
Zaki and Tennakoon BMC Bioinformatics (2017) 18:435
DOI 10.1186/s12859-017-1840-4

SOFTWARE Open Access

BioCarian: search engine for exploratory
searches in heterogeneous biological
databases
Nazar Zaki* and Chandana Tennakoon

Abstract

Background: There are a large number of biological databases publicly available for scientists in the web. Also, there
are many private databases generated in the course of research projects. These databases are in a wide variety of
formats. Web standards have evolved in the recent times and semantic web technologies are now available to
interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases
can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource
Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial.
However, exploratory searches need customized solutions, especially when multiple databases are involved. This
process is cumbersome and time consuming for those without a sufficient background in computer science. In this
context, a search engine facilitating exploratory searches of databases would be of great help to the scientific
community.
Results: We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on
biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of
the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine
provides a graphical interface based on facets to explore the converted databases. The facet interface is more
advanced than conventional facets. It allows complex queries to be constructed, and have additional features like
ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the
most important facet values when a large number of choices are available. For the advanced users, SPARQL queries
can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of
SPARQL endpoints. We used the search engine to do an exploratory search on previously published viral integration
data and were able to deduce the main conclusions of the original publication. BioCarian is accessible via http://
www.biocarian.com.
Conclusions: We have developed a search engine to explore RDF databases that can be used by both novice and
advanced users.

Keywords: Search engine, Exploratory search, Biological databases, Heterogeneous databases, RDF, SPARQL

Background
There is a large number of biological databases that have
become available in the public domain in recent years.
According to the latest NAR database edition, there are
more than 1600 listed database [1]. This is an under
representation of the total number as there are many

*Correspondence: nzaki@uaeu.ac.ae
Department of Comp. Science and Software Engineering, College of Info.
Technology, United Arab Emirates University (UAEU), PO Box 15551 Al Ain,
United Arab Emirates

commercial and private databases. The number and size
of private databases are in the rise [2, 3] mainly due to
high throughput technologies being used in biological
research. These biological databases can be in standard
formats like flat files, VCF, XLS, GFF, BED etc [4, 5]. or
other user defined formats. Furthermore, some databases
are only accessible through an API or via a website (e.g.
genecards.org).
Searches on these databases can be categorized as exact

searches and exploratory searches. In exact searches user

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1840-4&domain=pdf
http://orcid.org/0000-0002-6259-9843
http://www.biocarian.com
http://www.biocarian.com
mailto: nzaki@uaeu.ac.ae
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 2 of 15

has the complete idea of what he is searching for while
in exploratory searches, user only has a vague idea about
what he is searching for. An example for the former type
of search is a search for information on a specific gene,
and an example of the latter type of search is finding the
answer to the question “what are the possible cancer caus-
ing genes in an experiment?”. Finding the answer to an
exact search is not difficult and all major databases [6–10]
have excellent interfaces for such searches. However, the
question of exploratory searches of these databases is not
well addressed.
To find an answer to a query, a scientist may gener-

ally need to access several databases. For example, finding
a mutation relevant to a disease using the result of an
NGS experiment may require searching across several
databases containing information on genes, proteins and
diseases. For a scientist who is not versatile in program-
ming and IT, this type of a search may be a tedious
task. Having a search engine for performing exploratory
searches across several databases will be very useful for
them.
Semantic web technologies have developed methods

for linking diverse sources of data. As such, it pro-
vides a well-established method for integrating different
databases. Semantic web methods require databases to be
in Resource Description Format (RDF) format. There are
several popular databases that are already in RDF format
(e.g. Ensemble [7], UniProt [10], GWAS [6]) and several
projects are actively converting popular databases into
RDF format (e.g. [9, 11]). Nevertheless, there are many
databases like those at the National Center for Biotech-
nology Information (NCBI) that are not accessible in RDF
format. To make queries from RDF data, an SQL-like
query language called SPARQL (A recursive acronym for
SPARQL Protocol and RDF Query Language) has been
developed [12]. Its learning curve is not very steep espe-
cially for those having a background in SQL. SPARQL is
a powerful language that can query multiple databases.
Through its federated search capabilities, SPARQL can
even run queries on databases that are hosted by different
institutions. Furthermore, SPARQL can be integrated with
full-text searches. SPARQL can be very useful in database
searches due to these features.
There are many methods used to access semantic

databases. A common method is to provide an interface
to write direct SPARQL queries. The interface may sim-
ply be a text box to write queries or may contain some
additional features (for example, enumeration of avail-
able values for query construction and query templates
that users can customize). There are query builders that
construct SPARQL queries graphically [13–17]. These
constructors may support federated queries [17] and
the construction methods range from building a query
from scratch to assembling elements from pre-defined

structures of the database [15]. Another technique is to
explore the databases using graphs that show the connec-
tions between the elements in the databases [16].
An advantage of direct SPARQL querying is that the full

power of SPARQL can be unleashed. However, for users
without any knowledge in SPARQL this type of interface
is not valuable. The graphical query builders may be suit-
able for constructing simple queries, but advanced query
construction is not possible with these builders as they
support only a limited set of commands, and the user
interface becoming convoluted when many entities are
involved in a query. Users may find that investing time to
learn the basics of SPARQL to be better than spending
time on constructing queries using the builders.
Some direct SPARQL based interfaces provide the abil-

ity to do free-text search, but some do not have free-text
search integrated. Query constructors evaluated here do
not provide free-text search capabilities. Several graph
based solutions and facet based solutions have free-text
search capabilities. However none of the indirect query-
ing methods had the capability to initiate a search with a
SPARQL query.
When performing exploratory searches, the user starts

with a broad idea in mind and starts to modify his/her
search based on the results presented in previous
searches. Therefore, it is essential that the user be pro-
vided with information that can help guide his/her search.
A common way of providing such information is via
facets. Facets provide a list of categories and available
choices for each category in the search result. They help
users narrow down the search space. Faceted navigation
will also have issues when the number of facets and facet
values become large. They would be problematic to dis-
play and if a facet contains hundreds of facet values, it will
be hard to navigate. Existing faceting systems use rank-
ing by frequency and displaying an arbitrary number of
facet values to handle such cases. These methods do not
completely address the issue, and we need to find better
solutions. It would be valuable if the display of facets can
be constructed in a way that can cut through clutter and
help users get an idea about the relevance of each facet
value.
Among themethods presented, facets are themost intu-

itive and familiar approach for an average user, since
anyone familiar with browsing the internet is bound to
have come across faceted navigation in many forms. In the
context of exploratory searches writing direct SPARQL
queries and using query constructors is not a practical
solution as such an approach will need the creation of new
queries in each iteration of the search.
We will survey some semantic web browsing solutions

that incorporate facets. Openlink Virtuoso’s [18] faceted
search is a popular facet interface used by many projects
like Bio2RDF [11] and DisGeNet [8]. It can start with

