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Abstract

Introduction: The production of biological information has become much greater than its consumption. The key
issue now is how to organise and manage the huge amount of novel information to facilitate access to this useful
and important biological information. One core problem in classifying biological information is the annotation of
new protein sequences with structural and functional features,

Method: This article introduces the application of string kernels in classifying protein sequences into homogene-
ous families. A string kernel approach used in conjunction with support vector machines has been shown to
achieve good performance in text categorisation tasks. We evaluated and analysed the performance of this
approach, and we present experimental results on three selected families from the SCOP (Structural Classifica-
tion of Proteins) database. We then compared the overall performance of this method with the existing protein
classification methods on benchmark SCOP datasets.

Results: According to the F1 performance measure and the rate of false positive (RFP) measure, the string kernel
method performs well in classifying protein sequences. The method outperformed all the generative-based
methods and is comparable with the SVM-Fisher method.

Discussion: Although the string kernel approach makes no use of prior biological knowledge, it still captures

sufficient biological information to enable it to outperform some of the state-of-the-art methods.

Classification of protein sequences into functional and structur-
al families based on sequence homology is a central problem in
computational biology.!! Many approaches have been applied,
such as pairwise similarity of sequences,>* profiles for protein
families,”™ consensus patterns'®’”) and hidden Markov models
(HMMs).*19 Another successful approach based on modelling
the difference between positive and negative examples was intro-
duced, and this approach obtains additional classification accura-
cy. The most prominent method that uses this approach is the
SVM-Fisher method.!'!! The SVM-Fisher method begins by train-
ing a generative HMM for a protein family and then using the
model to extract a representation for each protein sequence in the
form of sufficient statistics. Next, the sufficient statistics are
treated to produce an analogous quantity known as the Fisher
scores. Finally, support vector machines (SVMs) in conjunction
with the Fisher scores are used to discriminate between protein
families.

The SVM-Fisher method adds more accuracy to the problem of
detecting remote protein homology, and it is also appealing be-
cause it combines the rich biological information encoded in a
profile HMM with the discriminative power of the SVM classifi-
ers.!") Generally, large amounts of data or prior knowledge are
required to train the HMM. Moreover, calculation of the feature
vectors depends on dynamic programming, making it inefficient to
compute the kernel matrix. We certainly need a more efficient
method in terms of feature extraction, computational cost, and
maintaining good classification abilities even when the training
dataset is small.

In this article, we introduce the application of string kernels
(SKs) in classifying protein sequences. The idea of designing a
kernel function based on the string is not novel; however, applying
a similar idea for solving more sensitive problems such as protein
sequence classification is a great challenge. The string kemels
approach!'?! has been shown to achieve good performance on text
categorisation tasks. The basic idea is to compare two protein
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Fig. 1. Overview of the string kernel method in conjunction with support vector machines (SVM-SK).

sequences by looking at common subsequences of a fixed length.
String kernels apparently make no use of prior knowledge and yet
they have been used with considerable success.['’] The string
kernel is built on the kernel method introduced by Haussler!!*! and
Watkins.['*! The kernel computes similarity scores between prote-
in sequences without ever explicitly extracting the features. This
technique does not use any biological knowledge, in the sense that
it considers the protein dataset as just a long string of amino acids.
A subsequence is any ordered sequence of k amino acids occurring
in the protein sequence, and is not necessarily contiguous. The
subsequences are weighted by an exponentially decaying factor of
their full length in the sequence, hence emphasising those occur-
rences that are close to contiguous.

We evaluated and analysed the performance of the string kernel
approach for classifying protein sequences, and experimental re-
sults on three selected families from the SCOP (Structural Classi-
fication of Proteins) database are presented in this article. Then,
using benchmark SCOP datasets, we compared this method
with the most successful remote homology detection methods
for proteins, such as HMMER,!"? BLAST®,®! SAM'6! and the
SVM-Fisher method.[*!!

