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a b s t r a c t

Incorporation of pathway knowledge into microarray analysis has brought better biological interpreta-
tion of the analysis outcome. However, most pathway data are manually curated without specific bio-
logical context. Non-informative genes could be included when the pathway data is used for analysis of
context specific data like cancer microarray data. Therefore, efficient identification of informative genes
is inevitable. Embedded methods like penalized classifiers have been used for microarray analysis due to
their embedded gene selection. This paper proposes an improved penalized support vector machine with
absolute t-test weighting scheme to identify informative genes and pathways. Experiments are done on
four microarray data sets. The results are compared with previous methods using 10-fold cross validation
in terms of accuracy, sensitivity, specificity and F-score. Our method shows consistent improvement over
the previous methods and biological validation has been done to elucidate the relation of the selected
genes and pathway with the phenotype under study.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The advent of microarray technology has enabled researches to
measure expression of thousands of genes with multiple samples.
This has spurred the development of various sophisticated analy-
tical methods to interpret and integrate the enormous data sets
produced by high-throughput technology. Moreover, advance-
ments in omics research has made available various kinds of data
such as, pathway and network data [1,2]. Incorporation of pathway
knowledge into microarray analysis has gained increasing atten-
tion owing to the improved biological interpretation of the
analysis outcome. This is known as pathway-based microarray
analysis. In contrast to most of the early methods of microarray
analysis, which are based on analysis of individual genes,
pathway-based methods analyse genes in groups or pathways [3].
Analysis of genes in terms of pathway allows the detection of
subtle changes of expressionwhich single-gene based methods are
unable to detect [4]. This enables the identification of differentially
expressed pathways and genes in the pathways that are related to
the phenotype under study instead of only a list of differentially
expressed genes. The identified active pathways allow us to gain
better understanding and functional insights regarding the biology
of the phenotype under study [5]. However, most of the pathway
data are curated manually based on public domain databases,
domain experts and laboratory study of cultured cells, which are
not based on specific biological contexts like lung cancer disease
[6]. The use of the pathway data in context specific data like lung
cancer microarray data could possess the risk of inclusion of non-
informative genes in the analysis, which could affect the analysis
outcome. It is known that inclusion of these non-informative
genes in classifier construction could lead to poor classification
performance [7]. Therefore, methods with effective identification
of informative genes in the pathways are needed in order to en-
sure the efficient utilization of pathway data in aiding the analysis
of microarray data.

Generally, there are two types of approaches in pathway-based
microarray analysis; the enrichment analysis approach and the
machine learning approach [7]. In enrichment analysis, genes are
grouped into pathways and scored using statistical tests such as
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Kolmogorov-Smirnov test [8], Fischer’s exact test [9] and gene
randomisation [10,11]. Most of the enrichment analysis methods
treat all genes equally in the analysis, which is incorrect because
some of the genes may have higher relevancy to the phenotype
under study which presumably possess better predictive power
[12]. On the other hand, machine learning methods often use gene
classification in the analysis such as penalized support vector
machine [13], random forest [14], partial least square [15] and
logistic regression [16]. Furthermore, machine learning methods
can be integrated with the gene selection process in order to select
informative genes for each pathway before the construction of
classifier because not all genes in the pathway contribute to the
development of the disease [17,15,18,19]. In order to improve the
classification performance, integration of an efficient gene selec-
tion method is important to ensure only informative genes are
selected for the analysis.

There are three types of gene selection methods commonly
known as filter, wrapper and embedded. Embedded methods have
been favoured by the researchers owing to their better complexity
compared with wrapper methods and interaction with classifier
[20]. These embedded methods include random forest, SVM with
recursive feature elimination (SVM-RFE) as well as penalized
classifier [21]. Among these embedded methods, penalized clas-
sifiers have been widely used in bioinformatics research [22]. One
of the penalized classifiers is penalized support vector machine
(SVM), which is a combination of SVM classifier with penalty
functions for simultaneous gene selection. There are several pe-
nalized SVM with different penalty functions such as SVM-SCAD,
which was proposed by Zhang et al. [23] that embeds smoothly
clipped absolute deviation (SCAD) penalty function [24] and
L1-SVM [25], which embeds L1 penalty function in standard SVM
for feature selection. In a recent published research, a modified
penalized SVM with SCAD penalty function, namely gSVM-SCAD
has been proposed by Misman et al. [13] and used for pathway-
based microarray analysis. gSVM-SCAD was inspired by SVM-
SCAD. In contrast to SVM-SCAD, Misman et al. [13] has introduced
specific tuning parameters for each pathway to achieve near
optimal gene selection. However, performance of the pathway-
based methods is often affected by the biological context-free
pathway data. Despite the good performance shown by gSVM-
SCAD, the gene selection efficiency can still be improved by in-
tegrating information derived from the measurements associated
with the genes in the pathway. Previous investigation has shown
that the use of non-uniform weights calculated from the mea-
surements associated with the genes can improve the identifica-
tion of informative genes in the pathway [26]. Efficient identifi-
cation of informative genes in the pathway is crucial especially in
the analysis of cancer gene expression data. Therefore, this paper
proposes an improved gSVM-SCAD with the integration of absT
weighting scheme [26] to improve the efficiency of the identifi-
cation of informative genes and pathways. The proposed method
is referred to as wgSVM-SCAD. As the analysis is done in terms of
pathways, the pathway with the most informative genes is
expected to produce the best classifier and is identified as the
informative pathway related to the phenotype under study.
2. Methods and materials

2.1. gSVM-SCAD

gSVM-SCAD was proposed by Misman et al. [13] for pathway-
based microarray analysis. Group-specific tuning parameter, λk

was introduced for each pathway in order to provide flexibility to
SVM-SCAD for maintaining efficient identification of informative
genes in every pathway. Given a gene expression data set with m
samples and d genes ( )x y,i i , = …i m1, , , ∈{ − }y 1,1i y represents
the tissue samples with two classes where = −y 1i and =y 1i . While