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 3 of 15

a free text search and provides a basic faceting service.
As it is a general faceted browser, the descriptions of
facets and facet values are taken directly from the RDF
database. These descriptions can be cryptic. Compared
to this, Linked Life Data [9] provides a modern faceting
system that is user friendly. Apart from these traditional
faceting methods there are several other methods that
have been developed. These are not practically used in
large scale biological databases. mSpace [19] is a sys-
tem where facets are organized in a changeable hierarchy
and selecting a facet value high up in the hierarchy will
affect the selection of the facets lower in the hierarchy.
Longwell [20] is a tool in the Simile project that can be
deployed in a generic RDF dataset to create a faceted
search engine uses the display vocabulary Fresnel [21] for
reporting the results. /facet [22] is a faceted browser that
can generate facets automatically on heterogeneous linked
data when ontological information about the dataset is
available. Parallax [23] is a faceted browsing concept that
uses facets to browse connected sets. Humboldt [24] and
Tabulator [25] are two more faceted browsers that allow
switching between different sets of facets. In gFacet [26]
facets are represented as nodes in a graph where arcs
depict the dependencies of the facets. Faceting meth-
ods generally show facets directly connected to the query
[19, 20, 27] while some can filter using facets that are
not directly connected [23–25, 28]. Some methods show
the complete facet hierarchy [25, 28] while in others
[23, 24, 27] the hierarchy is not completely visible.
We observe that most biological databases are stored

in structured file formats (or they can be accessed in a
structured format like JSON or XML) and they can be
converted in to tabular formats. There are existing meth-
ods for converting tabular data into RDF format [29–33]
(W3C recommendations can be found at www.w3.org/
TR/csv2rdf). Some try to automate the conversion pro-
cess [34, 35] and others like Google Refine takes a semi-
automated approach. There are converters targeting fixed
data sets (e.g. NCBI2RDF [36] providing an RDF interface
to NCBI data) and more general methods like D2R [37]
designed to map relational database schemas into OWL
and RDF vocabularies.
In this paper we present BioCarian, a search engine

for exploring biological databases utilizing semantic web
methods. We start by converting tabular data into RDF
format. This conversion not only turns tabular data to
RDF, but also generates some additional information that
helps in building a faceted search engine. The search
engine provides an interface where SPARQL queries can
be run on the converted RDF database. A free-text search
option and a user friendly editor is provided to enter
SPARQL queries. For those users who do not know
the SPARQL language, an enhanced faceted interface to
explore the databases is provided. The facet interface has

several ranking methods to identify most relevant facet
values in a given context. These methods can guide users
in locating a narrow set of facet values when a large num-
ber of choices are presented. The facet interface can also
be used to create advanced SPARQL queries. Further-
more, the search engine integrates the facet interface with
free-text and custom SPARQL queries.

Implementation
BioCarian requires an RDF database with a specific struc-
ture to operate on. This database can be the union of
several different databases. The original databases maybe
in various formats like flat files, variant call format(VCF),
excel(XLS), general feature format(GFF), browser exten-
sible data(BED) or RDF. However, all of these can be
converted to tabular data. (The instructions and tools for
converting popular file types to tabular data are provided
in the BioCarian website.) The search engine requires
the knowledge of the database structure to properly dis-
play search results and facets. This structure is defined
using Resource Description Framework Schema (RDFS)
(https://www.w3.org/TR/rdf-schema/). For this discus-
sion, we will assume that the databases are already in
tabular form.

Design of the database
A table can be thought of as a collection of objects where
each row is a subject and the columns are predicates.With
this abstraction, each cell in the table can be represented
as a subject-predicate-object triplet in RDF. Each database
is assigned a unique namespace. The i th row will be given
the subject name N : i, where N is the namespace of
the database. The j th column of the table will be given a
descriptive predicate name, N : Pj. The cell (i, j) will be
an object. The basic goal of the search engine is to find
row subjects matching the search criteria and displaying
the data related to those subjects. Facets for a search result
are generated by enumerating predicates corresponding
to row subjects in the result, and facet values are the
enumeration of corresponding objects of the predicates.
As an example, consider a table containing data

from the dbSNP database. It can be assigned the
namespace www.dbsnp.com. It may have a column
with the name SNP_Name. Suppose the 100th row
contains the value rs17216163 as the SNP_Name.
This can be modeled as the (subject, predicate, object)
3-tuple (www.dbsnp.com\100, www.dbsnp.com\SNP
_Name, rs17213)
The search engine is presented with a collection

of databases in general. Each database is assigned a
special rdf:type called “Database”. Some databases
maybe contained inside other databases. For example,
dbSNP and refSeq databases are contained inside the
NCBI database collection. The databases are modeled

www.w3.org/TR/csv2rdf
www.w3.org/TR/csv2rdf
https://www.w3.org/TR/rdf-schema/
www.dbsnp.com
https://www.dbsnp.com\100
https://www.dbsnp.com\SNP_Name
https://www.dbsnp.com\SNP_Name

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 4 of 15

using rdfs:Class and rdfs:subClass resources.
Each database is defined as having rdf:type of
rdfs:Class. If the database is inside the class C then it
is considered to be an rdfs:subClass of C. Consider
the example of Fig. 1, where dbSNP and refSeq are from
the NCBI database collection, and PubMed is another
independent database. The name of each database should
be unique. We can model these as

dbSNP rdfs:type rdfs:Class

refSeq rdfs:type rdfs:Class

NCBI rdf:type rdfs:Class

dbSNP rdfs:subClass NCBI

refSeq rdfs:subClass NCBI

PubMed rdf:type rdfs:Class

The search engine will determine the available databases
and display the search results separated by the database.

Database structure
The columns of a tabular database corresponds to pred-
icates. The rdfs:domain resource is used to describe
this relationship between a database and a predicate. If
predicate P is from a column in database D, we express
this by the tuple.

