

قسم علوم الرياضيـــات

Dr. Nafaa Chbili

MATH 2220, Linear Algebra for Eng., Fall 2022

Test 3

Date: 23/11/2022, Time: 45mn

Student Name: ______

Student ID: _____

Attendance Number:

Question	1-2	3-4	
Course Learning Outcome	3	1	Grade
Marks	<u> </u>	6	15

- Show all the steps of your solution for each question.
- Use only Blue or Black pen, neither pencil nor colored.
- Graphics and Programming calculators are not allowed.

Question 1. [4 marks] Given the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$.

(a) Determine the eigenvalues of A.

(b) Determine a basis and the dimension of the eigenspace corresponding to the eigenvalue $\lambda = 2$.

(c) Determine whether A is diagonalizable. Justify your answer.

Question 2. [5 marks] Given the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$. (a) Find a matrix P that digonalizes A.

(b) Use your answer in question (a) to compute A^{10} .

Question 3. [2 marks] Given $A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 3 \\ 3 & 3 & 2 & 5 \end{bmatrix}$.

(a) Determine a basis for the row space of A.

(b) Find the rank of A.

Question 4. [4 marks] For each of the questions below, encircle the correct answer.

1. Given $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Then $v = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ is an eigenvector of A corresponding to the eigenvalue:

(A) 2 (B) 3 (C) -1 (D) 1 (E) None of the above

- 2. Let A and B be two similar matrices. Which of the following is not correct?
 (A) Nullity(A)=Nullity(B).
 - (B) $\operatorname{Rank}(A) = \operatorname{Rank}(B)$.
 - (C) $\det(A) = \det(B)$.
 - (D) A and B have the same eigenspaces.
 - (E) A and B have the same characteristic polynomial.
- **3.** Let A be a (4×7) -matrix whose rank is 3, then the nullity of A^T is:

(A) 0 (B) 1 (C) 2 (D) 3 (E) None of the above

4. Given
$$A = \begin{bmatrix} 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 2 & 1 & 4 & 5 \end{bmatrix}$$
. Then nullity(A) is
(A) 0 (B) 1 (C) 2 (D) 3 (E) None of the above