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Few years back, Jaakkola and Haussler published a method of combining generative and
discriminative approaches for detecting protein homologies. The method was a variant
of support vector machines using a new kernel function called Fisher Kernel. They be-
gin by training a generative hidden Markov model for a protein family. Then, using the
model, they derive a vector of features called Fisher scores that are assigned to the
sequence and then use support vector machine in conjunction with the fisher scores for
protein homologies detection. In this paper, we revisit the idea of using a discriminative
approach, and in particular support vector machines for protein homologies detection.
However, in place of the Fisher scoring method, we present a new Hidden Markov Model
Combining Scores approach. Six scoring algorithms are combined as a way of extract-
ing features from a protein sequence. Experiments show that our method, improves on
previous methods for homologies detection of protein domains.

Keywords: Protein homology detection; hidden Markov models; support vector
machines.

1. Introduction

Protein remote homology detection is an important problem in molecular biology,

and it has long been a goal for scientists and researchers. Homology is more gen-

eral term that indicates evolutionary relatedness among protein sequences. Two

sequences are said to be homologies if they are both derived from a common ances-

tral sequence. The terms similarity and homology are often used interchangeable

to describe sequences, but, strictly speaking, they mean different issues. Similarity

refers to the presence of identical and similar sites in the two sequences, while ho-

mology reflects a stronger claim that the two sequences share a common ancestor.1

1
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Most of the current genetic annotation systems rely on computational solutions

for homologies modeling via sequences or structural similarities. Many statistical,

sequence-base approaches have been developed for protein classification and ho-

mology detection. These including methods based on pairwise similarity between

protein sequences such as Smith–Waterman dynamic programming algorithm2 and

its approximations such as FASTA3 and BLAST.4 Further accuracy was achieved by

method based on collecting aggregate statistics, such as Profile5 and Hidden Markov

Models (HMMs).6,7 Additional accuracy was gained by using iterative methods such

as PSI-BLAST8 and SAM-T98.9 Additional accuracy was gleaned by modeling the

difference between positive and negative examples. Explicitly modeling the differ-

ence between these two sets of sequences yields an extremely powerful method.

The SVM-Fisher method,10,11 which combined an iterative HMM training scheme

with a discriminative algorithm known as Support Vector Machines (SVMs),12,13

is currently among the most accurate known methods for detecting remote protein

homology.

SVM-Fisher begins by training a generative Hidden Markov Model (HMM) for

a protein family and then, using the model to extract a representation for each

protein sequence in the form of sufficient statistics. The sufficient statistics are

then treated to produce an analogous quantity known as the Fisher score. Support

Vector Machines (SVMs) in conjunction with the Fisher scores are then used to

discriminate between protein families.

In this paper, we revisit the idea of using a discriminative framework for pro-

tein homology detection. However, in place of the Fisher scores, we present a new

representation of the protein sequence which we call as HMMs combining scores

(HMMcs) approach. The new method performs essentially the same calculation

done in the SVM-Fisher, but uses only the total probability score and the Viterbi

score, computed with respect to three different background models. Six different

scoring algorithms are combined to extract features from protein sequences of in-

terest. Both the SVM-Fisher and HMMcs methods convert a given set of protein

sequences into fixed-length vectors and then use the classification ability of the

SVMs to discriminate between protein families.

The HMMcs representation of the protein sequences offers two main advantages

over the Fisher scores. First, it combines the power of different scoring methods

to produce richer representation of the protein sequence. More meaningful features

yield better generalization performance. While, the sufficient statistics used in SVM-

Fisher reflect the summary of the relevant information for the likelihood produced

by forward-backward as a single scoring algorithm. Second; HMMcs method is

simpler, in the sense we need to deal with only six dimensions unlike SVM-Fisher

which deals with thousands of dimensions which requires more time and memory

to compute the Fisher kernel matrix.