P rdfs:domain D

There are predicates that are not independent of each
other. For example, the chromosome and the location
of a Single Nuecleotide Polymorphism(SNP) might be
recorded as two column entries in a table. However,
displaying the location by itself is meaningless without
any knowledge of a chromosome value. Furthermore,
independently selecting facet values from dependent
facets can lead to the formation of bad queries. In
such cases, the contents of one facet must be updated
depending on the choices in the other facet. Two facets
F1 and F2 that are not independent are indicated
by the resource rdfs:seeAlso . i.e. we can write

F1 rdfs:seeAlso F2

or

F2 rdfs:seeAlso F1

When facet values are generated, the dependent facet
value is added as a prefix separated by a colon.
As an example, consider a table of SNPs that contain

two columns indicating the chromosome and genomic
co-ordinates of a SNP. Although they are independently
stored, genomic co-ordinate will be meaningless if shown
by itself as it will be just a set of numbers without any
context (for example, there may be several SNPS having
the same genomic co-ordinate in different chromosomes
and the user will have no idea which is which). However,
if we add the chromosome separated by a colon as a pre-
fix to the genomic co-ordinate, it will provide the required
context.
Additional attributes for the database can be speci-

fied. In the dbSNP table previously described, we gave
the predicate the short name SNP_Name that is not very
descriptive. Rather than this name, we can assign a more
human-readable name such as Name of the SNP to
be displayed by the search engine. In the database some
facet values are not very useful for the user. For exam-
ple some facet values might be constant or unrelated (like
the bin numbers in the genome browser tables). These
facets can be marked as hidden and the browser will not
generate facets for them unless the user specifically issues
a command. It is not necessary to index facets like the
strand or p-values for free-text search. The former will
result in noisy hits and the latter is unlikely to be free-
text searched. Such facets can be marked as not to be
indexed. We can also specify the data type of objects and
the order a given predicate and its value are shown in the
result screen. These facet related properties are described
as RDF statements about corresponding predicates.
The user can either write the database structure by hand

or a script is included that will create the structure from
a configuration file. The vocabulary adapted by Biocarian
to describe the structure of databases is less complex than

Fig. 1 Example of a collection of databases which includes dbSNP and refSeq (from the NCBI), and PubMed (independent database)

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 5 of 15

approaches like D2R. It assumes that the table conversion
has already been done and so does not require the specifi-
cations needed to run the conversion like D2R. Compared
to other methods, converting the database schema is only
a part of the conversion process. Biocarian needs to add
extra information that will facilitate the display and gener-
ation of facets, as well as the display of search results. i.e.
Biocarian describes the structure of a database to be useful
for a faceted search engine in a way similar to Fresnel [21]
describing how RDF entries are to be displayed.

Design of the search engine
The search engine can perform free-text, SPARQL based
or facet based searches. Faceted searches can be combined
with both free-text and SPARQL bases searches. If the
user starts with a free-text search, the results of the query
along with related facets are displayed. In a SPARQL based
search, user uses an editor to write SPARQL queries. All
the available facets are shown if the user prefers a faceted
search.
The search engine uses a model, view, controller design.

Figure 2 shows the outline of Biocarian’s operation. The
controller processes the user query entered via a free-text
search box, an editor for SPARQL or facets. The models
interact with the RDF database. They convert the queries
gathered from the controller into SPARQL queries, sends
them to a specified SPARQL endpoint and receives the
query results. The views display the query interface and
updates the user interface by displaying the search results
and facets.
For free-text and SPARQL based queries, the facets are

generated based on the search result. The results and
facets are arranged by the database. For free-text searches,
a score that reflects the quality of text match and a star
rating that shows the relevance among the search results
is displayed. The user can explore the databases he/she
chooses by selecting facets. Complex queries can be built
by using conjunction and disjunction of facet values.
The search engine is targeted at biological databases.

When it encounters ID’s for genes, proteins, SNPs, path-
ways and publications, hyperlinks to find additional data
on these entities is provided. Furthermore, the design of
facets is done aiming to accomplish common tasks in
biological research. Typically, users exploring biological
databases are interested in the average or extreme facet
values or in searching for specific facet values. For exam-
ple, users are interested in genes that are appear with a
normal, high or low frequency or might want to know if a
specific gene is available. The facet values are color coded
with grading to show how far each value is from the aver-
age. This will enable users to get a visual impression of the
facet value distribution at a glance. Users can select, then
zoom in and out of extreme and average values in facets.
When there is a large number of choices available for facet

values, the number of choices can be reduced by limiting
them to what the user wishes to investigate. Users can also
free-text search for specific facet values. If a facet value
has a high frequency in the database, it has a high chance
of appearing in search results just by chance. Users might
like to avoid such cases and concentrate on results that
are more specific to his query. We have designed our facet
navigation to cater these types of common searches.
For free-text queries, a reverse-text index constructed

using Apache Lucene is used together with SPARQL.
Lucene is used to create the reverse index for free-text
search. We make use of the built-in support Jena provides
for Lucene. When constructing the free-text index, val-
ues allowed to be free-text searched are indexed with the
subject as the key. We use StandardAnalyzer as the
default text analyzer, however this can be changed by the
user. The index is built using the default index builder. It
indexes plain literals and stores the complete literal. Only
the literals corresponding to user-specified properties are
indexed. If there is a free-text match by Lucene, the cor-
responding subject in the RDF database will be returned.
The storage of RDF is done using the TDB component of
Jena with default settings.

Searchingwith SPARQL
The search engine generates a SPARQL query that
returns all the subjects in the database matching the
search criteria specified by the user interface. The search
criteria can be a free-text or SPARQL query together
with a facet value selection. If free-text is entered, it is
translate into a SPARQL query that searches the Lucene
index and returns matching subjects with the match
score. If a SPARQL query is entered, it must be written
so that a list of row subjects are returned. The following
algorithm shows how the facets and facet values are
generated.

if (User defined SPARQL Query) then
K=User defined SPARQL Query

else
K= SPARQL query to get the list of subjects contain-
ing the free-text

end if
S=result of querying for K
for each distinct ?s in S do

P = P ∪ {predicates containing?s}
end for
for each ?p ∈ P do

Fp = objects ?o satisfying the triple pattern ?s ?p ?o
end for
return P containing facets for the user query and Fp for
p ∈ P containing facet values for the facet p

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 6 of 15

Fig. 2 Design of BioCarian: Biocarian is designed using an MVC model. The controller accepts queries and the model interacts with the RDF
database, while the view is responsible for the final display of the web pages

For a free text search only the best matches (default
value = 300) that do not score below a percentage of
the top score (default 25%) are retained. The subjects are
sorted according to the match score so that the most rele-
vant hits appear first. If there are more than 300 hits, user
is given the option to see more results.