=( … ) ∈ x x x, ,i i i d
d

,1 , represents the input vector of expression values
of d genes of i-th sample. SVM is a classifier which separates the
classes of interest by maximising the margin between them using
a kernel function. Generally, in gSVM-SCAD, the input variables are
classified into corresponding classes by the margin of

( )∑ β− ( ) + ( )β λ+
⎡⎣ ⎤⎦min y f x pen1 1c i i, k

where − ( ) +
⎡⎣ ⎤⎦y f x1 i i is the SVM convex hinge loss function, ( )βλpen

refers to the SCAD penalty function with parameter λk, which is
the group-specific parameter for k pathway, β β β= ( … ), i1 re-
presents the coefficients of the hyper-plane and c is the intercept
of the hyper-plane. The penalty function shrinks the small coeffi-
cient to zero, thus, gene selection is achieved because SVM only
uses non-zero variables. The SCAD penalty in gSVM-SCAD is cal-
culated based on the equation below.
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where a and λ are the parameters with =a 3.7 and λ > 0 according
to Fan and Li [24]. In gSVM-SCAD, grid search was used to search
for the near-optimal parameter, λk for k pathway from a set of
predefined values in the range of 0.001–0.009, 0.01–0.09, and 0.1–
1. The penalization is done on an initial linear SVMmodel based on
each λ, generating a list of enhanced models with selected genes
based on corresponding λ. These models are then evaluated using
Generalized Approximate Cross-Validation (GACV) [27] to obtain
the best fit model and the identified genes in that model. The
performance of the best fit model is then calculated based on 10-
fold cross validation. This process iterates for all the pathways in
the pathway data.

2.2. The proposed method (wgSVM-SCAD)

Despite the good performance of gSVM-SCAD, the gene selec-
tion efficiency can still be improved by integrating information
derived from the measurements associated with the genes in the
pathway. Meanwhile, the use of non-uniform weighting schemes
in pathway analysis has been reported by Ha et al. [26] to improve
the performance of the analysis. Therefore, this paper proposes the
integration of absT weighting scheme into gSVM-SCAD to improve
the performance of the identification of the informative genes and
pathways. The weights are calculated based on the measurements
associated to the genes, which are more preferable so that they can
efficiently represents the differential expression between genes in
the data set.

In this paper, the main purpose of the integration of the non-
uniform weights is to emphasize the differential expression of the
genes and it allows better detection of these differentially ex-
pressed genes during the gene selection process using penalized
support vector machine. The absT weights are calculated based on
two-sample t-test as shown in the equation below [26].
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In this equation, Tj represents the absolute value of the two-
sample t-test calculated for the j-th gene. The weight of the j-th
gene, Wj is calculated by dividing Tj with the sum of all T for d
genes in the pathway. In this paper, as the weights are calculated



Fig. 1. Example of absT weights calculation for a pathway with 6 genes.
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based on the genes in a pathway, the weights indicate how dif-
ferent a gene is expressed between two groups of samples in a
pathway. Therefore, the gene that is most differentially expressed
in the pathway will obtain the largest weight. The pathway with
the most differentially expressed genes will obtain highest clas-
sification accuracy. The calculation of the absT weights is as illu-
strated in Fig. 1.

As shown in Fig. 1, for each gene, the weight is calculated by
dividing the absolute two-sample t-test of the gene by the same
sum, which is the sum of the absolute two-sample t-test of all
genes in the pathway. During the calculation process, the p-value
for each gene is recorded. After the calculation of the absT weights,
an initial filtration is done, which is aimed to filter out genes that
do not differentially express between two groups of samples based
on the p-values generated (larger than 0.5) during the two-sample
t-test. Then, the corresponding weights are assigned into the re-
maining genes and used for further analysis. One weight is given
to each of the gene in the pathway. The weight is assigned into the
gene expression values of the gene across all the samples as shown
in the example in Fig. 2. This produces a weighted gene expression
for the pathway.

The weighted gene expression data of the pathway is then used
to train an initial linear SVM model and undergoes the penaliza-
tion based on the predefined values of λ. Since the input is the
weighted gene expression data, the classification of the proposed
method is represented by following equation in contrast to Eq. (1).

( ) ( )∑ β− + ( )β λ+
⎡⎣ ⎤⎦min y f Wx pen1 4c i i, k

where Wxi represents the weighted input based on the calculated
absT weights. Similar to the workflow in gSVM-SCAD, the models
Fig. 2. Assignment of the absT weight in gene expression values.
generated based on different λ in the predefined list are evaluated
through GACV and the best fit model is used for performance
measurement based on 10-fold CV. The detailed flowchart of the
proposed method is shown in Fig. 3.

Compared to gSVM-SCAD by Misman et al. [13], the proposed
method integrates non-uniform weights that measure the mag-
nitude of the differential expression of each gene within a path-
way based on the concept that the most differentially expressed
gene within the pathway have the largest weight in order to im-
prove the efficiency of the identification of informative genes
within the pathway. The calculated weights are then integrated
into the gene expression data for every gene throughout the
samples. Efficient identification of these informative genes
improves classification performance, which also enables the
identification of informative pathways that are relevant to the
phenotype under study. The proposed method is aimed to sur-
mount the limitation caused by the existence of non-informative
genes in the pathway data and at the same time provides better
biological interpretation regarding the phenotype under study.

2.3. Data sets

This paper uses two types of data, which are gene expression
data and pathway data. For gene expression data, four gene ex-
pression data sets are used as shown in Table 1. Generally, gene
expression data consists of m samples and n genes. The data is in
the form of matrix where the rows represent the genes while the
columns represent the samples. These data sets have been used in
pathway-based microarray analysis and can be downloaded at
Gene Set Enrichment Analysis (GSEA) website (http://www.broad
institute.org/gsea/datasets.jsp). According to Table 1, there are two
gene expression data sets for lung cancers, Lung Michigan and
Lung Boston, which was published by both Beer et al. [28] and
Bhattacharjee et al. [29] respectively. While for the gender data
set, it consists of transcriptional profiles from male and female
lymphoblastoid cell lines. This unpublished data has been used in
previous studies in pathway-based microarray analysis [11,13,14].
Lastly, the p53 data set used in this research consists of mutational
status of p53 gene in the expression patterns from the NCI-60
cancer cell lines and has been used in several studies in pathway-
based analysis [11,30,14].

