 0.72 0.70
Dice-OCG 323 474 0.68 187 214 0.87 0.76
Hart-OCG 127 194 0.65 65 214 0.30 0.41
PE-OCG 404 467 0.86 182 214 0.85 0.86
SA-OCG 201 249 0.81 173 214 0.81 0.81

Purification Enrichment seems to offer the best precision, as the best results are PE-lcomm (88%) followed by PE-ocomm (86%). Regarding recall, hierarchical clustering methods seem to offer the best results,
as the best values are Dice-H and PE-H (94%). OCG outperforms linkcomm in terms of recall. The PE-OCG combination offers the best F-measure results.

Table 2 | Precision and recall analysis for different complex prediction strategies, using the geometric index as match criterion
(index . 0.2)

Methods #Predicted matches #All_Predicted_comp Precision #Reference_matches #All_Reference_comp Recall F-measure

Raw-non-
repeated

323 1849 0.17 118 214 0.55 0.26

Raw-repeated 47 317 0.15 23 214 0.11 0.12
Dice-H 264 2293 0.11 149 214 0.70 0.20
Hart-H 80 544 0.15 99 214 0.46 0.22
PE-H 153 1353 0.11 148 214 0.69 0.19
SA-H 87 608 0.14 102 214 0.48 0.22
Dice-lcomm 227 770 0.29 89 214 0.42 0.34
PE-lcomm 164 553 0.30 73 214 0.34 0.32
SA-lcomm 185 694 0.27 84 214 0.39 0.32
Dice-OCG 101 474 0.21 67 214 0.31 0.25
Hart-OCG 22 194 0.11 17 214 0.08 0.09
PE-OCG 73 467 0.16 46 214 0.21 0.18
SA-OCG 63 249 0.25 41 214 0.19 0.22

Results with the more strict geometric criterion show that Link communities has a better performance than the alternatives. Thus, the best F-measure belongs to Dice 1 lcomm, while the second and third best
belong to PE 1 lcomm and SA 1 lcomm.
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score and Link communities clustering. We hypothesize that the
reason of this difference might be the fact that the hypergeometric
score is more sensitive to the size of the complexes and OCG is
predicting complexes of a size larger than expected, as it can be
observed in the Supplementary file (section 4).

However, our main interest is not to evaluate the ability to identify
complexes but the ability to identify subcomplexes. We begin by
verifying that all datasets under study contain subcomplexes: The
MIPS dataset (our reference set) includes 16 subcomplexes. Raw data
includes 348 groups of proteins contained in others. None of the sets
produced by hierarchical clustering display subcomplexes, as these
are non-overlapping methods. The predicted sets (Dice-lcomm, PE-
lcomm, SA-lcomm, Dice-OCG, Hart-OCG, PE-OCG, CACHET and
TRIBAL) display between 7 and 309 subcomplexes.

In order to evaluate the subcomplex detection abilities of these
methods, we performed two different analyses. Table 3 summarizes
the precision and recall analysis for predicted subcomplexes when
compared to the full MIPS dataset, using a hyper-geometric score as a
criterion for a match. Table 4 does the same when using the geomet-
ric score. The results show that CACHET has the best F-measure in
both cases. Despite the fact that TRIBAL has the best precision in
both cases, CACHET has a far better recall which ultimately leads to a
better F-measure.

Meet-min index evaluation. The hyper-geometric index, likewise
the Jaccard index, the geometric index and the Dice score, is
designed to measure similarity between two sets. However, we are
not only interested in the similarity; we are also interested in the fact
that one set contains the other. In this case, the meet-min index is the
best validation criterion, as discussed in Figure 3. A meet-min value
of 1.0 indicates that the smaller complex is a subset of the larger, and
(1 – meetmin) gives the proportion of proteins in the subcomplex left
out of the complex.

For this reason, we use the meet-min index to verify that predicted
subcomplexes are not only similar but contained by MIPS complexes.

Figure 2 depicts the number and percentage of validated predicted
subcomplexes for TRIBAL, CACHET and six other methods which
combine different scoring and clustering systems, using the meet-
min index as comparison criterion. The results show that TRIBAL
outperforms all other methods for meet-min equal to 1.0. CACHET
shows a good performance to low meet-min values, but it decreases
strongly when meet-min increases.