Conversion of queries to SPARQL
We will now describe the process for converting queries
into SPARQL. For each type of query (free-text, SPARQL
or faceted) there is a templated query called the
Key_Query. For a simple free-text query, this will have the
form

SELECT DISTINCT ?subject ?score

WHERE

{

(?subject ?score) text:query

(’$Query_{S}tring’ Search_{L}imit).

}

where Search_Limit is the number of best matches
to retrieve from the text index. If facets are used to add
additional conditions, the Key_Query will have additional
restrictions. For example the query,

SELECT DISTINCT ?subject ?score

WHERE

{

(?subject ?score) text:query

(’$Query_String’ Search_Limit).

?subject ?p ?o .

(?p=PRED1 && ?o=V1)||(?p=PRED1 && ?o=V2)

?subject PRED2 ?A0

FILTER(?A0 IN (V3,V4))

}

will add to the previous query entries having facet PRED1
containing values V1 or V2 and restricted to the facet val-
ues V3 and V4 from the facet PRED2. The full algorithm
for constructing the Key_Query using different templates
is given in the Supplementary (Additional file 1).
Once the Key_Query has been constructed, information

necessary for facet generation can be gathered using the
following query:

SELECT (fn:concat(?facet,Seperator,

?facetpred) AS ?facetname)

(COUNT(?subject) AS ?total)

WHERE

{

{

Key_Query

}

?subject ?facetpred ?facet .

}

GROUPBY ?facet ?facetpred

Here, Seperator is some special string. This query will
return a set of 2-ples of the form (?facetname, ?total).
In these 2-ples, ?facetname will have a facet and a facet
value separated by the special string Seperator, and ?total
will be the frequency of that facet value in the query
result.

Displaying query results
Executing Key_Query will return a set of values corre-
sponding to the variable ?subject. For free-text queries
each ?subject will have a score ?score associated with
them. The variable ?subject collects all the subjects
that match the search criteria. All the predicates and
objects related to these subjects can be retrieved by the
query

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 7 of 15

SELECT ?subject ?predicate ?object ?score

WHERE

{

{

Key_Query

}

?subject ?predicate ?object .

}ORDERBY(?subject)

The ?subjects will be sorted by ?score in case of a
free-text search, and will be separated by the databases
they belong to. If a predicate is not marked to be dis-
played in the database specification, it is discarded. Other
predicates are sorted by the display order stated in the
database specification and the user-friendly name is dis-
played along with the corresponding object. If the object
has a known type it is formatted with additional infor-
mation (e.g. clickable link or a clickable button providing
additional information about the object).

Facet value generation for exploratory searches
Let us assume that a database contains N distinct facet
values for a given facet, labeled n1, . . . , nN and there are
c1, c2, . . . , cN entries in each category respectively. Assume
that there are c′

1, c
′
2, . . . , c

′
N entries respectively in each

category after a query. In cases where the user might
want to know some property that has the highest/lowest
representation, we can rank facet entries by the descend-
ing/ascending order of their frequency c1, c2, . . . , cN .
If the user is browsing a facet that is ordered by the fre-

quency of facet values, the average values can be displayed
by reporting the facet values having frequency in the inter-
val (μ −Mσ ,μ +Mσ), whereM is some positive number
and μ is the mean and σ is the standard deviation of the
facet value frequencies. By decreasing M, values that are
closer to the average can be found. For finding values in
the upper (lower) extremes, frequencies that are larger
(lower) than μ + M̄σ(μ − M̄σ) can be filtered for some
positive integer M̄. By changing the value of M̄, the values
close to the average can be zoomed in and out.
In addition, we can give an idea about the extremeness

of a facet value with frequency f by assigning it a color
with brightness that is proportional to f−μ

σ
. Figure 3 shows

two examples where such color gradients have been used.
If (f − μ)/σ > 0 a yellow hue has been used (i.e. facet val-
ues that have a higher frequency than average will appear
with lighter shades of yellow). Otherwise, a green hue has
been used (i.e. facet values that have a lower frequency
than average will appear with lighter shades of green).
In some cases the frequency counts can bemisleading. If

a facet value is over-represented in a database, then it may
appear with a high frequency in a facet simply by chance.
Sometimes it is better to have an idea of how important
each facet value is to the result of the query. A way to

solve this problem is to find the probability of a facet value
appearing by chance in any query. If this probability is low,
then the facet value has a high significance for the current
query.
Let us consider the facet value ni. We would expect an

entry in this category to be selected with a probability
pi = ni

�N
j=1nj

.We can calculate the probability of selecting n′
i

elements from the category ni by the formula αi = P(X =
n′
i|Bin(�N

j=1n
′
j, pi)). A lower value of αi indicates that the

category ni appears with a higher or lower probability than
we expect. We can rank these categories by the ascending
order of αi. Similarly, we can rank facet values accord-
ing to their over or under representation. βi = P(X >

n′
i|Bin(�N

j=1n
′
j, pi)) and γi = P(X < n′

i|Bin(�N
j=1n

′
j, pi))

expresses the probabilities that the category ni is over or
under represented in the query. When probabilities have
been used to rank facet values we can use a different
approach to filter relevant results. If the top probability is
PM , we report only those facet values with the probability
smaller than λPM for some positive λ. This will reject all
the facet values with probability exceeding the best facet
value by λ times or more. By changing the value of λ the
significant values can be zoomed in and out.

Remote queries
Biocarian can be used to query data that is not stored
locally. The first way is to point the SPARQL end-
point to a remote SPARQL endpoint (this option is
under the settings menu). If the new SPARQL endpoint
has the required structural information, Biocarian can
function on it as if is locally hosted. Biocarian also
supports federated queries through its SPARQL edi-
tor. Standard SPARQL syntax for generating federated
queries can be used, and an example can be found in
the predefined queries available in the SPARQL edi-
tor. This example shows how to get the gene id from
a uniport ID via a federated search, using the Uniprot
endpoint.

Overview of the browser interface
Figure 4 shows the main parts of the user interface. A
search bar is provided to input free-text search. The facets
are divided into three groups: related facets, deleted facets
and hidden facets. related facets contain currently active
facets and hidden facets contain facets that are not gen-
erally important. User can delete active facets if they are
cluttering the interface, and they will appear in deleted
facets. Facets in the deleted and hidden facets can be acti-
vated any time. A context menu is provided (by clicking on
the chevron near the facet) and this contains the options
to operate on facets and facet values. Facet values can be
ranked, filtered and sorted using the context menu. Click-
ing the check-box near a facet will activate a conjunctive
search for that facet.