Meanwhile, for pathway data a total of 480 pathways or gene
sets are used similar to the previous works [13,14], which consist
of 168 pathways from Kyoto Encyclopedia of Genes and Genomes
(KEGG) [31] where majority of the pathways were related to me-
tabolism, degradation, biosynthesis and signal processing, and 312
Biocarta pathways [32] where the pathways are mostly related to
metabolism and signal transduction. The pathway data are
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Fig. 3. Flowchart of the proposed wgSVM-SCAD where the blue shaded area represents the improvement over gSVM-SCAD.

Table 1
Summary of gene expression data sets used.

Name Samples Genes Class Reference

Lung Michigan 86 7129 2 (normal/
tumour)

Beer et al. [28]

Lung Boston 62 12,600 2 (normal/
tumour)

Bhattacharjee et al.
[29]

Gender 32 22,283 2 (male/female) Unpublished
p53 50 12,625 2 (p53þ/p53

mutant)
Unpublished

Table 2
Comparisons of average 10-fold CV classification accuracy of top ten pathways with
highest accuracy between wgSVM-SCAD and four embedded methods.

Method Average accuracy (%)

Lung Michigana Lung Boston Gendera p53

wgSVM-SCAD 80.86 (79.66,
80.48)

71.83 (69.68,
70.81)

88.75 (87.69,
88.32)

82.22 (80.43,
81.45)

gSVM-SCAD 73.77 (—) 68.92 (66.48,
67.76)

87.33 (—) 81.17 (78.43,
80.23)

PathwayRF 71.00 (—) 65.16 (64.66,
65.06)

81.75 (—) 81.60 (80.73,
81.26)

L1-SVM 55.14 (—) 67.13 (66.96,
67.11)

80.76 (—) 79.80 (79.03,
79.47)

SVM-SCAD 53.50 (—) 65.58 (64.99, 77.96 (—) 73.93 (73.04,

W.H. Chan et al. / Computers in Biology and Medicine 77 (2016) 102–115 105
available for download at MSigDB (url: www.broadinstitute.org/
gsea/download.js) [11].
65.33) 73.49)

Note:
–Values in bold are highest accuracy.
–Values in the parenthesis are the 95% CI of the accuracy for each method for 10
experiment samples.

a Accuracy values are based on the published results from [13].
3. Results and discussion

3.1. 10-fold cross validation

The results of wgSVM-SCAD from the 10-fold CV for all the data
sets are compared with four embedded methods, which are gSVM-
SCAD, L1-SVM, SVM-SCAD, and PathwayRF. L1-SVM is a penalized
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SVM classifier using L1 penalty function proposed by Zhu et al.
[25]. While PathwayRF is the embedded method based on random
forest developed for pathway analysis [14]. Table 2 shows the
comparison of the performance in terms of average 10-fold CV
accuracy of the ten pathways with highest classification accuracy.
Comparison of average accuracy for Lung Michigan and gender
data sets are based on the results in [13]. Whereas the comparison
of average accuracy for Lung Boston and p53 data sets are based on
self-experiments. The 95% CI of the accuracy are listed for the
results from self-experiments. Based on the data shown in Table 2,
wgSVM-SCAD obtains consistent improvements throughout the
data sets except in p53 data set, where the improvement of ac-
curacy is not that obvious compared to gSVM-SCAD and
PathwayRF.

First, compared with gSVM-SCAD, the better results obtained
by the proposed wgSVM-SCAD implies the effectiveness of the
introduced absT weights and the initial filter based on the p-value
of the two-sample t-test in improving the identification of in-
formative genes in the pathway. Meanwhile, in comparison with
PathwayRF, which is an embedded method developed for path-
way-based microarray analysis, the proposed wgSVM-SCAD ob-
tains 9.86%, 6.67%, 7.00%, 0.62% higher accuracy in Lung Michigan,
Lung Boston, Gender and p53 data sets respectively. This is due to
the better gene selection behaviour in wgSVM-SCAD that consists
of a group-specific parameter for every pathway and in the same
time enhanced by the integrated absT weighting process. As for
L1-SVM, better result fromwgSVM-SCAD shows the potency of the
SCAD penalty function in providing nearly unbiased estimation for
large coefficients compared to LASSO penalty function, which
leads to more consistent gene selection [24]. Lastly, compared with
SVM-SCAD, flexibility from the group-specific parameter, λk and
the assigned absT weights have provided better identification of
subset of informative genes that are closely related to the phe-
notype under study. Identification of these informative genes
helps to build better classifier and thus better classification accu-
racy. Furthermore, according to Table 2, the improvement of re-
sults from wgSVM-SCAD on Lung Michigan data set is generally
higher (for an average difference of 17.51%) in contrast to the re-
sults on Lung Boston, Gender and p53 data sets where the corre-
sponding average differences of accuracy are 5.13%, 5.76%, and
3.10% respectively. The main difference between Lung Michigan
data and other data sets is the distribution of classes. In Lung
Table 3
Average sensitivity, specificity and F-Score from the ten runs of experiments for both w

Average sensitivity (%)

wgSVM-SCAD gSVM-SCAD

Lung Michigan 89.59 90.65
Lung Boston 70.82 65.21
Gender 93.10 89.40
p53 70.95 68.05

Average specificity (%)
wgSVM-SCAD gSVM-SCAD

Lung Michigan 55.90 39.62
Lung Boston 69.53 69.03
Gender 86.10 84.95
p53 84.50 85.35

Average F-Score (%)
wgSVM-SCAD gSVM-SCAD

Lung Michigan 87.26 85.28
Lung Boston 71.95 67.93
Gender 92.17 89.72
p53 74.62 72.78

Note: p-value o0.05 for significance.
Michigan, the sample class distribution is more imbalanced (62
normal samples vs. 24 tumour samples). This also suggests that
the proposed wgSVM-SCAD also performs well on data sets with
imbalanced classes.