Analysis of subcomplexes. In order to understand the reasons of the
inferior performance of the overlapping clustering methods, we
studied the structure and identity of their predicted subcomplexes.

Initially, we identified some real biological complex-subcomplex
pairs among the complexes in MIPS, including:

1. TIM22 complex with TIM9-TIM10 complex
2. TFIIH complex with TFIIK complex
3. SAGA complex with ADA-GCN5 complex
4. Replication complex with: pre-replication complex, replication

initiation complex, post-replication complex, DNA polymerase
deltaIII, DNA polymerase epsilonII, and DNA polymerase zeta.

5. Ribonuclease P with ribonuclease MRP
6. Cytoskeleton with: microtubules and tubulin-associated proteins

However, when reviewing the complexes predicted by link-com-
munities and PE, we found real subcomplexes that the method fails
to predict and false subcomplexes that the method is predicting. For
instance:

1. NUP84-NPC subcomplex: This is a subcomplex of the nuclear
pore complex (NPC). The algorithm does not predict this;
instead, it predicts three other subcomplexes which are trun-
cated versions of NUP84-NPC.

Table 3 | Precision and recall analysis for different subcomplex prediction strategies, using the hypergeometric index as match criterion (p-
value , 0.05)

Methods #Predicted matches #All_Predicted_comp Precision #Reference_matches #All_Reference_comp Recall F-measure

Raw data 139 263 0.53 108 214 0.50 0.52
Dice-lcomm 55 102 0.54 64 214 0.30 0.38
PE-lcomm 24 35 0.69 30 214 0.14 0.23
SA-lcomm 37 67 0.55 43 214 0.20 0.29
Dice-OCG 20 29 0.69 11 214 0.05 0.10
Hart-OCG 4 7 0.57 6 214 0.03 0.05
PE-OCG 34 34 1.00 19 214 0.09 0.16
CACHET 231 309 0.75 130 214 0.61 0.67
TRIBAL 18 18 1.00 14 214 0.06 0.12

For subcomplexes and the hypergeometric criterion, CACHET is visibly the best performing method (higher F-measure). Both TRIBAL and PE-OCG display perfect results in terms of precision but a very poor
recall. The good performance of CACHET is mainly due to its comparatively higher recall.

Table 4 | Precision and recall analysis for different subcomplex prediction strategies, using the geometric index as match criterion
(score . 0.2)

Methods #Predicted matches #All_Predicted_comp Precision #Reference_matches #All_Reference_comp Recall F-measure

Raw data 78 263 0.30 65 214 0.30 0.52
Dice-lcomm 29 102 0.28 32 214 0.20 0.38
PE-lcomm 14 35 0.40 17 214 0.13 0.23
SA-lcomm 21 67 0.31 21 214 0.15 0.29
Dice-OCG 1 29 0.03 1 214 0.01 0.10
Hart-OCG 1 7 0.14 1 214 0.01 0.05
PE-OCG 3 34 0.09 4 214 0.03 0.16
CACHET 106 309 0.34 74 214 0.34 0.67
TRIBAL 14 18 0.78 8 214 0.07 0.12

For subcomplexes and the geometric criterion, CACHET is visibly the best performing method (higher F-measure). TRIBAL displays the best result in terms of precision but a very poor recall. The good
performance of CACHET is mainly due to its comparatively higher recall.
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2. GLE2-NUP116-NUP82 subcomplex: This is also a subcomplex
of the NPC, and has a biologically relevant subcomplex which is
NUP82. The algorithm does not detect these two but two trun-
cated versions of GLE2-NUP116-NUP82 instead.

3. NUP57 subcomplex: Similar to NUP84-NPC, the algorithm
detects one truncated version of NUP57 instead of the relation-
ship to the NPC.

4. Polymerase-alpha-primase complex: This one contains two
real subcomplexes: DNA primase and DNA polymerase alpha.
The algorithm identifies two truncated versions of Polymerase-
alpha-primase instead.

5. TREX complex has a subcomplex called THO complex, and in
turn, there is an extended version of TREX that contains it.
However, the algorithm shows three truncated versions of TREX.

Figure 3 | An example of similarity and containment metrics. The Jaccard and Geometric indexes are able to measure the similarity between two sets.