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 8 of 15

Fig. 3 Facet display with color gradient showing the extremeness of facet values. Green indicates that the frequency of such a value is above
average. Yellow indicates that the frequency of facet value is much less than average. Lighter the color more extreme the deviation will be

To keep track of the current search, a criteria box is
provided. This give a user friendly description of the cur-
rent search state. If there are known biological entities (in
this figure an OMIM ID and an Ensemble ID are given)
clickable buttons will be generated to provide additional
information from databases related to them. For free-
text searches, a score and a star rating will be displayed
to show the absolute and the relative relevance of the
text match.

Results
We used our framework to construct a search engine that
browses several selected public databases. The databases
represent a sample collection of DNA-level data (dbSNP,
GWAS, Ensembl), Protein data (UniProt), pathway data
(KEGG, Reactome), and disease data (OMIM, DisGeNET)
and contain more than 1.4 million 3-tuples. A private
database has also been added that contains viral inte-
gration sites in the liver cancer patients identified in the

Fig. 4 Biocarian has several features that can be used to organize facets and facet values. Facets can be deleted and activated with a context menu.
The context menu also provides options to operate on facet values by ranking, filtering and sorting them. There is criteria box (shown as an inset)
that shows the user the conditions of the current search

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 9 of 15

paper [38]. Sung et. al conducted a WGS study on liver
tissue samples taken from 81 HCC patients. The samples
were taken from tumors and adjacent normal liver tissue.
The authors made the following observations.

1. HBV integration is more frequent in the tumors
compared to normal tissues. Furthermore,
integrations were present in 76 of 88 samples
(≈ 86.4%) examined and are relatively frequent.

2. Recurrent integration events (where an integration is
considered to be recurrent if it appears in at least 4
samples) in the genes TERT, MLL4 and CCNE1 were
observed in tumor samples and account for 31 of 76
(≈ 40.8%) of the tumor samples with HBV
integration.

3. HBV integrations at gene SENP5 was discovered in
three samples.

4. Most integrations were near the coding genes in 209
of 399 (≈ 52.4%).

5. Among the samples having HBV breakpoints in both
tumor and normal tissues, only in sample 262 there
was one break-point shared between the tumor and
non-tumor samples, indicating that HBV integration
patterns differ in the tumor and normal samples.

6. Most of the HBV breakpoints in tumor samples were
located in known coding genes, and were
significantly over-represented in exon and promoter
regions. In the HBV breakpoints in non-tumor
samples that were located close to genes, breakpoints
were mainly found in introns.

7. Only two common genes affecting both normal and
tumor tissues were found, and they affected different
individuals through integrating to HRSP12 (in
samples 272T and 276N) and INPP4B (in samples
70T and 98N).

8. Approximately 40% of breakpoints observed were
restricted to where the viral enhancer, X gene and
core gene are located.

In this section, we will describe how BioCarian can be
used to explore this dataset and generate these observa-
tions. From the browser we can see that 77 samples out of
88 contain integrations (a percentage of 87.5%), and there
are more integrations in the tumor samples (344) com-
pared to the normal samples (55) (Fig. 5a). The original
paper reports 76 samples, but the list of integration pro-
vided actually shows 77 samples, as correctly reported by
the browser.
We will next search for the recurrent integrations (i.e.

integrations in genes that appear at least 4 times in the
samples). There are 114 genes present in the database
(Fig. 5b). This is a large number to process.
We first study the recurrence in tumor samples by

selecting only the tumor samples. There are still 82

genes available. To get a narrower set of genes, we get
the extreme valued genes from the context menu. Ini-
tially it shows the two genes with most extreme fre-
quencies, and selecting “More” option from the context
menu shows 5 genes that have at least 4 integrations
(Fig. 5c).
We can see all the integrations mentioned in the paper.

The color of the facet values becomes lighter as their
frequency deviates more from the mean of the frequen-
cies. For example, we can see that hTERT and MLL4 have
much higher frequencies than expected in the tumor sam-
ples. When we study the hTERT, MLL4 and CCNE1 genes
mentioned in the paper, we see that they have a high
number of integrations, suggesting possible recurrence.
However we need to see the samples they appear in to
determine whether they appear in at least four separate
samples. We see that they recur in 19,9 and 4 samples
respectively. Other samples do not meet the stated cri-
teria for recurrence. Then integration of C8orf34 and
SPTL3C appear only in samples 71 and 23 respectively
(Fig. 6). In summary the integrations appear in 42.1%
(32/77) samples.
When Normal tissues are examined for recurring inte-

grations by looking at the number of integrations, we see
that there is only one candidate (FN1) for recurrence in
more than 4 samples. In fact, if we crop the list of possi-
ble genes by significance, we are only left with only two
genes, including this gene (Fig. 7). We can see that FN1
does appear in 5 distinct samples.
In the regions where integrations have happened, we

can see that intronic and exonic regions contain more
integrations compared to intergenic regions. Since the
intergenic regions are much larger than the intronic and
exonic regions, we can suspect that intergenic regions are
under-represented in integrations. Similar observations
leads us to suspect that these breakpoints are signifi-
cantly over-represented in exon and promoter regions.
Similarly, we can see that most of the integrations
(304 out of 399 of them) happen in protein coding
genes (Fig. 8).
We will next look at genes that have integrations in

both normal and tumor samples. We can isolate them
using a simple SPARQL query entered to the search
engine. This query can be found as a template in the
SPARQL editor. The resulting facets give us informa-
tion that shows that three genes HRSP12, INPP4B and
ZNF827 contain integrations in both the normal and
the tumor samples. In fact, one of these integrations
ZNF827 has been missed out in the original paper
(Fig. 9a).
We can find integrations that appear in the same sam-

ple. The simple SPARQL query given below can identify
the samples that contain integrations in both normal and
tumor samples, and in the same chromosome.

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 10 of 15

Fig. 5 Illustration of advanced exploration of genes related to HBV integration. Our goal in this case is to find recurrent infections of genes in tumor
samples where at least 4 integrations have been reported. As we can see, the initial set of genes retrieved is quite large (a). Therefore, we use
BioCarian context menu to retrieve the recurrent integrations (b). To get a narrower set of genes, we get the extreme valued genes from the context
menu. Initially it shows the two genes with most extreme frequencies, and selecting “More” option from the context menu shows only 5 genes that
have at least 4 integrations (c)

SELECT DISTINCT ?subject

WHERE

{

?tumor HBV:TISSUE ’T’ .