The idea of combining several algorithms to increase the classification power is

not novel.14–16 However, the novelty of our method is the use of the combination in

conjunction with SVM and applying the idea to a sensitive problem such as remote

protein homology detection.
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2. Hidden Markov Models

A hidden Markov model is a statistical model, which is very well suited for many

tasks in molecular biology, although they have been mostly developed for speech

recognition since the early 1970s.17 The HMM generates a protein sequence by

emitting amino acids as it progresses through a series of states. Each state has a

table of amino acid emission probabilities similar to those described in a profile

model.5 There are also transition probabilities for moving from state to another.

By using a dynamic programming method one can generate a multiple alignment

of the unaligned sequences from which the model was built. Thus one can inspect

the regions in these training sequences that the process is found to be homologous.

By studying the model itself, one can glean further insight by noting that it reveals

about the common structure underlying the sequences in the family. Finally, the

model can be used to discriminate between family and non-family sequences when

employed for the database searching.18

2.1. Computing sequence likelihoods

The likelihood of a sequence is computed by using a dynamic programming proce-

dure called the forward algorithm. For all HMM states and starting at time 0, the

forward algorithm recursively computes the probability of being in state i at time

t, when the tth amino acid of the protein sequence is generated. In a real model,

many different state paths through a model can generate the same sequence. There-

fore, the correct probability of a sequence is the sum of probabilities over all of the

possible state paths. Unfortunately, a brute force calculation of this problem is

computationally unfeasible, except in the case of very short sequences. Two good

alternatives are to calculate the sum over all paths inductively using the forward

algorithm, or to calculate the most probable path through the model using the

Viterbi algorithm. Both algorithms are described below.

2.1.1. The forward recursion (Full likelihood score)

Using the forward algorithm, the new parameter estimates can be calculated in time

proportional to the number of states in the model multiplied by the total length of

all the training sequences.

Given a protein sequence X = {x1, x2, . . . , xT } and a state sequence Q =

{q1, . . . , qT } (of the same length) determined from a HMM with parameters Θ,

the likelihood of the protein X along the path Q is equal to:

p(X |Q, Θ) =

T
∏

i=1

p(xi|qi, Θ) . (1)

The likelihood of a protein sequence X = {x1, x2, . . . , xT } with respect to a Hidden

Markov Model with parameters Θ expands as follows:
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p(X |Θ) =
∑

every possible Q

p(X, Q|Θ) (2)

i.e. it is the sum of the joint likelihoods of the sequence over all possible state

sequence allowed by the model.

In practice, the enumeration of every possible state sequence is infeasible. Nev-

ertheless, p(X |Θ) can be computed in a recursive way by the forward recursion.

This algorithm defines a forward variable αt(i) corresponding to:

αt(i) = p(x1, x2, . . . , xt, q
t = qi|Θ) (3)

i.e. αt(i) is the probability of having observed the partial sequence {x1, x2, . . . , xt}

and being in the state i at time t (event denoted qt
i in the course), given the

parameters Θ.

2.1.2. The Viterbi algorithm

In protein remote homology detection, it is useful to associate “an optimal” se-

quence of states to the protein sequence, given the parameters of a model. For

instance, in the case of protein homology detection, knowing which frames of fea-

tures “belong” to which state allows locate the motif boundaries across time. This is

called the alignment of acoustic feature sequences. A reasonable optimality criterion

consists in choosing the state sequence (or path) that brings a maximum likelihood

with respect to a given model. This sequence can be determined recursively via the

Viterbi algorithm. This algorithm makes use of two variables:

The highest likelihood δt(i) along a single path among all the paths ending in

state i at time t:

δt(i) = max
q1,q2,...,qt−1

p(q1, q2, . . . , qt−1, q
t = qi, x1, x2, . . . xt|Θ) (4)

a variable Ψt(i) which allows to keep track of the best path ending in state i at

time t:

Ψt(i) = arg max
q1,q2,...,qt−1

p(q1, q2, . . . , qt−1, q
t = qi, x1, x2, . . . xt|Θ) . (5)

Note that these variables are vectors of (N-2) elements, (N-2) being the number of

emitting states.

A multiple alignment can be generated by using the Viterbi algorithm to find

the most likely path through the HMM for each sequence. Each match state in the

HMM corresponds to a column in the multiple alignment.