The higher Jaccard and Geometric indexes indicate that the two sets in (a) are more ‘‘similar’’ to each other than the two sets in (b). In opposition,

the Meet-min is a better measure of containment. The higher meet-min index shows that the two sets in (b) are a perfect set and subset, while the two sets

in (a) are only overlapping. The scores show that case (a) is an example of a good similarity with a not so good containment, while (b) is an example

of a good containment with a poor similarity.

Figure 2 | Number and percentage of validated predicted subcomplexes using TRIBAL and six other methods. TRIBAL outperforms CACHET and all

combinations of scoring strategies and overlapping clustering methods, for a meet-min equal to 1.0, that is, in terms of perfect containment of a

subcomplex by a reference complex. This aplies to both (a) the number of validated subcomplexes and (b) the precision or percentage of validated

subcomplexes.

www.nature.com/scientificreports
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6. alpha-alpha-trehalose-phosphate-synthase complex: This one
contains one subcomplex called TPS1-TPS2 complex (treha-
lose biosynthetic pathway). The algorithm instead detects two
truncated versions of the larger complex.

7. The NuA4-HAT complex contains a few real subcomplexes:
EAF3-EAF5-EAF7 subcomplex, ACT1-ARP4-SWC4-YAF9
subcomplex and ESA1-EPL1-YNG2-EAF6 subcomplex. The
algorithm instead detects two versions of NuA4-HAT.

Details of the previous comparisons can be found in Supplemen-
tary Code.

At the same time, OCG produced complexes and subcomplexes of
a very large size. While the average size of a complex in MIPS is 6.3
subunits, the predicted subcomplexes display the following average
sizes: TRIBAL 5 5.61, CACHET 5 5.58, Dice 1 lcomm 5 4.71, PE
1 lcomm 5 4.69, SA 1 lcomm 5 4.25, raw data 5 4.00, Dice 1 OCG
5 24.93 and PE 1 OCG 5 24.00. The large size of the OCG com-
plexes allows them to intersect many subcomplexes. Such complexes
do not have a biological meaning but our first comparison method
(hyper-geometric) seems to be favouring this case. A complete
description of the size distribution of complexes and subcomplexes
can be found in the Supplementary file (section 4).

In summary, results suggest that Link-communities’s predicted
subcomplexes are mainly truncated versions of a well-predicted
complex, while OCG’s subcomplexes lack biological meaning.

Discussion
We have unveiled the limitants of AP-MS processing methods
regarding their ability to predict subcomplexes and we have also
suggested TRIBAL as an alternative solution to this.

We have traditionally assumed that the fact that a pair of proteins
shows multiple evidence of co-purification and few evidences of
independent purification is a demonstration of the confidence that
we can have in the quality of such an interaction. However, here we
start from the assumption that it could also mean that the interaction
can be repeated in multiple overlapping complexes. The current
complex detection pipeline discards the second type of information
because the scoring step converts all co-purifications to one inter-
action record. For this reason, a method to score interactions without
removing the information of proteins co-purifying in different con-
texts (i.e. different complexes), could be useful.

The scoring of triads of proteins instead of interactions has been
our first attempt to design such a method. This is, instead of studying
the pattern of co-purification and independent purification of a bait
and a prey, we study the bait and pairs of preys. This way, we apply
the Dice score to a modified pulldown matrix which contains the
baits versus the pairs of preys that copurify with them. After remov-
ing low quality data and generating a PIN with the high quality triads,
we also get a PIN with multiple edges.

We tested and compared the performance of different combina-
tions of scoring methods (Dice, PE, Hart, SA) and overlapping clus-
tering algorithms (Link-communities, OCG), with one method
based on the core-attachment model (CACHET) and our own
method (TRIBAL). All these three types of methods are based on
different assumptions; for example, that subcomplexes can be
extracted from high-degree (highly connected) regions of the net-
work or, in our case, that co-purification information with different
baits is not only useful as a data quality measure but can also include
co-complex information in different biological contexts. These
assumptions can be partially validated through the performances
of the methods. The results show that CACHET gives the best results
in terms of similarity (geometric or hypergeometric indexes) to the
MIPS reference set (this is mainly due to its better recall), while
TRIBAL offers the best precision in terms of similarity and the best
performance in terms of containment metrics (meet-min index).
From the group of overlapping clustering methods, Link-communit-
ies shows better results than OCG.