?normal HBV:TISSUE ’N’ .

?tumor HBV:SAMPLE ?sample .

?normal HBV:SAMPLE ?sample .

?tumor HBV:CHR ?chr .

?normal HBV:CHR ?chr .

?subject HBV:SAMPLE ?sample .

}

This produces a narrow list of 71 breakpoints. We will
next sort them alphabetically and go through the list to see
if there are two nearby integrations. And we see that we
can find the integration mentioned in the paper (Fig. 9b).

Fig. 6 Exploring each of the candidate genes for recurring integrations shows the actual number of distinct samples integrations appear in. Here we
specifically select hTERT gene, and can directly see it appears in 19 distinct samples and is thus a recurrent integration

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 11 of 15

Fig. 7 Exploring genes related to HBV integration. Our goal is to find recurrent infections of genes in normal samples where at least 4 integrations
have been reported. We can see that there is only one candidate satisfying this criteria, FN1. However, we use the context menu to see which genes
are significant, and only two genes are returned

Finally we see how the integrations are distributed in the
HBV genome. We can see that 39% of them are around
the HBV protein X and Core protein regions (157 out
of 399) (Fig. 9c). We can conclude that the observations
mentioned in the paper can be found using an exploratory
search with our search engine.

User survey
We conducted a survey on the usability and the useful-
ness of Biocarian by asking a group of 20 undergraduate
biology students from the Department of Biology, College

of Science, UAEU to compare it along with three other
semantic-web related faceted search engines. The other
chosen search engines were the linked life data search
engine, Bio2RDF virtuoso faceted browser and GoP-
ubmed. The users were asked to rank different aspects of
the search engines in a scale of 1 to 5 with 1 being bad, 3
being average and 5 being excellent.
Figure 10 shows the results for the weighted average of

the ratings. The users have rated Biocarian as the most
user friendly and having the best design, with Bio2RDF
and it’s HTML-browser like interface being ranked lowest

Fig. 8 Exploring regions of HBV integration. Biocarian is being used here to see which regions show a preference to viral integration

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 12 of 15

Fig. 9 Illustration of advanced exploration of HBV integrations within normal/tumor samples. Here we use BioCarian context menu to narrow down
the search by identifying the samples that contain integrations from the list of Hg19 genes (a), chromosomal integration of human (b) to explore
the significant HBV integrations within normal/tumor samples (c)

in these categories. Linked life data and GoPubmed had
comparable ratings. The same trend was shown in select-
ing the easiest search engine to navigate facets, and the
methods used to organize the facets. In the category of
the amount of facets shown, all the search engines were
ranked almost the same with a slight edge for Biocarian
over Linked life data and GoPubmed.
We then asked the users to rate the usefulness of differ-

ent components of Biocarian. Figure 11 shows the stacked
graph of user responses. None of the users stated that
any feature of Biocarian was not useful. The ability to
find the extreme values, average values and to color of
the facet values according to the distance from the aver-
age were considered as very useful features by more than

half the users. The users had relatively low opinions about
the usefulness of finding the most relevant facet values
to the search query and the usage of the SPARQL editor.
In fact, only 35% of them expressed any interest in learn-
ing SPARQL. This suggests that access to direct SPARQL
querying may not be essential to biologists without any IT
experience. Further information on the user survey can be
found in the Supplement (Additional file 2).

Conclusion
Compared to exact searches, exploratory searches of het-
erogeneous biological databases is not straightforward. It
requires writing of custom scripts to access and process
data, and is not an easy task for a researcher without some

Fig. 10 Rating of the usefulness of different features of Biocarian. Users were asked to rate the usefulness of different features of Biocarian in a scale
of not useful, useful -, useful +,very useful. The figure shows the stacked graph of the responses

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 13 of 15

Fig. 11 User feedback on features of different faceted browsers. Three faceted browsers for semantic web data were compared for their features,
and users were asked to rate them on a scale of 1 (bad) to 5 (excellent). The figure shows the weighted average of their ratings

knowledge in computer science. We provide an interface
for converting and querying biological databases in RDF
format. We have demonstrated that this interface can be
used successfully to explore facts about HBV integration
in to the human genome.Without resorting to any scripts,
the facet interface along with some elementary SPARQL
queries were sufficient to discover the major conclusions
presented by Sung et al.
There are many faceted browsing paradigms in the lit-

erature. These methods concentrate on organizing and
utilizing facets in a search but do not consider the ques-
tion of locating important facet values inside a facet. Also
some of these methods do not consider or cannot handle
large number of facets. This is a very important problem
when users have to make sense out of facets containing
hundreds of choices.
We have proposed several methods that can be used

by an explorer of a database to quickly narrow down
what a user is searching for when facets contain many
facet values (and also methods to organize facets) . We
have shown that in practice, these methods actually help
narrow down important choices when a large number
of choices are available and that with few clicks many
important conclusions can be derived. We also pro-
pose that faceted search of SPARQL queries over RDF
databases are a good method for exploratory searches due
to their ability to perform complex queries across linked
databases.
Biocarian needs to know the structure of a database to

operate on it. If the content of a database changes leav-
ing the structure intact, Biocarian can browse the database
after converting the database using previously defined
structure information. However, it may happen that the
database schema will change and new columns may get
added or deleted or their locations changed. In such cases
the structure information needs to be re-generated. If it
is just an addition of columns, Biocarian can still use old
scheme to partially convert the database. In other case

creating a new structure for the databases is unavoidable.
However, unless there is a major overhaul of the database
structure this task is not that difficult as parts of the
structure definition can be re-used. Currently, there are
attempts to describe databases in standard format that
enables their conversion to RDF. Ideally, we would hope
for databases to be released with structural information
described in a standard format similar to Biocarian. If such
information is provided with any database, Biocarian can
seamlessly integrate it as the database evolves.
There are several methods proposed to integrate biolog-

ical data and there are existing projects (e.g. Bio2RDF [11],
Linked life data [9], KaBOB [39] and BioLOD [40]) that
tackle this problem. They deal with converting, linking
and storing of heterogeneous databases, and the explo-
ration of these databases is not their major focus. In
contrast, Biocarian provides a conversion scheme that is
simple and concentrates more on the exploration of the
converted databases. We currently provide no way of inte-
grating two different databases based on their semantic
content. For example there is currently no connection
made when two different tables contain the same protein,
or when these proteins are under two different names. We
are currently working on a solution to connect and build
a knowledge graph integrating distinct databases, based
on semantic content. We make no attempt to make these
connection in this version of Biocarian. We have imple-
mented our current solution assuming warehousing of
the databases. However, RDF databases with information
about their structure can be hosted at different endpoints.
Then, a federated database system can be implemented
by modifying the existing SPARQL query conversion
module.
When we analyzed the data from Sung et al. with Bio-

carian we were able to derive all the major conclusion.
In fact, we were able to correct mistakes in their analysis
where they have got a sample count wrong and missed a
gene in the analysis. This shows that Biocarian can be used

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 14 of 15

to do a primary analysis of data using few clicks without
resorting to writing custom scripts. Also, Biocarian can
act as means of an independent, orthogonal verification of
an analysis result.
We therefore believe that Biocarian will be a useful tool

for researchers who are not competent in computer as
well as experienced bioinformaticians to explore diverse
datasets.