System and Methods

Figure 1 is an overview of the proposed method, which we call
SVM-SK (support vector machine-string kernel). It consists of
two main steps: (a) the training step, in which the SVM classifiers
are constructed; and (b) the testing step, which uses the SVM to
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determine if the protein belongs to the predefined family or not.
Both steps require computing similarity scores between protein
sequences without explicitly extracting the features.

Support Vector Machines

The SVM algorithm!'7'® addresses the general problem of
learning to discriminate between positive and negative members
of a given class of n-dimensional vectors. The algorithm operates
by mapping the given training set into a possibly high-dimensional
feature space, and attempting to learn a separating hyperplane
between the positive and negative examples for possible maximis-
ation of the margin between them. The margin corresponds to the
distance between the points residing on the two edges of the
hyperplane. Having found such a plane, the SVM can then predict
the classification of an unlabelled example. In fact, much of the
power of the SVM comes from its criterion for selecting a separat-
ing plane when many candidate planes exist: the SVM chooses the
plane that maintains a maximum margin from any point in the
training set.!'?)

String Kemel Overview

The feature space is generated by all the subsequences of
bounded length. In order to derive the string subsequence kernel
(SSK), one begins from the features and then computes their inner
product. Hence, the criterion of satisfying Mercer’s condition
(positive semi-definiteness) automatically applies here. It maps
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strings to a feature vector indexed by all k-tuples of amino acids. A
k-tuple will have a non-zero entry if it occurs as a subsequence
anywhere (not necessarily contiguous) in the string. The weighting
of the feature will be the sum over the occurrences of the k-tuple of
a decaying factor of the length of the occurrence.

Following Cristianini"'®! and Lodhi et al.,"” the string kernel
can be defined as follows. Let Z be a finite alphabet. A string is a
finite sequence of characters from I, including the empty se-
quence. For strings s and t, we denote by Isl the length of the string
s = 51...51, and by st the string obtained by concatenating the
strings 5 and 7. The string s[i : j] is the substring s...s;j of s. We say
that u is a subsequence of s, if there exist indices i = (i1, e olledd)s
with 1 i1 < ... < il < lsl, such that uj= si, for j=1,....lul, or u = s[i]
for short. The length I(i) of the subsequence in s is il — i1 + 1.

We denote by Z7 the set of all finite strings of length n, and by
¥* the set of all strings (equation 1):

s On

z=UX
n=0
(Eq. 1)
We now define feature spaces Fp, = X . The feature mapping ¢ for

a string s is given by defining the u coordinate @y(s) for each ueZ”.
We define (equation 2):

‘pH(.f) &= Ell (£1]
=il

(Eq. 2)
for some A <1. These features measure the number of occurrences
of subsequences in the string s, weighting them according to their
lengths. Hence, the inner product of the feature vectors for two
strings s and ¢ give a sum over all common subsequences weighted
according to their frequency of occurrence and lengths (equa-
tion 3):

k(50 = T {0,(5)-9,(1)
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(Eq. 3)
Computation of Similarity Scores and String Kernels

The SSK measures similarity among the protein sequences by
summing the common substrings. In other words, sequences hav-
ing more substrings in common will have a higher similarity score
compared with the sequences that share few substrings. It is worth
noting that these substrings can be non-contiguous, which makes
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these features distinguishable. Moreover, these substrings are
weighted according to the degree of contiguity in a sequence. This
idea can be illustrated by the simple examples given below.

Consider the following protein sequences:

>elizb.2¢ 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

giveqectsicslyglenycn

>elizb.2d 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

fvnghlcgshlvqalylvegergffytpkt

>elsdb.1b 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

nqhlcgshiveqlylvegergff

Assume that the substring ‘gglylc’ (below in bold) occurs in all
the above protein sequences, but is not always contiguous. Hence,
this substring has a different weighting in each protein sequence,
as shown below.

