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Abstract: This research work introduces a simple method based on representing protein sequence by fix 
dimensions of the length three. We present hidden Markov model combining scores method. Three scoring
algorithms are combined to represent protein sequence of amino acids for better remote homology detection. We
tested the method on the SCOP version 1.37 dataset. The results show that, with such a simple representation, we 
are able to achieve superior performance to previously presented protein homology detection methods while
achieving better computational efficiency. 
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INTRODUCTION 
 

Protein remote homology detection is the task of 
classifying protein sequence into one predefined family. 
Effective representation of the protein sequence is a key 
issue in detecting remote protein homology. Much 
research has been done on protein homology detection and 
classification. Dynamic programming based alignment 
tools such as Smith and Waterman [1] and their 
approximation such as FASTA [2] and BLAST [3] have 
been widely used by biologist around the world. Statistical 
model based methods have also been developed such as 
Profile [4] and hidden Markov models (HMM) [5, 6]. 
Iterative methods such as PSI-BLAST [7] and SAM  [8] 
improved upon profile-based methods. The SVM-Fisher 
method [9] which combines an iterative HMM training 
scheme with a discriminative algorithm known as Support 
Vector Machine (SVM) [10, 11] is currently among the 
most accurate known methods for detecting remote protein 
homology. SVM-Fisher begins by training a generative 
HMM for a protein family and then, using the model to 
extract a representation for each protein sequence in the 
form of sufficient statistics. The sufficient statistics are 
then treated to produce an analogous quantity known as the 
Fisher score. SVMs in conjunction with the Fisher scores 
are then used to discriminate between protein families. 

Recently, Leslie et al. [12] introduced a class of string 
kernels, called mismatch kernels, to be used with support 
vector machines. In this method, a kernel function 
measures the similarity between a pair of inputs, and 
defines an inner product in an implicit feature space for the 
SVM optimization problem. The features used by the 
mismatch kernel are the set of all possible subsequences of 
amino acids of a fixed length. The mismatch method has 

achieved state-of-the-art performance for protein 
classification. However, such representation suffers high 
dimensionality problem which cause longer running time 
and space to compute the kernel entries. In this work, we 
introduce a simple but yet effective method based on 
representing the protein sequence by only three dimensions 
using the concepts introduced by the SVM-Fisher method. 
We combine techniques from machine learning and 
information extraction to capture the evolutionary 
relationships between protein sequences. We directed our 
work to achieve better protein homology detection by 
representing protein sequence with minimum fixed-length 
vectors possible. This is done through incorporating the 
maximum biological information and evolutionary 
relationships into a minimum number of dimensions. The 
kernel matrix is then calculated efficiently and used as a 
source of information for the SVM to achieve good 
classification performance. 
 

MATERIALS AND METHODS 
 

Fig. 1, shows the overview of the proposed method 
which we call as SVM-HMMcomb. It consists of three 
main steps: (a) Construction of the probability model 
generated from HMM. The parameters of a statistical 
model representing the family are estimated using the 
training examples, in conjunction with general a priori 
information about properties of proteins. (b) Features 
extraction and representation. The model generated in the 
previous step assigns a probability to any given protein 
sequence. (c) Classification step in which we construct 
SVM classifiers to determine whether the protein belongs 
to the predefined family or not.  
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Fig. 1: Overview of the SVM-HMMcomb method. 
 
 
Construction of the Probability Model: The model is a 
linear sequence of nodes, each of which includes match, 
insert, and delete states. Each match state has a distribution 
over the appropriate amino acid indicating which 
characters are most likely. The chain of match states forms 
a model of the protein family, or of columns of a multiple 
alignment. For more details of the construction of the 
probability model generated from HMM, [6, 8, 9].  
 