This research aims to develop an improved gSVM-SCAD with
better identification of informative genes and pathways. Therefore,
in order to analyse and justify the performance of the classifier
built, a more comprehensive comparison is done between the
proposed wgSVM-SCAD and gSVM-SCAD in terms of sensitivity,
specificity and F-score. Both sensitivity and specificity measure
how accurate a positive and negative sample is classified respec-
tively. While F-Score is the harmonic measure between sensitivity
and precision. A total of 10 runs of full experiment are done for
both wgSVM-SCAD and gSVM-SCAD in order to show the con-
sistency of the results of the proposed method. Table 3 shows the
comparison of the average sensitivity, specificity and F-Score be-
tween wgSVM-SCAD and gSVM-SCAD for all data sets. The com-
plete data and details for the experiments can be found in the
supplementary files (Supp. Tables A1 and A4).

For Lung Michigan data, the average difference of sensitivity for
the 10 runs is significantly lower compared to gSVM-SCAD at
1.06%. Despite of the low sensitivity, result from the proposed
wgSVM-SCAD obtains a significant boost in specificity with an
average of 16.28%, which supported by the small p-value as well as
the 95% confidence interval (CI). As mentioned previously, the
Lung Michigan data set consists of imbalanced class distribution,
the result suggests that the introduced absT weights have im-
proved the identification of tumour samples because specificity is
the measurement of how accurate a negative sample (in this case
refers to tumour samples) is being classified. Furthermore, genes
discarded during the filtration process could have increase the
prediction power of the remaining genes in the pathway. At the
same time, the discarded genes might cause the drop in sensitivity,
where information from the discarded genes could have better
prediction power on normal samples or positive samples. Mean-
while, F-score from the proposed wgSVM-SCAD has shown sig-
nificant and consistent improvement (average difference of 1.98%)
over the previous method. According to the 95% CI, there is 95%
chance that improvement in F-Score of the proposed method over
the previous method is within 1.60% and 2.36%.

For Lung Boston data set, the proposed wgSVM-SCAD shows
consistent and significant improvement in both sensitivity and
gSVM-SCAD and gSVM-SCAD.

Difference (%) p-value 95% CI

-1.06 1.71E-02 (�1.90, �0.21)
5.61 3.51E-07 (4.07, 7.14)
3.70 1.98E-03 (1.55, 5.85)
2.90 0.145 (�1.10, 6.90)

16.28 3.68E-10 (13.49, 19.08)
0.50 0.500 (�1.03, 2.04)
1.15 0.277 (�1.06, 3.46)
-0.85 0.276 (�2.45, 0.75)

1.98 1.73E-09 (1.60, 2.36)
4.02 1.13E-07 (3.00, 5.05)
2.45 1.55E-03 (1.06, 3.84)
1.84 9.19E-02 (�0.34, 4.01)
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F-Score based on small p-value obtained and the 95% CI. In sen-
sitivity, the proposed wgSVM-SCAD has brought a significant in-
crease of an average of 5.61% compared to gSVM-SCAD. In contrast
to lung Michigan, lung Boston data set is well-balanced in the
classes distribution (31 normal samples vs. 31 tumour samples).
The increase of the performance is due to the better gene selection
of the proposed method due to the integrated absT weighting
scheme and the p-value filter. In Lung Boston data set, the efficient
gene selection was able to select better genes subsets that have
better prediction power on normal samples without compromis-
ing too much in the prediction performance on tumour samples.
Thus, better classification. Meanwhile, F-score obtained by the
proposed wgSVM-SCAD in Lung Boston is steadily higher than
gSVM-SCAD in an average of 4.03%. The 95% CI shows that in 95%
of the time, the proposed method could obtain3–5.05% higher
F-Score. This indicates that the classifier constructed by the pro-
posed wgSVM-SCAD performs better than gSVM-SCAD in identi-
fying informative genes in pathways.

For the gender data set, the result from wgSVM-SCAD shows
increment of an average of 3.70% and 1.15% compared to the re-
sults from gSVM-SCAD for both sensitivity and specificity, re-
spectively. Similar with the case of lung Boston data set, the more
efficient gene selection provided by the proposed method has led
to a significant and consistent improvement on identification of a
certain class without compromising the identification of other
class. The performance is depending on the class distribution in
the data sets. While the average F-score of wgSVM-SCAD is 2.45%
higher than the average F-score of gSVM-SCAD in the gender data
set. wgSVM-SCAD achieves significant improvement in both sen-
sitivity and F-Score, which supported with the small p-value ob-
tained and the 95% CI.

For p53 data set, the average sensitivity of wgSVM-SCAD is
2.90% higher than gSVM-SCAD but unfortunately, the specificity of
wgSVM-SCAD suffers a drop of 0.85% compared to gSVM-SCAD.
This could be due to the initial filtration, which has filtered out the
marginal informative genes that have better prediction power on
negative samples or p53 mutant samples. Meanwhile, the average
F-score of wgSVM-SCAD is 1.84% higher than gSVM-SCAD. How-
ever, compared with previous method, the proposed wgSVM-
SCAD does not shows significant improvement in p53 data set.
According to the statistics, overall performance of the proposed
method in p53 data set is on par with the previous method.
Overall, this implies that the better classifier is constructed in
wgSVM-SCAD due to the efficient identification of informative
genes in the pathways through the introduced absT weighting
scheme and filtration process.