>elizb.2¢ 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

giveqcctsicslyglenyen

>elizb.2d 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

fvnghlcgshlvqalylvegergffytpkt

>elsdb.1b 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

nghlcgshlveqlylvegergff

SSK generates an entirely different feature space. For each
substring there is a dimension of feature space, and the value of
these coordinates depends on how frequently and compactly this
string is embedded in the protein sequences of interest.

We now illustrate SSKs by examples. Consider the following
protein sequences:

>elizb.2¢ 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

givegcctsicslyglenycn

>elizb.2d 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

fvnghlcgshlvgalylvegergffytpkt

>elsdb.1b 7.1.1.1.3 Insulin {Pig (Sus scrofa)}

nghlcgshlveqlylvegergff

From the above protein sequences, consider the highlighted
strings (in bold). Let us first assume we are comparing the first two
protein sequences, where there exists one string in each sequence.
Let the first sequence comprise the string ‘lyq’ and the second
sequence comprise the string ‘aly’. For simplicity, we set the
length of the substring to 2. In other words, these sequences are
implicitly transformed into feature vectors, where each feature
vector is indexed by the substrings of length 2. Table I presents the

Table I. Mapping two strings ‘lyg’ and ‘aly to a 5-dimensional feature
space

Feature vectors Strings

ly g yq al ay
o(lyg) A2 A3 A2 0 0
olaly) Az 0 0 A2 23

) = weighted decay factor; ¢ = feature mapping.
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5-dimensional feature space, feature vectors @(lyg) and @(aly), and
the corresponding kemnel.

In this case, the un-normalised kernel k(lyg.aly) can clearly be
computed as A4, whereas computing the normalised kemnel be-
tween ‘Iyq’ and ‘aly’ requires computing k(Iyg.lyg) and k(aly,aly).

Since (equation 4):

k(lyg.lyg) = 2K* + 3°

(Eq. 4)
hence, normalise (equation 5):

4

x
k(lyg, aly) = ————
(o) (25* +28)
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2+

(Eqg. 5)
We can now consider the comparison among all the three
strings in the protein sequences given above. Again considering
k = 2, we obtain an 8-dimensional feature space, where strings are
mapped in table IL Table II shows that the un-normalised kernel
between ‘lyg’ and ‘aly’ is k(lyg.aly) = 1/(2 + A2). For instance, if
k(lyg.gsh) = 0, then it is clear that the kernel function is able to
anticipate that there are no similarities between the two strings.

Datasets

The performance of the SVM-SK method is tested on the SCOP
database version 1.37.2% The use of SCOP datasets designed by
Jaakkola et al.*!] allows direct comparison with the previous work
on protein remote homology detection.>*%!!] For the test, Jaakko-
la et al.l*!! selected all SCOP families that contain at least five
PDB90 sequences and have at least ten PDB90 sequences in the
other families in their superfamily. This process results in 33 test
families from 16 superfamilies. The positive test examples are
simulated by members of a target SCOP family from a given
superfamily. Positive training examples are chosen from the re-
maining families in the same superfamily. Whereas negative test
and negative training examples are chosen from disjoint sets of
folds outside the fold of the target family. The dataset is available
at htttp://www.cse.ucsc.edu/research/compbio/discriminative.

Our experiments for observing the influence of the tunable
parameters on the string kernels are performed on immunoglobu-

Table Il. Mapping three strings 'lyq, 'aly’ and 'gsh’ to an 8-dimensional
feature space

Feature vectors Strings

ly lq yg & ay gs gh sh
o(lyg) 2 a3 2 0 0 0 0 0
o(aly) 2 0 0 A2 a3 0 0 0
ol(gsh) 0 0 0 0 0 A2 A3 a2

A = weighted decay factor; ¢ = feature mapping.
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Table Iil. Domain families included in the experiments

SCOP  Domain family Positive set Negative set

database training testing ftraining testing

ID

2.1.1.2 Immunogiobulin C1 174 108 950 1229
domain

2.1.1.3 Immunogiobulin C2 272 5 950 1229
domain

3.1.1.1 o-Amylase N-terminal 57 13 1142 1227
domain

SCOP = Structural Classification of Proteins.

lin C1 domain, immunoglobulin C2 domain and o-amylase N-
terminal domain families (table IIT). The only reason for selecting
these families is because they contain few total training and test
sequences compared with the rest of the families. Note that we
need to run the experiments many times on one family to achieve
the required analysis.