 
Protein Sequence Representation: We combined three 
different scoring algorithms to extract the maximum 
biological information in a minimum number of 
dimensions. The combination, yields greater and 
absolutely faster computational efficiency. The three 
scoring algorithms are presented by Barrett et al. [13]:  
 
o Simple: NLL-NULL score which is the negative 

log-likelihood (NLL) scores, ))|(log( msP− using a 
simple null model (NULL) based on the probability 
that the sequence s was generated by the model m. 

o Reverse: NLL-NULL score  for  the  reverse     
sequence  NULL model 

o E-value score 
 
The scoring algorithm used in this study provides 
several less biased means of scoring by reporting NLL 
scores as the difference between a null model and 
trained model NLL score.  The scoring program 
can find NLL and NLL-NULL (log-odds) scores. E-
values can be calculated for the reverse sequence null 

model. The most common operation is to calculate 
NLL-NULL scores for a large number of sequences. 
This can be done by supplying the model file and one or 
more sequence database files. The E-value computation 
is based on a simple assumption that the scores for the 
sequence and the reversed-sequence are independent 
draws from an extreme-value distribution:  
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Subtracting the two scores gives  
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The E-value is the expected number of sequences with 

that good score, so is simply the probability of seeing the 
negative difference, multiplied by the number of sequences 
scored.  The only parameter that needs to be estimated is 
the natural scalingλ . Since we use natural logs in 
computing our probabilities, we set 1=λ , which seems 
to be correct experimentally. Thus we compute the E-
values with no parameter fitting at all. It is based purely on 
theoretical considerations. 

The representation of the protein sequences using the 
combination of the above scoring algorithms is performed 
using the Sequence Alignment and Modeling system 
(SAM) [14].  
 
Construction of SVM Classifiers: The SVM algorithm, 
addresses the general problem of learning to discriminate 
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between positive and negative members of a given class of 
n -dimensional vectors. The algorithm operates by 
mapping the given training set into a possibly high-
dimensional feature space and attempting to learn a 
separating hyperplane between the positive and the 
negative examples for possible maximization of the margin 
between them. The margin corresponds to the distance 
between the points residing on the two edges of the 
hyperplane. Having found such a plane, the SVM can then 
predict the classification of an unlabeled example. In fact, 
much of the SVM's power comes from its criterion for 
selecting a separating plane when many candidate planes 
exist: the SVM chooses the plane that maintains a 
maximum margin from any point in the training set [15]. 
Statistical learning theory suggests that, for some classes 
of well-behaved data, the choice of the maximum margin 
hyperplane will lead to maximal generalization when 
predicting the classification of previously unseen examples 
[10]. SVM classifiers do not require any complex 
parameters to be tuned and optimized, and they exhibit a 
great ability to generalize even when given a small number 
of training examples. The only significant parameters to be 
tuned are the choice of the kernel function and the soft-
margin parameter (capacity, regularization parameter). The 
soft-margin parameter used to determine the trade-off and 
allows us to control how much tolerance for errors in the 
classification of the training samples we should allow. It’s 
therefore, effect the generalization ability of the SVM 
classifier and prevents it form overfitting the training 
dataset [16]. The second tuning parameter is the kernel. 
SVM uses the kernel function to create the hyperplane in 
high dimensional spaces that effectively separate the 
training data. Often in the input space training, vectors 
cannot be separated by a simple hyperplane. The kernel 
projects the data to higher dimensional space to increase 
the computational ability. Finding an appropriate kernel 
function for a particular application area can be difficult 
and remains largely an unresolved issue [17]. In our 
implementation, we used gist SVM software implemented 
by Noble et al. [18]. In all the experiments, the soft-margin 
parameter is set to 1000 and employed the Gaussian Radial 
Basis Function kernel (RBF kernel).  The Gaussian Radial 
Basis function is used as it allows pockets of data to be 
classified which is more powerful way than just using a 
linear dot produce.  

 
EXPERIMENTS 

 
The performance of our technique is tested on the 

SCOP database version 1.37 PDB90 [19]. The use of 
SCOP (Version 1.37), datasets designed by Jaakkola et al 
[9] allows direct comparison with the previous work on 
protein remote homology detection. He selected for the test 
all SCOP families that contain at least 5 PDB90 sequences 
and have at least 10 PDB90 sequences in the other families 
in their superfamily. This process results in 33 test families 
from 16 superfamilies. The positive test examples are 
simulated by members of a target SCOP family from a 
given superfamily. Positive training examples are chosen 
from the remaining families in the same superfamily. 