Availability and requirements
Project Name: BioCarian
Project Homepage: http://www.biocarian.com
Operating systems: Since BioCarian is a web base appli-
cation, it works in all operating systems.
Programing language: Perl, php.
Other requirements: None.
License: Not applicable.

Additional files

Additional file 1: SPARQL Conversion of Queries. (PDF 356 kb)

Additional file 2: Survey Detailed Results. (PDF 656 kb)

Abbreviations
API: Application programming interface; BED: Browser extensible data; GFF
General feature format; HBV: Hepatitis B virus; NAR: Nucleic acids research;
NCBI: National Center for Biotechnology Information; NGS: Next-generation
sequencing; RDF: Resource description format; RDFS: Resource description
framework schema; SNP: Single nuecleotide polymorphism; VCF: Variant call
format; XLS: Excel format

Acknowledgments
The authors would like to thank Prof. Amr Amin, Department of Biology,
College of Science, UAEU for his help in conducting the users survey.

Funding
The authors acknowledge financial support from the ICT Fund (# 21T042-ICT)
by Telecommunications Regulatory Authority (TRA), UAE.

Availability of data andmaterials
BioCraian can be accessed from the link http://www.biocarian.com/.

Authors’ contributions
NZ and CT worked on the algorithms and the concept of the search engine
and wrote the manuscript. CT coded the search engine. Both authors read and
approved the final manuscript.

Authors’ information
Nazar Zaki is a Full Professor of Computer Science and Chair of the
Department of Computer Science and Software Engineering, College of
Information Technology, UAEU, email: nzaki@uaeu.ac.ae.
Chandana Tennakoon is a Postdoc at the Department of Computer Science
and Software Engineering, College of Information Technology, UAEU, email:
chandana@uaeu.ac.ae.

Ethics approval and consent to participate
The authors confirm that they received ethical approval from the Social
Sciences Research Ethics Committee, UAEU to carry out the survey. The survey
was carried out online and the participants were aware they were taking part
in it. They were provided with information on the study, informed that their
participation is voluntary and they can withdraw at any stage. The participants
were also informed that they can ask any questions they may have on the
study.

Consent for publication
The authors confirm that they received consent to Publish from the survey
participates.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 6 April 2017 Accepted: 21 September 2017

References
1. Rigden DJ, Fernandez-Suarez XM, Galperin MY. The 2016 database issue

of Nucleic Acids Research and an updated molecular biology database
collection. Nucleic Acids Res. 2016;44(D1):1–6.

2. Wong K-C. The blooming era of genome informatics: State-of-the-art and
future challenges. J Bioinforma Proteomics Rev. 2015;1:1–2.

3. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, et al. Big data:
stronomical or genomical?. PLoS Biol. 2015;13(7):1002195.

4. Zaki N, Tennakoon C, AlAshwal H. Knowledge graph construction and
search for biological databases. In: International Conference on Research
and Innovation in Information Systems (ICRIIS). Langkawi: IEEE; 2017.
p. 2324–8157.

5. Zaki N, Tennakoon C. Efficient Exploration of Biological Data using
Semantic Web Compatible Databases. In: The 2016 3rd Intl. Conference on
Soft Computing and Machine Intelligence (ISCMI 2016). Dubai: IEEE; 2016.

6. Beck T, Hastings RK, Gollapudi S, Free RC, Brookes AJ. GWAS Central: a
comprehensive resource for the comparison and interrogation of
genome-wide association studies. Eur J Hum Genet: EJHG. 2014;22(7):
949–52.

7. Yates A, Akanni W, Amode MR, Barrell D, Billis K, et al. Ensembl 2016.
Nucleic Acids Res. 2016;44(D1):710–6.

8. Pinero J, Queralt-Rosinach N, Bravo L, Deu-Pons J, Bauer-Mehren A,
Baron M, et al. DisGeNET: A discovery platform for the dynamical
exploration of human diseases and their genes. Database. 2015;2015:
bav028.

9. Momtchev V, Peychev D, Primov T, Georgiev G. Expanding the pathway
and interaction knowledge in linked life data. In: Proc. of International
Semantic Web Challenge. 2009.

10. Consortium U, et al. Uniprot: a hub for protein information. Nucleic Acids
Res. 2015;43(D2):4–12.

11. Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J. Bio2RDF:
Towards a mashup to build bioinformatics knowledge systems. J Biomed
Inform. 2008;41(5):706–16.

12. Harris S, Seaborne A. SPARQL 1.1 Query Language. In: W3C
Recommendation. W3C Recommendation; 2013. https://www.w3.org/
TR/sparql11-query/.

13. Russell A, Smart PR, Braines D, Shadbolt NR. NITELIGHT: A graphical tool
for semantic query construction. In: CEUR Workshop Proceedings. vol.
543. Italy: CEUR Workshop Proceedings; 2009.

14. Kiefer C, Bernstein A, Stocker M. The fundamentals of iSPARQL: A virtual
triple approach for similarity-based semantic Web tasks. In: Lecture Notes
in Computer Science (including Sub-series Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 4825. LNCS; 2007.
p. 295–309.

15. Schweiger D, Trajanoski Z, Pabinger S. SPARQLGraph: a web-based
platform for graphically querying biological Semantic Web databases.
BMC Bioinformatics. 2014;15(279).

16. Yamaguchi A, Kozaki K, Lenz K, Wu H, Kobayashi N. An intelligent
SPARQL query builder for exploration of various life-science databases. In:
IESD’14 Proceedings of the 3rd International Conference on Intelligent
Exploration of Semantic Data. Volume 1279. Riva del Garda: CEUR
Workshop Proceedings; 2014. p. 83–94.

