United Arab Emirates University
Faculty of Science
Department of Mathematical Sciences

FALL 2022 MATH 2220 TEST 2

Student Name:	
Student ID	
Gradent 15.	
Section	
Section.	

Grade:/15

Question 1. [3 marks] Determine whether the 3 vectors $v_1 = (1, 1, 0, 0)$, $v_2 = (2, 1, 0, 1)$ and $v_3 = (0, 1, 2, 1)$ are linearly independent. Show all the details of your work.

Question 2. [3 marks] Determine whether the vector w = (1, 2, 0) lies in the subspace of \mathbb{R}^3 spanned by the vectors $v_1 = (1, 2, 3)$, $v_2 = (0, 2, 2)$ and $v_3 = (2, 3, 5)$.

Question 3. [3 marks] Determine whether the 3 vectors $v_1 = (1, 1, 3)$, $v_2 = (0, 1, 2)$ and $v_3 = (1, 0, 1)$ form a basis of \mathbb{R}^3 .

Question 4. [3 marks] Given $p_1(x) = x$, $p_2(x) = 2 + x$ and $p_3(x) = 1 + x + x^2$. Compute the Wronskian of p_1, p_2, p_3 and show that the 3 polynomials are linearly independent.

Question 5. [3 mark] Given
$$A=\begin{bmatrix}0&0&3\\2&1&0\\1&0&2\end{bmatrix}$$
. Use the determinant formula to find the inverse of A , if it exists. Show all the details of your

work.

Question 6. [5 marks] For each of the questions below, encircle the correct answer.

- **1.** Which of the following is a subspace of \mathbb{R}^3 ?
 - (A) $\{(x, y, x^2); x, y \text{ real numbers }\}$
 - **(B)** $\{(x,0,2); x \text{ real number }\}$
 - (C) $\{(x, x + 1, x 1); x \text{ real number }\}$
 - (D) $\{(x,y,y); x,y \text{ real number }\}$
- **2.** For which values of a is the matrix $A = \begin{bmatrix} a & 1 & 1 \\ 0 & 3 & 0 \\ a & 1 & a \end{bmatrix}$ non-invertible?
 - (A) 0 and 2 (B) 0 and 1
- **(C)**2
- **(D)** -1 **(E)** None of the above
- 3. Given $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 4$, then $\begin{vmatrix} a & d & g \\ b+a & e+d & h+g \\ 2c & 2f & 2i \end{vmatrix} =$ **(A)** 0 (E) None of the above
- **4.** Let A, B and C, (3×3) -matrices such that |A| = 2, |B| = 2 and |C| = 4 then $|2ABA^tC^{-1}| =$
 - (A) 2
- (B) 4

- (C) 8 (D) 16 (E) None of the above
- **5.** Let W be the subspace of \mathbb{R}^3 defined by x-2y-z=0. Which of the following is a basis for W?
 - (A) (1,0,1) and (0,2,1)
 - **(B)** (1,1,-1)
 - (C) (1,0,1) and (0,1,-2)
 - **(D)** (0,-1,2)
 - **(E)** None of the above