Regarding limitations, the nature of the TRIBAL method leads to a
small number of predictions. New strategies to solve this limitation
and address the subcomplex problem will be needed. The possibility
of replacing the use of templates with clustering algorithms that do
not find dense modules but functional subunits, or the possibility of
using clustering algorithms designed for multiple edges, should be
considered. Another important limitation is the lack of a gold stand-
ard or reference set specifically designed for subcomplexes.

We have made a thorough analysis of the traditional complex
prediction pipeline for AP-MS experiments. Besides problems due
to coverage, false positives and inconsistencies regarding mutual
pull-down (see Supplementary File), most traditional methods are
not able to detect subcomplexes due to decisions made in the scoring
and clustering steps. Based on this knowledge, we have identified the
best strategies to detect subcomplexes, including the development of
TRIBAL, a simple strategy that improves the precision of subcom-
plex prediction compared to previous methods. These strategies are
the initial attempts to specifically address the subcomplex detection
problem in co-purification data. This paper suggests that overlap-
ping clustering methods fail to detect subcomplexes from AP data
while the core-attachment model used by CACHET and similar
software seems to be the best option to this date. However, it also
suggests that alternatives such as the co-purification matrix intro-
duced by TRIBAL deserve more attention, as they show potential
thanks to a high precision, especially when we evaluate the meet-min
index, i.e., subcomplexes absolutely contained by larger complexes.
Finally, research in subcomplex identification demands the genera-
tion of curated gold standards for subcomplexes, which will be an
important step to achieve a better validation of predictions.

Methods
All analyses in this paper were performed using R v.2.15.2 and some of its packages,
including ‘‘iRefR’’ v.1.0012, ‘‘igraph’’ v.0.64, and ‘‘org.Sc.sgd.db’’ v.2.9.1. All code
needed to reproduce the following analyses can be found as Supplementary code.

Purification data. The raw purification dataset used in this study was taken from the
Tandem Affinity Purification study of Gavin et al.6 on S.cerevisiae, available as
supplementary material of their paper. It consists of 2166 experiments, using 1849
baits in one experiment each, and 143 baits in 317 experiments repeated two or more
times. A degree distribution of the purified proteins shows a power-law-like
distribution, with a few high-degree nodes (Apa1, Cic1, Hhf1, Mak21, Psa1 and
Pwp2) and a greater number of low-degree nodes, including 254 baits only purifying
themselves. 912,333 out of 2,344,695 pairs of purified groups display some overlap of
one or more proteins, while 601 out of 2,344,695 pairs display a meet-min index of 1,
indicating that one is a subset of the other one.

The ‘‘org.Sc.sgd.db’’ R library was used to convert SGD IDs to gene names.

Scoring indexes. After data is collected, it is scored using the four above-mentioned
popular scoring methods. The SA score is defined as follows:

A i,jð Þ~Si,jji~baitzSi,jjj~baitzMi,j ð1Þ

where

Si,jji~bait~log
ni,jji~bait

f bait
i nbait f

prey
j nprey

i~bait

 !
ð2Þ

and

Mi,j~log
nprey

i,j

f prey
i f prey

j Sall baitsnprey nprey{1
� ��

2

 !
ð3Þ

Here A denotes the socio-affinity index, S is a spoke model-related term and M is a
matrix model-related term.

ni,jji~bait is the number of times that protein i retrieves protein j when i is
tagged.
f bait
i is the fraction of purifications where i was a bait.

f prey
j is the fraction of all retrieved preys that were j.

nbait is the total number of purifications (i.e., of baits).
nprey

i~bait is the number of preys retrieved with protein i as bait.

nprey
i,j is the number of times that i and j co-purify with baits different to i or j.

nprey is the number of preys observed with a specific bait (excluding itself).
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The Hart score makes use of a hypergeometric test to compute the probability of an
interaction being observed at random:

p #interactions§kjn,m,Nð Þ~
Xmin n,mð Þ

i~k
p ijn,m,Nð Þ ð4Þ

where

p ijn,m,Nð Þ~

n

i

� �
N{n

m{i

� �
N

m

� � ð5Þ

Here k is the number of times the interaction is observed (success sample), n is the
total number of interactions for the first protein (sample), m is the total number of
interactions for the second protein (success population) and N is the total number of
interactions in the full data set (population). Here, the interactions assume a matrix
model.