Measures for Evaluating System Performance

The performance of the SVM-SK system is measured by how
well it can assign a novel protein sequence to its correct family. A
system can make errors by assigning the sequences to families to
which they do not belong or failing to assign the sequences to
families to which they do belong.

For evaluating the performance of the SVM-SK method, two
evaluation measures were used:

1. F1 performance measure (gives equal weighting to both preci-
sion and recall): F1 = 2PreRec/(Pre + Rec), where Pre is the
precision and R, is the recall. These are calculated as follows:
Rec = tpl(tp + fn) and Pre = tp/(tp + fp), where tp is true positive, fp
false positive and fin false negative.

2. Rate of false positive (RFP): defined as the fraction of negative
test sequences that score as high as or better than the positive
sequence. RFP = fp/(fp + m) for (fp + ) > 0, where m is true
negative.

Experiments and Results

Preceding sections describe the ability of string kemnels to
compute the similarity among protein sequences. This section
discusses the experiments, of which the overall objective is to
understand how the string kemmel works in such sensitive and
complicated classification tasks.

A protein classification method based on string kernels works
by taking as input a set of amino acid sequences. The kernel
returns a similarity score between the sequences without explicitly
mapping them into the feature vectors. In this section we analyse
the behaviour of the classifiers trained in a feature space generated
by string kernels. The objective of the experiments is to observe
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the influence of varying the tunable parameters of A (weight), C
(soft-margin parameter) and k (length) on the classification per-
formance. In order to accomplish this goal, we conducted a series
of experiments on the benchmark datasets described in the section
titled Measures for Evaluating System Performance.

Implementation

An important advantage we hope to obtain using string kernels
is to avoid the computational cost of HMMs; however, the compu-
tational cost of string kernels is not cheap. SVM-SK requires some
special properties in the software to provide better classification
ability and a lower computational cost.

We used a simple gradient-based implementation of SVMs.2!
The algorithm called Adatron comes with theoretical guarantees of
convergence to the optimal solution, and of a rate of convergence
exponentially fast in terms of the number of iterations,”*! provided
that the solution exists. This provides a procedure that emulates
SVMs but does not need to use the quadratic programming tool-
boxes. The Adatron is an online algorithm for learning perceptrons
that has an attractive fixed point corresponding to the maximal-
margin consistent hyperplane, when this exists.

We applied different tricks in order to speed up the computation
of the kemel matrix. First, the program reads a single file contain-
ing training and test sets. Second, we added two files containing
the indexes of the training and test sets. The SVM-SK is a
modified version of the software used by Lodhi et al.l'? for text
classification.

Effectiveness of Varying Weighted Decay Factor

In this set of experiments, we analyse the effect of varying the
weighted decay factor, A, on the generalisation performance of a
SVM leamner that manipulates the information encoded in a SSK.
SK weights the substrings according to their proximity in the
protein sequence. This is the parameter that controls the penalisa-
tion of the interior gaps in the substrings.

We evaluated the performance of this technique by averaging
the results over runs of the algorithm. A series of experiments was
conducted to study the performance of the protein sequence classi-
fication system based on SKs by widely varying A. We describe
the results of these experiments in table IV, where the relation
between different values of A and the corresponding influence of
F1 are shown. The value of the subsequence length k was set to 2
and the soft-margin C was set to 1000. It was difficult choosing the
subsequence length; however, the main aim of the experiments
was to analyse the behaviour of the string kernels by varying the
value of the decay factor. By using k = 2, we cannot guarantee
better classification performance; however, it would enable us to
record the outputs in less time. It is interesting to note that F1
peaks at a higher value (A = 0.9) for all the three families.

© 2005 Agis Dot information BV. All ights reserved.

