
 

 

MATH 2220: Linear Algebra for Eng., 

Final Exam Fall    2022 

Date: 13/12/2022, Time: 8:30-10:30AM 
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Question Part 1  Part II  
Grade 

  
… .… .

𝟒𝟎
 

1-2-3 4 5 

CLO 1 2 3 4 

Marks ……/18 ……/12 ……/4 ……/6 

 

▪ Show all the steps of your solution for each question in Part II. 

▪ Use only Blue or Black pen, neither pencil nor colored.    

▪ Graphics and Programming Calculators are not  allowed.  
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51 Dr. Z. Balogh 56 Prof. V. Bodi 

52 Prof. F.  Mukhamedov 57 Prof. A. Al Rawashdeh 

53 Prof. A. Zubkov 58 Dr. U. Goginava 
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Part 1. [18 marks]

For each of the questions below, put a circle around the correct answer.

1. Given A =

 3 2 2

1 2 1

 and B =

 1 1 0

1 0 2

, then tr(ABT − I2) =

(A) 2 (B) 4 (C) 6 (D) 8 (E) None of the above

2. Given

∣∣∣∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣∣∣∣ = 2, then

∣∣∣∣∣∣∣∣∣
2a 2b 2c

g h i

d+ 3g e+ 3h f + 3i

∣∣∣∣∣∣∣∣∣ =
(A) − 4 (B) − 2 (C) 2 (D) 4 (E) None of the above

3. Which of the following is a subspace of R3?

(A) {(x, y, 1);x and y are any real numbers}

(B) {(x, y, 2x);x and y are any real numbers}

(C) {(x, x2, 0);x is any real number}

(D) {(x, y, xy);x and y are any real numbers}

(E) {(x, x, x+ 1);x is any real number}

4. Determine for which values of k, the 3 polynomials q1(x) = 2, q2(x) = x+ x2 and

q3(x) = 1 + x+ kx2 are linearly independent.

(A) k = 1 and k = −1

(B) k = 0 and k = 1

(C) k ̸= 0

(D) k ̸= 1

(E) k is any real number
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5. Let A be an (n× n)-matrix whose nullity is 0. Which of the following is NOT correct?

(A) A is invertible.

(B) The row vectors of A are linearly independent.

(C) The reduced row echelon form of A is In.

(D) rank(A) = n.

(E) 0 is an eigenvalue of A.

6. Let W be the set of 2× 2 symmetric matrices whose trace is zero, then

(A) W is a subspace of M2,2 and dim(W ) = 1.

(B) W is a subspace of M2,2 and dim(W ) = 2.

(C) W is a subspace of M2,2 and dim(W ) = 3

(D) W is a subspace of M2,2 and dim(W ) = 4.

(E) W is not a subspace of M2,2.

7. Given A =


a 2 2

1 2 0

1 1 1

. For which values of a is v = (2, 1, 1) an eigenvector of A?

(A) 0 (B) 1 (C)2 (D) 3 (E) None of the above

8. The characteristic equation of the matrix A =


1 0 1

0 2 0

1 0 1

 is

(A) λ(λ− 1)(λ− 2) = 0.

(B) (λ− 1)2(λ− 2) = 0

(C) (λ− 1)(λ− 2)2 = 0.

(D) λ(λ− 2)2 = 0.

9. Given u and v two vectors in an inner product space, such that ||u|| = 2, ||v|| = 2 and

< u, v >= 1. Then < u+ 2v, 2u− v >=

(A) 0 (B) 1 (C) 2 (D) 3 (E) None of the above
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Part II. [22 marks]

Show all the steps of your solution for each of the following questions.

Question 1. [4 marks] Use the Gauss-Jordan Elimination Method to solve the following system

of linear equations: 
x1 + x2 + x3 + x4 = 1

2x1 + 2x2 + x3 = 1

x1 − x2 + x3 − x4 = 0
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Question 2. [3 marks] Let W be the subspace of R4 spanned by v1 = (1, 2, 0, 1),

v2 = (2, 4, 3, 4), v3 = (1, 2, 3, 4) and v4 = (0, 0, 2, 2).

(a) Find a basis for W .

(b) Determine the dimension of W .
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Question 3. [5 marks] Let v1 = (1, 1, 1), v2 = (1, 1,−1) and v3 = (1,−1, 2) be 3 vectors of R3.

(a) Show that S = {v1, v2, v3} is a basis for R3.

(b) Find the coordinates of the vector w = (0, 1, 0) in the basis S = {v1, v2, v3}.
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Question 4. [4 marks] Let A =


1 1 0

1 1 0

1 1 1

.
Given that the eigenvalues of A are 0, 1 and 2, find an invertible matrix P that diagonalizes A.
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Question 5. [6 marks] For p = a0 + a1x+ a2x
2 and q = b0 + b1x+ b2x

2, the standard inner

product in the vector space P2 is defined by:

< p, q >= a0b0 + a1b1 + a2b2.

(a) Given p = 1 + 2x+ x2 and q = 2− x+ 2x2. Evaluate the following:

(1) < p, q >

(2) ||p||

(3) ||q||

(4) cos θ, where θ is the angle between p and q.

(5) d(p, q)

(b) Find the value of the real number t for which the polynomials p and p+ tq are orthogonal.
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