The PE score is computed as follows:

PEi,j~SijzSjizMij ð6Þ

where

Sij~
X

k
sijk ð7Þ

Mij~
X

k
mijk ð8Þ

sijk~
log10

rz 1{rð Þpijk

pijk
if j is prey for bait i in purification k

log10 1{rð Þ otherwise

8<
: ð9Þ

mijk~log10

rz 1{rð Þpijk

pijk
ð10Þ

Here S is a spoke-term, M is a matrix-term, i is a bait, j is a prey and k is a purification. r
is the probability of a true association to be detected, while pijk is the probability of i
and j being observed together for non specific reasons. For details regarding the
estimation of these parameters, we refer the reader to Collins et al.5.

The Dice score is defined as follows:

D i,jð Þ~ 2q
2qzrzs

ð11Þ

Where i and j are two proteins vectors, with values of 1 for each experiment where that
protein was pulled down as a prey, and a value of zero otherwise. q is the number of
elements (experiments) where both i and j have 1’s (appear in the same purification), r
is the number of elements where i has 1 and j has 0, and s is the number of elements
where i has 0 and j has 1, this is, (r 1 s) is the number of cases where the i-j pair does
not co-purify.

SA, Hart, PE and Dice scores applied to the raw data and to the clustering methods
below specified, were computed using the ProCope software29.

Our modified Dice score for the TRIBAL algorithm is explained in Results.

Clustering methods. Link-communities is a method that uses communities of edges
and not of nodes. OCG hierarchically merges edges into modules, checking the value
of a special modularity function Q. Both OCG and Link-communities were
performed using the ‘‘linkcomm’’ R package20.

CACHET. The 369 complexes generated by CACHET from Gavin’s dataset, were
retrieved from their web page26.

In order to generate subcomplexes, we selected all complexes containing both core
and attachments (i.e., we removed all only-core complexes). Subcomplexes were
defined as the cores of those core-attachment sets.

Evaluation methods. In order to evaluate the quality of the complex predictions, we
used the S.cerevisiae complex MIPS dataset as a gold standard, and compared it to
every predicted complexes dataset. We highlight that alternative gold standard sets
have been proposed30; however, the MIPS data set is still used as a validation
instrument for the complex detection tools above mentioned17,21,29.

The comparison is done through three strategies: Firstly, through a hypergeometric
test, as defined in eq. (5). In this test, the population is the total number of proteins,
the population success is the size of the MIPS complex, the sample is the predicted
complex (predicted either by any combination of the scores and clustering algorithms
here employed, CACHET or TRIBAL) and the success sample is the size of the
intersection between MIPS and the predicted complex. The overlap is considered
significant when p-value , 0.05.

Secondly, the geometric index, defined as follows:

Geom~(length(Complex1\Complex2))^2=(length(Complex1) 1 length(Complex2))

ð12Þ

Where one complex is predicted and the other one belongs to the reference set. The
overlap is considered significant when Geom . 0.2.

Thirdly, the meet-min index, defined as follows:

Meet{min~length(Complex1\Complex2)=min length Complex1ð Þ,length Complex2ð Þð Þ
ð13Þ

Where one complex is predicted and the other one belongs to the reference set. A
meet-min index of 1.0 indicates that one complex perfectly contains the other one.

The relationship and distinction between the meet-min and the other metrics can
be observed in figure 3.

The performance of each method was assessed by computing their precision, recall
and F-measure, defined as follows:

Precision~TP= TPzFPð Þ ð14Þ

Recall~TP= TPzFNð Þ ð15Þ

F{measure~2 1Precision 1Recall= PrecisionzRecallð Þ ð16Þ

Where TP 5 True positives (matches), FP 5 False positives (mispredictions) and FN
5 False negatives.

TRIBAL algorithm. Both TRIBAL and its evaluations were coded using R 2.15.2 and
its packages ‘‘iRefR’’ and ‘‘igraph’’, and they are available as Supplementary code.
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