In order to judge the classification ability of the SVM-SK
method, we calculated the precision, recall and F1 based on a
purely random classifier. Each protein sequence is classified true
or false with a probability of 0.5 (table IV).

Effectiveness of Varying Soft-Margin Parameter

One of the significant parameters needed to tune our system is
the soft-margin parameter or the capacity. The soft-margin param-
eter C allows us to control how much tolerance for error we allow
in the classification of training samples. It therefore affects the
generalisation ability of the SVM and prevents it from overfitting

Table IV. Performance of SVM-SK (support vector machine-string kernel)
with a varying weighted decay factor (L)

Domain family A Precision Recall F1
Immunoglobulin C1 domain 0.01 0.200 0.107 0.139
0.03 0.197 0.117 0.146
0.05 0.228 0.126 0.162
0.07 0.242 0.146 0.182
0.08 0.263 0.146 0.188
0.10 0.259 0.146 0.188
0.30 0.357 0.184 0.252
0.50 0.526 0.398 0.453
0.70 0.618 0.660 0.638
0.80 0.726 0.825 0.773
0.99 0.440 0.359 0.3%6
Immunoglobulin C2 domain 0.01 0.081 0.600 0.111
0.03 0.056 0.600 0.103
0.05 0.070 0.600 0.125
0.07 0.058 0.600 0.105
0.09 0.055 0.600 0.100
0.10 0.054 0.600 0.098
0.30 0.063 0.600 0.113
0.50 0.074 0.800 0.136
0.70 0.067 0.600 0.120
0.90 0.083 0.600 0.1486
0.99 0.051 0.600 0.084
a-Amylase N-terminal domain 0.01 0.059 0.231 0.084
0.03 0.068 0.231 0.105
0.05 0.064 0.231 0.100
0.07 0.059 0.231 0.094
0.09 0.042 0.154 0.066
0.10 0.046 0.154 0.070
0.30 0.060 0.231 0.095
0.50 0.063 0.231 0.098
0.70 0.125 0.385 0.189
0.90 0.148 0.615 0.239
0.99 0.122 0.462 0.194

Appl Bioinformatics 2005; 4 (1)
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Table V. Performance of SVM-SK (support vector machine-string kemel)
with varying soft-margin parameter (C)

Domain family C Precision Recall F1

Immunoglobulin C1 domain 10 0.891 0.553 0.683
20 0.861 0.602 0.709
30 0.815 0.641 0.717
40 0.773 0.66 0.712
50 0.725 0.718 0.722
60 0.724 0818 0.760
70 0.724 0.816 0.767
80 0.741 0.835 0.785
90 0.723 0.835 0.775

100 0.726 0.825 0.773
110 0.726 0.825 0.773
120 0.726 0.825 0.773
130 0.726 0.825 0.773
140 0.726 0.825 0.773
150 0.726 0.825 0.773

Immunoglobulin C2 domain 10 0.077 0.200 0.111
20 0.083 0.400 0.138
30 0.103 0.600 0.176
40 0.103 0.600 0.176
50 0.087 0.600 0.167
60 0.094 0.600 0.162
70 0.086 0.800 0.150
80 0.083 0.600 0.146
90 0.075 0.800 0.133

100 0.083 0.600 0.146
110 0.083 0.800 0.146
120 0.083 0.600 0.146
130 0.083 0.600 0.146
140 0.083 0.600 0.146
150 0.083 0.600 0.148

a-Amylase N-terminal domain 10 0.385 0.385 0.385
20 0.385 0.385 0.385
30 0.280 0.538 0.368
40 0.250 0.538 0.341
50 0.212 0.538 0.304
60 0.200 0.538 0.258
70 0.170 0.615 0.267
80 0.170 0615 0.267
90 0.163 0.615 0.258

100 0.157 0.615 0.250
110 0.148 0.615 0.239
120 0.145 0.615 0.235
130 0.145 0.615 0.235
140 0.145 0.615 0.235
150 0.145 0.615 0.235
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the training set. In this set of experiments, we analyse the effect of
varying C. We again fix the values of subsequence length k and the
weighted decay factor A. We used values k = 2 and A = 0.9. The
results of this set of experiments are presented in table V. It is
interesting to see that C peaks at a value <80. The classification
results remain almost the same when the value of C is >100.