3.2. Biological validation

In the proposed method, gene selection and classification is
Fig. 4. Illustration of selection of the top five pathw
performed in each pathway. Therefore, the results consist of the
list of pathways ranked based on the average 10-fold cv accuracy.
Within each pathway, there is a list of selected informative genes
which used to build the classifier and achieve the corresponding
accuracy.

As shown in Fig. 4, the identified informative genes from the
top five pathways with highest average 10-fold CV accuracy are
selected and validated through online biological literature and
databases in order to show the biological relevance of these genes
to the phenotype under study. Meanwhile, Fig. 5 shows the flow of
the process of biological validation. Based on Fig. 5, the identified
informative genes and pathways by the proposed method in this
research are check through biological literatures and databases
like Genecards (url: www.genecards.com) [33] for the related
publications in biological research that support the relevance of
the genes or pathways to the phenotype of study. Genecards is a
multifunctional database that contains numerous types of in-
formation regarding a single gene. This process iterates through-
out the identified genes for the top five ranked pathways in this
research. The validated informative genes or pathways will be
further discussed in order to get more biological interpretation
related to the phenotype of study.

Table 4 shows the top five pathways identified by the proposed
method in Lung Michigan data set. The top ranked pathway is a
NFAT signalling pathway, known as NFAT and Hypertrophy of the
Heart. Although there is no proof for the direct relationship of this
pathway to lung cancer, cardiac involvement in lung cancer is
common [34]. Furthermore, expression of the nuclear factor of
activated T-cell (NFAT) often involve in cancer cells progression
including lung cancer [35]. The proposed wgSVM-SCAD has se-
lected 9 informative genes for the classification and 8 of those
genes (CALR, CREBBP, HRAS,MYH2, PIK3R1, PRKACB, RAF1, RPS6KB1)
are found related to the development of lung cancer. Among the
validated genes, there are several marker genes such as CALR gene,
which its expression is associated with tumour pathological grade
and previous research has shown that it can be used as a bio-
marker for lung cancer prediction and diagnosis [36], RAF1 gene,
which is associated with tumorigenesis and it is an independent
prognostic marker for poor survival rates of lung cancer [37],
RPS6KB1 gene, which is a prognostic marker for tumour develop-
ment in lung cancer [38], and CREBBP gene, where mutation or
deletion of this gene contributes to the genesis and the progres-
sion of lung cancer cells [39]. The second pathway with highest
10-fold CV accuracy is a Vitamin D pathway known as Control of
Gene Expression by Vitamin D Receptor (VDR). The nuclear VDR
status has been suggested as a prognostic marker in lung cancer
[40]. Investigation also shows that deficiency of VDR occurs in
patients with lung cancer [41]. Based on the validation through
biological literatures, 8 of the 10 identified informative genes
(CREBBP, EP300, VDR, MED1, SMARCC1, SMARCC2, TOP2B, TSC2) are
ays from the results for biological validation.

http://www.genecards.com


Fig. 5. Flow of the process of biological validation.

Table 4
Selected genes from top five pathways in Lung Michigan data set.

Pathways No. of genes in the
pathway

No. of selected
genes

Selected genes

NFAT and hypertrophy of the heart 60 9 CALR [36], CREBBP [39], HRAS [42], MYH2 [43], PIK3R1 [44], PRKACB [45],
RAF1 [37], RPS6KB1 [38], CAMK4

Control of gene expression by vitamin D
receptor

21 10 CREBBP [39], EP300 [46], VDR [47], MED1 [48], SMARCC1 [49], SMARCC2
[50], TOP2B [51], TSC2 [52], NCOA2, SMARCD1

Limonene and pinene degradation 20 9 ALDH1A1 [53], ALDH2 [54], CYP24A1 [55], HADHA [56], NAT6 [29], EHHADH,
ALDH1B1, ALDH3A2, ALDH9A1

Butanoate metabolism 43 9 PRDX6 [57], ALDH2 [54], HADHA [56], ABAT, ALDH3A2, ALDH9A1, GAD1,
GAD2, EHHADH

IL 17 signalling pathway 20 11 CD34 [58], CD3D,CD3E,CD3G [59], IL6 [60], IL8 [61], PRSS1, TRBV21–1, CD2,
CD247, CD58

Note: The genes in bold are genes directly related to lung cancer.
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found related to the development of lung cancer. The third ranked
pathway is known as limonene and pinene degradation pathway.
Previous investigations show that pinene has antitumor effect
against lung cancer cells [62], while limonene is capable in in-
hibiting metastatic progression of cancer cells [63]. 9 informative
genes have been selected by the proposed wgSVM-SCAD and 5 of
those genes (ALDH1A1, ALDH2, CYP24A1, HADHA, NAT6) are vali-
dated for their involvement in lung cancer. Among these genes,
CYP24A1 is a known independent prognostic marker associated
with the survival of patients in lung cancer, where overexpression
of CYP24A1 abrogates the antiproliferative effects of 1α,25-dihy-
droxyvitamin D (3), an active form of vitamin D [55]. The fourth
ranked pathway is butanoate metabolism pathway. Butanoate also
known as butyrate, which is proven its potential therapeutic im-
plications for diseases such as cancers [64]. Furthermore, in-
vestigation has revealed that recognition of alteration in metabo-
lism could have prognostic impact in lung cancer [65]. 9 genes
have been selected by the proposed wgSVM-SCAD for classifica-
tion and 3 of these genes (PRDX6, ALDH2, HADHA) are found re-
lated to the lung cancer based on the biological literature. Lastly,
the fifth ranked pathway is IL-17 signalling pathway. Previous
research has shown that Interleukin 17 (IL-17) is associated with
the risk of progressive cancers including lung cancer [66]. In this
pathway, the proposed wgSVM-SCAD has selected 11 genes for
classification and 6 of these selected genes (CD34, CD3D, CD3E,
CD3G, IL6, IL8) are found related to the lung cancer. Among the
validated genes, CD34 gene has been identified as potential marker
of lung cancer naïve cells [58]. It encodes the protein that plays a
role in attachment of stem cells to stromal cells and previous in-
vestigation has shown that CD34-positive stromal cells are specific
in the stoma of lung adenocarcinomas and may play a supportive
role in primary lung cancer [67].