While negative test and negative training examples are 
chosen from disjoint sets of folds outside the target 
family’s fold [20].  The generative models of each family 
are also available and they obtained from an existing 
library of SAM-T98 HMMs.    
 
Evaluation Measures of the Method Performance: The 
performance of the SVM-HMMcomb method is measured 
by how well the method can assign novel protein sequence 
to its correct family. The method can make errors by 
assigning the sequences to families to which they do not 
belong or failing to assign the sequences to families to 
which they do belong. For such a binary classification 
problem, there are two classes }1,1{ +− = {unrelated, 
related}. The positive sequences or the sequences that 
belong to the family “+1” are considered as related 
sequences, whereas the negative sequences are the 
unrelated sequences. 
 

The information encoded in the contingency table is 
used to calculate the protein homology detection 
evaluation measures. We used two evaluation measures: 
 

o Rate of False Positive (RFP), which defined as 
the fraction of negative test sequences that score 
as high, or better than the positive sequence. 

 
o We further more need to calculate the receiver 

operating characteristic (ROC) [21] of the SVM-
HMMcomb method. The ROC statistic is the 
integral of the ROC curve, which plots the True 
Positive Proportion (recall), 

)( fntp
tptpp
+

= , 

versus the False Positive Proportion (precision), 

)( fptp
tpfpp
+

= . The ROC statistic was 

calculated by scoring all the positions in the test 
set using the log-odds matrix, sorting the 
positions by score, and then numerically 
integrating tpp over fpp using the trapezoid rule.  

 
RESULTS 

 
In Fig. 2, we illustrate the overall performance of our 

protein remote homology detection method on the 33 test 
families. We also show the overall performance of other 
existing protein remote homology detection methods such 
SVM-Fisher method as a discriminative model and SAM 
as a purely generative mode. The performance is measured 
based on the median RFP. Another comparison between 
the SVM-Fisher and SVM-HMMcomb is illustrated in Fig. 
3 in terms of the maximum RFP. We plot the number of 
SCOP families with given performance on the X-axis 
while on the Y-axis we plot values for the median or 
maximum RFP.  It’s clear to notice that SVM-HMMcomb 
achieved stable RFP values for most of the families 
compared to the other methods (Fig. 2, 3).  

We report further experimental work to compare the 
performance of SVM-HMMcomb approach to the recently 
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introduced method such as SVM-Mismatch kernel 
methods [12]. The graph ranks the homology detection 
methods according to ROC. A higher curve corresponds to 
more accurate homology detection performance (Fig. 4). 

From the graph, we observe that SVM-HMMcomb 
performs better than all other methods. 
 

 

 
Fig. 2: Median RFP comparison of SVM-HMMcom method with SAM, SVM-Fisher. 

 

 
Fig. 3: Maximum RFP comparison of SVM-HMMcom method with SVM-Fisher. 

 

 
Fig. 4: ROC overall performance comparison. 
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More detailed comparison is made between our approach 
and SVM-Fisher, SAM, and SVM-Mismatch (with sub-
string length of 5, and 6) in terms of which method 
achieves better ROC scores. Family-by-family comparison 
of the SVM-HMMcomb performance against SVM-
Mismatch method is shown in Fig. 6a, 6b. Each family is 
plotted as a point ),( yx  where x is the ROC score for the 
SVM-HMMcomb and y is the ROC score for the SVM-

Mismatch method. Another close comparison is made 
between our approach and SVM-Fisher method. Family-
by-family comparison of the SVM-HMMcomb method 
performance against SVM-Fisher method is illustrated in 
Fig. 6c. Each family is again plotted as a point ),( yx  
where x is the ROC score for the SVM-HMMcomb and y 
is the ROC score for the SVM-Fisher method. 

 

  
(a) (b) 

 
(c) 

 
Fig. 5: Family-by-family Comparison. 