Effectiveness of Varying Sequence Length

We studied the effect of varying sequence length k. We kept the
values of the weighted decay parameter A and the soft-margin
parameter fixed and learned a classifier for different values of k.
For these experiments, the value of A was set to 0.9, the soft-
margin parameter was 1000 and sequence length was varied. It
was difficult choosing the weighted decay factor, and table V
shows that a different family obtained the highest F1 value at
different values of C. However, the main objective of the experi-
ments described in this section was to analyse the behaviour of
SSK by varying k.

The results of this set of experiments are given in table VI.
From these results, we find that the performance of the classifier
varies with varying sequence length. SVM-SK can be more effec-
tive for smaller or moderate length substrings compared with
larger substrings. An optimal size of subsequence length can be
found in a region that is not very large. For each family, F1 seems
to peak at a subsequence length of 5-7 and, surprisingly, it looses
the classification ability for a subsequence length >9. Generally,
the optimal subsequence length is 5-7, and it seems that shorter or
moderate non-contiguous substrings are able to capture the simi-
larities better than the longer non-contiguous substrings. For sub-
sequence length >9, SVM-SK is unable to capture similarities
(F1 = 0).

Comparing SVM-SK with the Current Protein Classifiers

The performance of SKs in conjunction with SVMs was com-
pared with the performance of the current homology detection
methods HMMER, BLAST®, SAM-98 and Fisher-SVM, where
HMMER, BLAST® and SAM-98 are purely generative models,
and Fisher-SVM is a combination of generative and discriminative
models. The probability scores produced using these methods are
on different scales, meaning they cannot be easily compared. We
reported the median RFP, which is defined as the fraction of
negalive lest sequence that score as high as, or better than, the
positive sequence. Figure 2 illustrates the overall performance in
terms of median RFP for detecting protein remote homology in the
33 test families. Figure 2 also shows the overall performance of the
above-mentioned methods. The results of the performance by
BLAST®, SAM-98, and SVM-Fisher are taken from the report by
Jaakkola et al.,['"l and the results of the HMMER performance are
reported by Logan et al.>*l on the same datasets. The results show

Appil Bioinformatics 2005; 4 (1)
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Table V1. Performance of SVM-SK (support vector machine-string kernel)
with varying length (K)

Domain family k  Precision Recall F1
immunoglobulin C1 domain 2 0726 0.825 0.773
3 0830 0.806 0.818
4 0890 0.786 0.835
5 0952 0.767 0.849
6 0975 0.757 0.852
7 0885 0.631 0.769
8  1.000 0573 0.728
9  1.000 0.495 0.662
Immunoglobulin C2 domain 2 0.103 0.600 0.176
3 011 0.400 0.174
4 0177 0.200 0.188
5 0200 0.200 0.200
6  0.380 0.200 0.262
7 0333 0.200 0.25
8  0.300 0.200 0.24
9 0280 0.200 0.233
a-Amyiase N-terminal domain 2 0.148 0615 0.239
3 0250 0.538 0.269
4 0250 0.538 0.341
5 0318 0.538 0.400
6 0417 0.385 0.400
7 0500 0.308 0.381
8 0500 0.154 0.235
9 0500 0.140 0.218

that the SVM-SK approach delivers comparable performance in
classifying protein sequences. The method outperformed all the
generative-based methods and is comparable with the SVM-Fisher
method, which is among the most accurate. Moreover, SVM-SK
outperformed the SVM-Fisher method in classifying some of the
protein families.