For Lung Boston data set, the top five pathways are shown in
Table 5. The top ranked pathway is the polycomb repressive
complexes (PRC2) pathway. PRC2 has been frequently implicated
in human cancer, acting either as oncogenes or tumour sup-
pressors. High expression of PRC2 components in most of the
small cell lung cancer (SCLC) has been reported by Murai et al. [68]
and it may play a role in genesis in SCLC as well [69]. Recent in-
vestigation also shows that PRC2 is a critical regulator of KRAS-
driven non-small cell lung carcinoma progression [70]. 5 genes
have been selected by the proposed method for classification and
3 of the selected genes (SUZ12, RBBP7, YY1) are found related to the
lung cancer. SUZ12 gene has been reported as an oncogene and a
potential diagnostic marker in non-small-cell carcinoma (NSCLC),
which associated with the promote of lung tumour growth, mi-
gration and invasion [71]. While for the RBBP7 gene, it is found
that this gene promotes migration ability of lung cancer cells and



Table 5
Selected genes from top five pathways in Lung Boston data set.

Pathways No. of genes in the
pathway

No. of selected
genes

Selected genes

The PRC2 complex sets long-term gene silencing through
modification of histone tails

14 5 SUZ12 [71], RBBP7 [72], YY1 [73], EZH1, RBBP4

Visual signal transduction 24 5 PDE6B, RHO, SAG, SAFB, PDE6A
Glutamate metabolism 30 12 GCLC [74], GCLM [75], GLS [76], GSS [77], GAD2, GLS2, GLUD1,

GFPT1, TMEM11, GMPS, ALDH4A1, ALDH5A1
Estrogen responsive protein efp controls cell cycle and
breast tumours growth

15 9 CCNB1 [78], CDK4 [79], CDK5 [80], CDK6 [81], SFN [82],
SMURF2 [83], TP53 [84], TRIM25 [85], ABCB7

Regulation of EIF2 11 6 EIF2AK2 [86], EIF2S1 [87], GSK3B [88], EIF2S2, EIF2S3, EIF5

Note: The genes in bold are genes directly related to lung cancer.
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it is a novel biomarker and prognostic marker for distant metas-
tasis in NSCLC [72]. The second ranked pathway is a visual signal
transduction pathway. However, there is no support from litera-
ture regarding the relationship between the visual signal trans-
duction pathway and development of lung cancer. The third
ranked pathway is glutamate metabolism pathway. Cellular me-
tabolism has been targeted by researchers to improve cancer
therapeutics because metabolism in cancer cells is significantly
different from normal cells [89]. Glutamate regulates proliferation
of neurons and previous research suggests that it is also associated
with the motility and the invasive growth of tumour cells in lung
cancer [90]. 12 genes have been selected by the proposed wgSVM-
SCAD and 4 of these genes (GCLC, GCLM, GLS, GSS) are found re-
lated to lung cancers according to the biological literature. The
fourth ranked pathway is an estrogen signalling pathway. Estrogen
is involved in the biology of NSCLC and inhibition of estrogen
synthesis have been shown to prevent lung tumorigenesis and
inhibit the growth of lung tumour [91]. The proposed method in
this research has selected 9 genes for classification and 8 of these
genes (CCNB1, CDK4, CDK5, CDK6, SFN, SMURF2, TP53, TRIM25) are
identified as lung cancer related. CCNB1 and CDK4 genes are
among the potential prognostic marker in NSCLC, where both
CCNB1 and CDK4 genes are associated with pathogenesis of lung
cancer [78,79]. Lastly, the fifth ranked pathway is eIF2 regulation
pathway. The protein synthesis initiation factor, eIF2 is important
for translation initiation and protein synthesis [87]. 6 genes have
been selected by the proposed method and 3 of the selected genes
(EIF2AK2, EIF2S1, GSK3B) are validated as related to lung cancer
based on the biological literatures. Expression of EIF2AK2 gene is
associated with cell growth and it has identified as an independent
prognostic variable in NSCLC patients, where low expression of
EIF2AK2 leads to aggressive behaviour of lung cancer cells [86],
while GSK3B gene is associated with tumorigenesis and aberrant
expression of GSK3B gene is known as an independent marker of
poor prognosis in NSCLC [88].

Table 6 shows the top five pathways identified by wgSVM-
SCAD. The top ranked pathway is GNF_FEMALE_GENES pathway.
In this pathway, 1 gene, XIST has been selected by the proposed
method. XIST gene is a non-protein coding gene exclusively ex-
pressed in female that is involved in the X chromosome silencing
Table 6
Selected genes from top five pathways in Gender data set.

Pathways No. of genes in pathway

GNF_FEMALE_GENES 116
TESTIS_GENES_FROM_XHX_AND_NETAFFX 111
XINACT 34
RAP_DOWN 434
INSULIN_2F_UP 405

Note: The genes in bold are biological validated differentially expressed genes between
in female cells and allow X chromosome equilibration with males
[92]. A recent study also found that overexpression of XIST is in-
volved in psychiatric disorders in females [93]. The second ranked
pathway is TESTIS_GENES_FROM_XHX_AND_ NETAFFX pathway.
Similar to the top ranked pathway, 1 gene has been selected by the
proposed method, which is RPS4Y1 and it is found differentially
expressed between male and female [94]. RPS4Y1 gene is located
in the Y chromosome in males, which encodes for ribosomal
protein S4 [95]. While the third ranked pathway is the XINACT
pathway, which is an inactivation process of X chromosome to
achieve equal dosage of X chromosome genes in males and fe-
males [96]. 2 genes have been selected by the proposed method
and both (DDX3X and RPS4X) are validated through biological lit-
erature. The fourth ranked pathway is RAP_DOWN, which is re-
lated to the rapamycin down regulation. Previous studies found
that rapamycin can extend the lifespan in mice, especially for fe-
male mice [97,98]. 3 genes have been selected by the proposed
method and 2 of these (DDX3X and HDHD1A) are found to be re-
lated in the differentiation between genders. Lastly, the fifth
ranked pathway is INSULIN_2F_UP pathway. A previous study has
shown the role of insulin in cell proliferation [99]. 3 genes have
been selected by the proposed method for classification and
1 gene is validated through the biological literature, which is
HDHD1A.