 
We assess the statistical significance of the differences 
among methods using two-tailed signed rank test [22, 23]. 
We represented the p-values from a two sample, 2-tailed t-
test. This means that the probability of falsely concluding 
the alternative hypothesis is the value shown. An entry (in 
bold) in the table indicates that the method listed in the 

current row performs significantly better than the method 
listed in the current column. As SVM-HMMcomb method 
perform significantly better (p-value = 0.05) than SAM 
and SVM-Mismatch with sub-string length 6.  Note that a 
bold value indicates that the p-value is less than 0.05 
(Table1). 

 
Table 1: Statistical Significance of Differences between Pairs of Homology Detection Methods. 

 
 Mismatch (5,1) Mismatch (6,1) SVM-Fisher SAM 
SVM-HMMcomb 0.170742 0.042294 0.06113 0.00033 
Mismatch (5,1)  0.471212 0.49026 0.00382 
Mismatch (6,1)   0.95855 0.01240 
SVM-Fisher    0.01820 
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DISCUSSION 
 

The SVM-HMMcomb method introduced in this 
paper, and the representation of the protein sequence, 
offers two main advantages over the Fisher and mismatch 
representations. First, it combines the power of different 
scoring methods to produce richer representation of the 
protein sequence. More meaningful features yield better 
generalization performance. While, for instance, the 
sufficient statistics used in SVM-Fisher method reflect the 
summary of the relevant information for the likelihood 
produced by forward-backward as a single scoring 
algorithm. Second; SVM-HMMcomb method is simpler, 
in the sense we need to deal with only three dimensions 
unlike SVM-Fisher and SVM-Mismatch methods which 
require more time and memory to compute the kernel 
matrix.  

The idea of combining several algorithms to increase 
the classification power is not novel [24, 25] however, the 
novelty of our method is the use of the combination in 
conjunction with SVM and applying the idea to a sensitive 
problem such as remote protein homology detection. 

One significant characteristic of any protein remote 
homology detection algorithm is whether the method is 
computationally efficient or not. In this respect, all SVM-
Fisher and SVM-Mismatch algorithms include an SVM 
optimization, which is roughly )( 2nO , where n is the 
number of training set examples. However, the 
computation of the kernel matrix in SVM-HMMcomb 
method is logically much faster and requires less memory 
since we deal with only three dimensions. The 
computational cost of the SVM optimization is only O(n2). 
For the feature extraction step; both SVM-HMMcomb and 
SVM-Fisher require O(nmp) running time. Where n is the 
number of the training examples, m is the length of the 
longest protein sequence, and p is the number of the HMM 
parameters. The (k,m) mismatch kernel can be computed in 
O( mmlnk ), where k is the length of the amino acid 
subsequence, m is the  mismatch and l is the size of the 
alphabets. Thus assuming that pk m ≈  and mlm ≈ , the 
SVM-HMMcomb and mismatch kernel methods roughly 
take the same running time for the computation of the 
kernel matrix. 

One important drawback of the method introduced 
here is the need for lot of data or prior knowledge to train 
the hidden Markov model. 
 

CONCLUSION 
 

In this study, we have introduced a simple method for 
the recognition of the remote protein homology. We 
combine techniques from machine learning and 
information extraction to capture the evolutionary 
relationships between protein sequences. This work is 
focused on achieving better protein homology detection 
with minimum fixed-length vectors representation of the 
protein sequence. This is done through incorporating the 
maximum biological information and evolutionary 
relationships into a fix-dimension of the length three. With 

this simple representation, we are able to achieve superior 
performance to previously presented protein homology 
detection methods while achieving better computational 
cost. However, SVM-HMMcomb algorithm is not 
significantly better in terms of computational efficiency 
than SVM-Fisher and SVM-Mismatch. In the future, we 
plan to investigate the SVM-HMMcomb method 
performance on a benchmark dataset developed recently 
by Liao et al. [15]. The dataset has very limited positive 
training examples and no additional horologes are added. 
Further analysis of the features extracted is remaining to be 
investigated. This analysis will make it clear whether all 
the three types of features are equally important. The 
possibility of gaining better performance by using 
additional predictors is yet to be done. It will be important 
to extend the method to identify multiple domains within 
large protein dataset.    
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