3. Experiments

Our algorithm for homology detection consists of two major steps. First we represent

a protein sequence as a fixed-length feature vectors (length six) using different

scoring algorithm. This can be done by training HMM on the protein family of
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interest and then construct a generative probability model. Sequences from that

family including sequences that were not used as training examples, expect to yield

higher score than those outside the family. The resulting vectors are then be used

as an input to SVM discriminators to separate each protein family from the rest.

3.1. Feature vectors generation

The first step of our procedures is to get the likelihood scores based on the two

scoring algorithms described in Sec. 2 (Full likelihood score and Viterbi score). Full

likelihood score is the negative log likelihood of the sequence while Viterbi score

is the negative log likelihood of the most probable HMM path associated with

the sequence. Each of the two methods is generated with respect to the following

background model options which end in six scoring methods:

• None (no background model).

• Sequences (find a sequence of parameters which increase the likelihood at each

step, and class of models. The Sequences option uses the average composition of

the current sequence file as background model).

• Uniform distribution model.

Each scoring method is contributed as one column in the SVM input matrix

as shown in Fig. 1. The score corresponds to an alignment of the sequence to the

model. In our method we use the global scores corresponding to global alignments

where the entire sequence is aligned to the entire HMM. This means computation

of the score begins at the first amino acid in the sequence and ends at the last

one. When a background model is used, the score is the log odds ratio, that is

the log of the ratio of the corresponding probabilities according to the HMM and

the background model. The Uniform option corresponds to a uniform distribution

model. The sequences option uses the average composition of the current sequence

file as background model.

HMMproa was used to generate the scores. HMMpro is a general purpose HMM

simulator for the modeling, analysis, classification, and alignment of biological se-

quences. Given a set of sequences, we estimated HMM parameters by Maximum

Likelihood (ML) using Expectation-Maximization (EM). A trained HMM is used

to assign a score to any sequence, fragments included.

3.2. Construction of SVM classifiers

The idea of the SVM algorithm12,13 is to map the given training set into a possibly

high-dimensional feature space and attempting to locate in that space a hyperplane

that maximizes the distance separating the positive from the negative examples.

Having found such a hyperplane, the SVM can then predict the classification of an

unlabeled example. Much of the SVM’s power comes from its criterion for select-

ing a separating hyperplane that maintains a maximum margin from any point in

ahttp://www.netid.com/index.html
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None
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            :              :            :                                    :              :        :
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V ite rb i F orwa rd

F e atur e s

Fig. 1. Feature extraction process.

the training set. Statistical learning theory suggests that, for some classes of well-

behaved data, the choice of the maximum margin hyperplane will lead to maximal

generalization when predicting the classification of previously unseen examples.19

One of the significant parameters needed to tune the SVM is the choice of the

kernel function. The kernel function allows SVM to locate the hyperplane in high

dimensional space that effectively separate the training data. In our implementa-

tion, we use the Libsvm software implemented by Chih-Chung Chang and Chih-Jen

Lin.b We primarily employed the Gaussian kernel for all classifiers. Radial basis

functions have received significant attention, most commonly with a Gaussian of

bhttp://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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the form,

K(x, y) = exp

(

−
‖x − y‖2

2σ2

)

for all x, y ∈ X . (6)

Classical techniques utilizing radial basis functions employ some method of deter-

mining a subset of centers.

We tested the performance of our technique on the SCOP database version 1.37

PDB90.19 The use of SCOP (Version 1.37), datasets designed by Jaakkola et al.11

allows direct comparison with the previous work on remote homology detection.

He selected for the test all SCOP families that contain at least 5 PDB90 sequences

and have at least 10 PDB90 sequences in the other families in their superfamily.

This process results in 33 test families from 16 superfamilies. The positive test

examples are simulated by members of a target SCOP family from a given super-

family. Positive training examples are chosen from the remaining families in the

same superfamily. While negative test and negative training examples are chosen

from disjoint sets of folds outside the target family’s fold. Details of the datasets

are available at http://www.cse.ucsc.edu/research/compbio/discriminative.