For p53 data set, the top five pathways identified by the pro-
posed method is shown in Table 7. The top ranked pathway is
known to influence RAS and RHO proteins on G1 to S transition
pathway. P53 is a well-known tumour suppressor protein. Muta-
tion or loss of p53 have been a critical event in many human
cancers. Previous investigation has shown that mutation of p53 if
coupled with the activated RAS can induces RhoA activity and
promotes cancer progression [100]. 10 genes have been selected by
wgSVM-SCAD for classification and 9 of the genes (AKT1, RHOA,
CDK4, CDKN1A, E2F1, IKBKB, RAC1, RELA, TFDP1) are found related
to the p53 mutation in the cancer cell lines. The second ranked
pathway, is known as Cell Cycle: G1/S Check Point pathway. Pre-
vious studies have reported the involvement of p53 in regulation
of G1 checkpoint to control cell proliferation by triggering apop-
tosis in normal cells as well as cancer cells [101,102]. Thus, mu-
tation in p53 leads to the differential expression of this pathway. In
No. of selected genes Selected genes

1 XIST [93]
1 RPS4Y1 [94]
2 DDX3X, RPS4X [94]
3 HDHD1A, DDX3X [94], RTN4
3 HDHD1A [94], RPS20, RPL41

male and female in lymphoblastoid cell lines.



Table 7
Selected genes from top five pathways in p53 data set.

Pathways No. of genes in the
pathway

No. of selected
genes

Selected genes

Influence of RAS and RHO proteins on G1 to S
Transition

28 10 AKT1 [103], RHOA [104], CDK4 [105], CDKN1A [106], E2F1 [107], IKBKB
[108], RAC1 [109], RELA [110], TFDP1 [111], PAK1

Cell cycle: G1/S check point 26 11 ABL1 [112], ATR [113], CDK2 [114], CDKN1A [106], CDKN2A [115], CDKN2B
[116], DHFR [117], E2F1 [107], HDAC1 [118], SMAD3, TGFB3

Apoptosis 81 7 BAX [119], BCL2 [120], CASP8 [121], RELA [110], TNFRSF10B [122], DFFA,
IL1R1

Nuclear receptors in lipid metabolism and
toxicity

53 8 PPARG [123], RARB [124], VDR [125], CYP1A2, CYP2B7P, CYP2E1, CYP2C9,
SFTPB

Role of BRCA1 and BRCA2 and ATR in cancer
susceptibility

22 10 MRE11A, ATM [126], ATR [113], BRCA2 [127], CHEK1 [128], NBN [129],
RAD50 [130], BRDT, RAD1, FANCG

Note: The genes in bold are genes related to p53 mutations in cancer cell lines.

W.H. Chan et al. / Computers in Biology and Medicine 77 (2016) 102–115110
this pathway, the proposed method has selected 11 genes for
classification and 9 of these genes (ABL1, ATR, CDK2, CDKN1A,
CDKN2A, CDKN2B, DHFR, E2F1, HDAC1) are identified as closely
related to the p53 mutation in cancer cell lines. The third ranked
pathway is the apoptosis pathway. P53 has been known for its
influence in cell cycle control and apoptosis. Mutation of p53 or
loss of p53 could deregulate apoptosis and promotes tumour cell
migration and invasion [131]. 7 genes have been selected in this
pathway by wgSVM-SCAD for cancer classification. 5 of the se-
lected genes (BAX, BCL2, CASP8, RELA, TNFRSF10B) are found related
to the p53 mutation in cancer cell lines. The fourth ranked path-
way is the Nuclear Receptors in Lipid Metabolism and Toxicity
pathway. P53 has been reported as a novel regulator in lipid me-
tabolism [132], therefore, mutation on P53 could lead to dereg-
ulation of the lipid metabolism. Furthermore, several lipid ligands
for some of the orphan receptors have been identified, where
upon binding to these ligands, several proteins are synthesized
including some cytochrome P450 member proteins which catalyse
lipid metabolism, storage, elimination as well as the activation of
procarcinogens [133]. The proposed method has selected 8 genes
in this pathway for classification. 3 of these genes (PPARG, RARB,
VDR) are found related to the p53 mutation in cancer cell lines.

Lastly, the fifth ranked pathway is the BRCA related pathway
known as Role of BRCA1 and BRCA2 and ATR in cancer suscept-
ibility. Similar to p53, BRCA1 gene is a tumour suppressor gene
involved in deoxyribonucleic acid (DNA) damage response path-
way and mutation of BRCA1 gene is common in a variety of can-
cers. A previous study has reported that expression of BRCA1 is
controlled by the presence of p53 [134]. Moreover, it was reported
that p53 deficiency is highly cooperative with both BRCA1 and
BRCA2 in promoting tumorigenesis [135]. 10 genes have been se-
lected from this pathway by the proposed method for classifica-
tion and 7 of these genes (MRE11A, ATM, ATR, BRCA2, CHEK1, NBN,
RAD50) are found related to the p53 mutation in cancer cell lines.
Fig. 6. Overlapped genes identified in the top
4. Discussion