17. Zainab SS, Hasnain A, Saleem M, Mehmood Q, Zehra D, Decker S.
FedViz: A Visual Interface for SPARQL Queries Formulation and Execution.
In: VOILA: Visualizations and User Interfaces for Ontologies and Linked
Data Workshop co-located with ISWC; USA; 2015. Conference
proceedings only.

http://dx.doi.org/10.1186/s12859-017-1840-4
http://dx.doi.org/10.1186/s12859-017-1840-4
http://www.biocarian.com/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Zaki and Tennakoon BMC Bioinformatics (2017) 18:435 Page 15 of 15

18. Erling O. Virtuoso, a hybrid rdbms/graph column store. IEEE Data Eng Bull.
2012;35(1):3–8.

19. Schraefel MC, Smith DA, Owens A, Russell A, Harris C, Wilson M. The
evolvingmSpace platform: leveraging the semantic web on the trail of the
memex. In: Proceedings of the Sixteenth ACM Conference on Hypertext
and Hypermedia (HYPERTEXT ’05). Salzburg: ACM; 2005. p. 174–83.

20. Longwell RDF Browser, SIMILE. https://www.w3.org/2001/sw/wiki/
Longwell. Accessed 21 Feb 2017.

21. Pietriga E, Bizer C, Karger D, Lee R. Fresnel: A Browser-Independent
Presentation Vocabulary for RDF In: Cruz I, et al, editors. The Semantic
Web - ISWC 2006. ISWC 2006. Lecture Notes in Computer Science, vol
4273. Berlin, Heidelberg: Springer; 2006.

22. Hildebrand M, van Ossenbruggen J, Hardman L. /facet: A Browser for
Heterogeneous Semantic Web Repositories In: Cruz I, et al, editors.
Lecture Notes in Computer Science, vol 4273. Berlin: Springer; 2006.

23. Huynh DF, Karger D. Parallax and companion: Set-based browsing for the
data web. In: International World Wide Web Conference Committee
(IW3C2), WWW 2009. Madrid: ACM; 2008.

24. Kobilarov G, Dickinson I. Humboldt: Exploring linked data. LDOW. 2008;6:7.
25. Berners-Lee T, Hollenbach J, Lu K, Presbrey J. Tabulator Redux: Browsing

and Writing Linked Data. In: CEUR Workshop Proceedings. vol. 369. 2008.
26. Heim P, Ziegler J, Lohmann S. gFacet: A browser for the web of data. In:

Proceedings of the International Workshop on Interacting with
Multimedia Content in the Social Semantic Web (IMC-SSW08). vol. 417.
Koblenz: CEUR Workshop Proceedings; 2008. p. 49–58.

27. Yee K-P, Swearingen K, Li K, Hearst M. Faceted metadata for image
search and browsing. In: CHI 2003 Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. Ft. Lauderdale: ACM; 2003.
p. 401–8.

28. Huynh D. The Nested Faceted Browser. 2009. http://people.csail.mit.edu/
dfhuynh/projects/nfb/. Accessed 15 Jan 2017.

29. Ermilov I, Auer S, Stadler C. Csv2rdf: User-driven csv to rdf mass
conversion framework. In: Proceedings of the ISEM 2013, vol. 13. Graz;
2013. p. 04–6.

30. Reck RP. Excel2rdf for Microsoft Windows. http://www.mindswap.org/
rreck/texttildelowexcel2rdf.shtml. Accessed 9 Mar 2017.

31. Grove M. Mindswap Convert To RDF Tool. http://www.mindswap.org/
mhgrove/convert/. Accessed 9 Mar 2017.

32. Han L, Finin T, Parr C, Sachs J, Joshi A. Rdf123: from spreadsheets to rdf.
International Semantic Web Conference. 2008451–46.

33. Huynh DF, Karger DR, Miller RC. Exhibit: lightweight structured data
publishing. In: Proceedings of the 16th International Conference on
World Wide Web. Alberta: ACM; 2007. p. 737–46.

34. Sharma K, Marjit U, Biswas U. Automatically converting tabular data to
rdf: An ontological approach. Int J Web Semant Technol. 2015.
doi:10.5121/ijwest.2015.6306.

35. Mulwad V, Finin T, Syed Z, Joshi A. Using linked data to interpret tables.
In: Proceedings of the First International Conference on Consuming
Linked Data-Volume 665, Vol. 665. Aachen; 2010. p. 109–20.

36. Anguita A, Garcia-Remesal M, De La Iglesia D, Maojo V. NCBI2RDF:
Enabling full RDF-based access to NCBI databases. BioMed Res Int.
2013;2013(983805).

37. Bizer C, Seaborne A. D2rq-treating non-rdf databases as virtual rdf graphs.
In: Proceedings of the 3rd International Semantic Web Conference
(ISWC2004). vol. 2004. Hiroshima: Proceedings of ISWC2004; 2004.

38. Sung W-K, Zheng H, Li S, Chen R, Liu X, et al. Genome-wide survey of
recurrent HBV integration in hepatocellular carcinoma. Nat Genet.
2012;44(7):765–9.

39. Livingston KM, Bada M, Baumgartner WA, Hunter LE. KaBOB:
ontology-based semantic integration of biomedical databases. BMC
Bioinforma. 2015;16(1):126.

40. Nishikata K, Toyoda T. BioLOD.Org: Ontology-based Integration of
Biological Linked Open Data. In: Proceedings of the 4th International
Workshop on Semantic Web Applications and Tools for the Life Sciences
(SWAT4LS 2011). New York: ACM; 2012. p. 92–3.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://www.w3.org/2001/sw/wiki/Longwell
https://www.w3.org/2001/sw/wiki/Longwell
http://people.csail.mit.edu/dfhuynh/projects/nfb/
http://people.csail.mit.edu/dfhuynh/projects/nfb/
http://www.mindswap.org/rreck/texttildelow excel2rdf.shtml
http://www.mindswap.org/rreck/texttildelow excel2rdf.shtml
http://www.mindswap.org/mhgrove/convert/
http://www.mindswap.org/mhgrove/convert/
http://dx.doi.org/10.5121/ijwest.2015.6306

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Design of the database
	Database structure
	Design of the search engine
	Searching with SPARQL
	Conversion of queries to SPARQL
	Displaying query results
	Facet value generation for exploratory searches
	Remote queries

	Overview of the browser interface

	Results
	User survey

	Conclusion
	Availability and requirements
	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