4. Results and Discussion

Figure 2 illustrates the overall performance of our protein remote homology detec-

tion method on the 33 test families. Figure 2 also shows the overall performance of

other existing protein remote homology detection methods such as the SAM-T98

method as purely generative model and SVM-Fisher method as a discriminative

model. Since most of the methods produce a probability score on a different scale,

they cannot be easily compared. We report the rate of false positive (RFP), which

defined as the fraction of negative test sequences that score as high, or better than

the positive sequence we are testing. Values for the median RFP are shown on the

X-axis, while on the Y -axis we plot the number of SCOP families, out of the 33

families that we tested. From Fig. 2, it is clear to notice that HMMcs achieved the

lowest RFP values compared to all other methods.

From the previous literature we found that, the only results presented by

Jaakkola and Haussler10 to evaluate the performance of the SVM-Fisher were the

Rate of False Positives (RFP), so the discriminate function is not used properly

and hence the SVM margin is ignored, in this way, for instance, the discriminate

function could classify every single data point as negative but the RFP could still

be zero. By just using the RFP you are putting the margin right up against the

negative data, therefore in this regard, we are presenting very favorable results in

Figs. 3 and 4. The two figures illustrate two indices used to evaluate the accuracy —

sensitivity and specificity. They describe how well a test discriminates between pro-

tein families. The sensitivity is the proportion of true positives, while the specificity

is the proportion of true negatives.
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A Receiver Operating Characteristic (ROC) curve is also used to evaluate the

HMMcs performance (as shown in Fig. 5). ROC is a graphical representation of the

trade off between the false negative and false positive rates for every possible cut

off. By tradition, the plot shows the sensitivity on the X-axis and the specificity on
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of the ROC space, the more accurate the test; the true positive rate is high and

the false positive rate is low. Statistically, more area under the curve means that

it is identifying more true positives while minimizing the number/percent of false

positives.

More detailed comparison is made between our approach and SVM-Fisher,

method in terms of which method achieve lower RFP in all or most of the 33

families. Family-by-family comparison of the HMMcs performance against SVM-

Fisher is shown in Fig. 6. Each family is plotted as a point (x, y) where x is the

median RFP for the SVM-Fisher and y is the median RFP for the HMMcs method.

From Fig. 6, it is clear to see the superiority of the HMMcs in achieving low RFP

in most of the 33 families.
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5. Conclusion and Future Work

In this paper, we have presented a new approach to recognize remote protein ho-

mologies. The main contribution of the approach is a simple method of construct-

ing feature vectors and the combination of this representation with a classification

method capable of learning in very sparse high-dimensional spaces. The method is

a HMM based approach to combine different scoring algorithms. Combination of

different scoring algorithms has proved efficient to increase the generalization per-

formance of individual scoring methods. The experiments show that this method,

which we call the HMMs combining score (HMMcs), improves on previous methods

for classifying protein domains based on remote homology. Note that, recently, two

more approaches for detecting remote protein homology have been developed and

showed good performances.20,21 The analysis and comparison of these methods as

well as testing the HMMcs method over different datasets such as the one developed

in Ref. 20 will be the subject of future research. Moreover, the proposed method

has to be tested on other applications.

Acknowledgments

This work was supported in part by Malaysian Ministry of Science, under the

Intensification of Research in Priority Areas (IRPA, Project No.: 74017). The au-

thors thank Nello Cristianini (University of California, Davis) and Chih.-Jen Lin

(National Taiwan University) for their valuable comments and cooperation.

References

1. C. Gibas and O. Jambeck, Developing Bioinformatics Skills (O’reilly, CA, 2001).
2. T. Smith and M. Waterman, Identification of common molecular subsequence, J. Mol.

Biol. 147 (1981) 195–197.
3. W. R. Pearson, Rapid and sensitive sequence comparisons with FASTAP and FASTA,

Meth. Enzymology 183 (1985) 63–98.
4. S. F. Altschul, W. Gish, W. Miller, E. Myer and J. Lipman, Basic local alignment

search tool, J. Mol. Biol. 215 (1990) 403–410.
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