The proposed wgSVM-SCAD is aimed to provide effective gene
selection in order to surmount the performance limitation caused
by the existence of non-informative genes in the pathways. Based
on the 10-fold CV performance shown in the Table 2, the proposed
method obtains improved classification accuracy compared to
gSVM-SCAD as well as previous studies throughout all the data
sets. Furthermore, performance of both wgSVM-SCAD and gSVM-
SCAD have been further evaluated in terms of specificity and
sensitivity as shown in Tables 3 and 4. The performance of
wgSVM-SCAD is consistently improved compared to the results of
gSVM-SCAD throughout all the data sets. This indicates that the
gene selection efficiency of the proposed method has been in-
creased because the use of informative genes in classifier con-
struction leads to better classification performance. This shows
that the introduced absT weights for every gene in the pathway
can improve the gene selection efficiency by emphasizing the
differential expression of the genes in the pathway. Moreover, the
initial filtration step also helps to filter out non-informative genes
based on the p-value. While the remaining weighted genes be-
come better candidates in the selection process by the SCAD
penalty function. Besides, notable improvement in the specificity
in lung Michigan data set implies that the introduced absT weights
and initial filtration is able to improve the classification perfor-
mance on data set with imbalanced class distribution (62 normal
samples and 24 tumour samples). Thus, the proposed method,
wgSVM-SCAD is a better classifier compared to gSVM-SCAD, which
is further supported by the improved F-scores shown in Table 5.

As for biological validation, top five pathways with highest
classification accuracy have been validated and shown in previous
section. It’s worth mentioning that there are several genes that
have been selected more than once in different pathways and even
different data sets. These genes have been validated through
five pathways in Lung Michigan data set.



Fig. 8. Overlapped genes identified in the top five pathways in p53 data set.
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biological literature. This indicates that some of the selected genes
could be the potential driver genes between two or more pro-
cesses involved in the development of cancers. Fig. 6 shows the
genes that have been identified more than once in the top five
pathways in lung Michigan data set. As discussed in previous
section, the NFAT pathway and Vitamin D Receptor pathway are
associated with the cancer cells progression [40,41,35,34]. While
CREBBP gene has been reported for its role in development of lung
cancer, where mutation or deletion of this gene has resulted the
genesis and progression of lung cancer cells [39]. Meanwhile,
HADHA and ALDH2 also have been selected in both limonene and
pinene degradation pathway and butanoate metabolism pathway.
These two pathways are associated with antitumor effect and the
therapeutic implications in lung cancer.

Meanwhile, Fig. 7 shows the overlapped genes that have been
selected by the proposed method in different pathways. HDHD1A
gene has been selected in both XINACT and RAP_DOWN pathway
while DDX3X gene has been selected in both RAP_DOWN and
INSULIN_2F_UP pathway. Higher expression of both HDHD1A and
DDX3X gene are found in female compared to male according to
the previous investigations [94,136]. Recent investigation has
shown the role of X inactivation and rapamycin downregulation
pathway in gender-specific functions [137,96].

For p53 data set, several genes have been selected in more than
one pathway as shown in Fig. 8. RELA gene, where its function is
associated with cancer cells progression, has been identified in
both apoptosis pathway and RAS and RHO pathway. While
CDKN1A and E2F1 have been selected in both RAS and RHO
pathway and G1/S check point pathway, which are closely related
to the cell cycle control. CDKN1A is involved in the G1 progression
control, which associated negative regulation of p53 tumour
suppressor [106] while E2F1 plays an important role in making
vital cellular decision to regulate the cell cycle progression and
defect on the E2F1 and P53 is associated with tumour development
[107]. Meanwhile, ATR gene has been selected in both G1/S check
point pathway and the BRCA pathway. ATR plays an important role
in regulation of cancer cells proliferation.

The weighting scheme used in this paper allows more efficient
detection of informative genes and pathways that are differentially
expressed between two condition. With the rise of the next-gen-
eration sequencing such as RNA-seq, which has shown strong
potential to replace microarrays for whole-genome transcriptome
profiling. This is because RNA-seq offers better specificity and
sensitivity in examining transcriptome fine structure. In this case,
the weighting scheme could be beneficial in improving the de-
tection of differential expressed transcript between different
conditions. Meanwhile, in comparison with some of the widely
used pathway analysis software suite, such as Ingenuity Pathway
analysis and GeneSpring, these software suites offer very com-
prehensive analysis capabilities such as comparative analysis,
Fig. 7. Overlapped genes identified in the top five pathways in Gender data set.
causal network analysis, multi-omics analysis, visualization and
etc. In terms of the specific usage in analysis of pathway differ-
ential expression, our method executes gene selection and classi-
fication for each pathway and these pathways are ranked based on
the classification accuracy. This provides not only the informative
pathways but also the informative genes that have been detected
within each pathway.
5. Conclusion

The proposed wgSVM-SCAD has shown overall improvements
over gSVM-SCAD in terms of classification accuracy, sensitivity,
specificity and F-Score. Integration of the absT weights improves
the performance of the selection, allowing better identification of
the informative genes in the pathways related to the phenotype
under study and leads to better classification performance. This
provides a potential solution to effectively identify informative
genes related to the phenotype under study from pathway data
that are often not based on specific biological contexts. Further-
more, biological validation of the top five pathways shows that our
proposed method is able to identify some of the marker genes as
well as genes that play important roles in the development of the
phenotype under study. Despite the overall improvements of the
proposed wgSVM-SCAD over gSVM-SCAD, the introduction of absT
weights and the initial filtration have led to the slight performance
drop on sensitivity in lung Michigan data set, and specificity in
lung Boston, gender and p53 data sets. This could be due to the
sub-optimal choice of parameter λ in SCAD because SCAD penalty
is parametric. Therefore, its performance of gene selection is re-
lying on the choice of λ. When the λ is too big, underfitting of data
may occur and produces a very sparse classifier. When the λ is too
small, there is risk of overfitting the data and produces a less
sparse classifier. As the proposed method uses a grid search of
predefined set of λ for SCAD, improvement could be done by in-
tegrating more robust penalty with better λ selection using sto-
chastic search such as metaheuristics.
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