The performance of SVM-Fisher and SVM-SK in figure 2 is
very close, so a more detailed comparison is made in figure 3.
Family-by-family comparison of the performance of the SVM-
Fisher and SVM-SK methods in terms of median RFP is shown in
figure 3. From figure 3, the distribution of the families in the two
superiority regions shows that SVM-Fisher is superior compared
with SVM-SK; however, the performance difference is not signifi-
cant. SVM-SK outperformed the SVM-Fisher method in classify-
ing some of the protein families. We consider SVM-SK to be
comparable with SVM-Fisher. Moreover, SVM-SK has many
advantages over the SVM-Fisher method, as mentioned in the
Discussion and Conclusion section.

© 2005 Adis Data Information BV. All rights reserved.

Discussion and Conclusion

In this article, we presented the application of a new kemel for

- protein sequence classification. The performance of the string

kernels in conjunction with SVMs was tested and analysed by
applying this method to three different protein families from the
SCOP database. Although the SVM-SK method makes no use of
the prior biological knowledge that the structure of an amino acid
within the protein sequence can give, it still captures sufficient
biological information to enable it to outperform some of the state-
of-the-art methods. The experiments indicated that the SVM-SK
method can provide an effective alternative to more standard
homology detection methods. The results on the SCOP dataset
were, however, less encouraging. In most cases, the SVM-Fisher
method outperformed SVM-SK. The SVM-SK method has several
advantages over the SVM-Fisher method. The SVM-Fisher
method requires a large amount of data or prior knowledge to train
the HMM. In addition, for instance, calculating the Fisher scores
depends on dynamic programming; in practice it is very expensive
to compute the kernel matrix.['! Our SVM-SK approach gives
efficient kemel computation and maintains good performance.
Another advantage of using SVM-SK is its use of the negative

Based on the computational efficiency, both SVM-SK and
SVM-Fisher take approximately O(n2) for the SVM optimisation,
for n training examples. However, the computational cost in
finding the hypothesis is significantly less with the kernel-Adatron
algorithm used in SVM-SK.?!! SVM-Fisher requires training a
profile HMM, whereas the SVM-SK method dispenses with this
requirement. Moreover, the SVM-Fisher method requires comput-
ing the gradient vectors, which dominates the running time of
O(nmp), where n is the number of training examples, m is the

107 m HMMER
0g] ® BLAST®
2 O SAM-98
08- A SVM-Fisher
O SVM-SK

0.7

& 06+
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5 05-
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S 0.4+

o 5 10 15 20 25 30 35
Number of SCOP families with given performance

Fig. 2. Overall parformance comparison between SVM-SK (support vector

machine-string kemel) and the current protein remote homology detection

methods HMMER, BLAST®, SAM-98 and Fisher-SVM. RFP = rate of false

positive; SCOP = Structural Classification of Proteins database.
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Fig. 3. Family-by-family performance comparison of SVM-SK (support vec-
tor machine-string kemnel) against the SVM-Fisher method. Each family is
plotted as a point (x,y) where x is the median rate of false positive (RFP) for
the SVM-Fisher method and y s the median RFP for the SVM-SK method.

length of the longest training set sequence and p is the number of
HMM parameters. The SVM-SK method takes roughly O(n2) for
each kemel entry.

The success of applying the SVM-SK method in classifying
protein sequences encouraged us to plan future directions such as
studying weak areas of the approach that could be further im-
proved. We suspect that by incorporating biological knowledge
into the SVM-SK method we could achieve better classification
ability. We need to find a more sensitive representation of the
substrings. In the SVM-SK method, subsequences are presented
using the weighted decay factor .. However, from studying the
effectiveness of varying the weighted decay factor, we noticed that
the values of F1 react randomly and are not stable. In the future,
we are going to propose an improved method based on more
sensitive representation of the substrings. This could be achieved
by incorporating biological knowledge into the string kemnels.

Recently, two more approaches for classifying protein se-
quences have been developed and show good performance.!!%]
The analysis and comparison of these methods, as well as testing
the SVM-SK method over different datasets such as the one
developed in Liao and Noble,'! will be the subject of future
research.
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