
UAE-ACM National Programming Contest 2006

UAE
National Programming Contest

29-30 March 2006

Etisalat University College

Problem Set Includes

Lucky Names through Prime Numbers
Depth Traversal

Factorials
Lines and Points

Farmer and Corn Fields
Roman Numbers
Sum of Subsets

Pirate and Sorted Treasures
Word Frequencies
Check Password

• No electronically stored information is allowed
• No disturbance in the lab
• Raise up your hand in case you need anything.

 Page 1 of 19

UAE-ACM National Programming Contest 2006

Problem A
Source file: lucky{.c|.cpp|.java}
Input file: lucky.in
Output file: lucky.out

Lucky Names through Prime Numbers

An integer greater than one is called a prime number if its only positive divisors (factors)
are one and itself. For example, the prime divisors of 8 are 2 and 4; and the first six
primes are 2, 3, 5, 7, 11 and 13.

In this problem we introduce a prime character, which is a character with the
corresponding ASCI code translates to a prime number. For example, the ASCI code of
the character ‘A’ is 65, thus, ‘A’ is not a prime character. The ASCI code of the character
‘C’ is 67, therefore, ‘C’ is a prime character.

In this problem your task is to define the percentage of luck for each name provided to
you. Names are constituted by characters with the ASCI code from 65 (‘A’) to 122 (‘z’),
including underscores.

We compute the percentage of lucky names by calculating the average weight of the
characters constituting each name, where each character is given either the weight 100 if
it is a prime or the weight 0 otherwise.

Given a name N of length l, the percentage of luck for N is computed as follow:

W(N) = ∑wi / l wi: the weight of character i (i = 1..l).

Example1:
W(“SISCO”) = 100/5 + 100/5 + 100/5+ 100/5+ 100/5
 = 100 Thus, the word SISCO is 100% Lucky

Example2:
W(“cake”) = 0/4 + 100/4 + 100/4 + 100/4
 = 75 Thus, the word cake is 75% Lucky

Input
The input file contains a number of lines. Each line contains a single name for which, you are
asked to compute its percentage of luck. Input is terminated by end of file.

 Page 2 of 19

UAE-ACM National Programming Contest 2006

Output
For each line of input produce a line of output. The output should outline the name followed by
its percentage of lack.

Sample Input
SISCO
cake
Summer
Virus

Sample Output
SISCO: 100% Lucky
cake: 75% Lucky
Summer: 66% Lucky
Virus: 0% Lucky

 Page 3 of 19

UAE-ACM National Programming Contest 2006

Problem B
Source file: depth{.c|.cpp|.java}
Input file: depth.in
Output file: depth.out

Depth Traversal

The manager of a watch manufacturing company hired Mr. Jamal to launch a campaign
in order to publicize the new model of watches that the company is produced. Mr. Jamal
decided to organize an exhibition in all the cities in the country to demonstrate the
products to potential customers. Mr. Jamal is in need for a plan that allows him to visit
the entire country, one city at a time and only once. Your task is to help Mr. Jamal to
produce an exhaustive traversal plan. Assume the following requirements:

• Cities are numbered incresingly from 1 (i.e. 1, 2, 3…..).
• Mr Jamal’s trip must always start from the city with the lowest number and in the

case where you can reach more than one city from a particular city, Mr. Jamal
would like to visit the cities starting from the city with the lowest number and so
on.

• No city shall be visited more than one time.

Write a program that produces the list of nodes that Mr. Jamal needs to visit to cover a
whole country.

Input
The first line in the input file is an integer N representing the number of cities in a
country. The second line is also an integer M describing the number of routes between all
the cities in the country. Each of the next M input lines contains two integers (representing
cities) separated by a space to denote a route between the two cities. Note that there is no
specific order for the M lines or for the routes in the M lines.

Output
The output consists of the list of cities to be traversed according to the above
requirements.

 Page 4 of 19

UAE-ACM National Programming Contest 2006

Sample Input
7
8
1 7
1 5
5 2
2 6
6 3
3 4
4 7
7 5

Sample Output
1 5 2 6 3 4 7

 Page 5 of 19

UAE-ACM National Programming Contest 2006

Problem C
Source file: factorials{.c|.cpp|.java}
Input file: factorials.in
Output file: factorials.out

Factorials

Factorials are used in several areas of Science. Factorials are denoted as a number followed by
an exclamation point. For instance, factorial of an integer n, written n!, is the product of all
integers from 1 to n inclusive. The factorial quickly becomes very large; 15! is too large to be
stored as an integer on most computer, and 35! is too large for a floating-point variable. Your
task is to write a program to find the rightmost nonzero digit of n! For example: 5! = 1 * 2 * 3
* 4 * 5 * 6 = 120, therefore the rightmost non-zero digit of 5! is 2. Also, 7 = 1 * 2 * 3 * 4 * 5 *
6 * 7 = 5040, so the rightmost nonzero of factorial of 7! is 4. Note that 0! = 1! = 1.

Input
An integer n, between 1 and 10,000,000 inclusive.

The input test data is stored in file “factorials.in”. Each test case is on a separate line. The end
of the input data is indicated by “-1”. Note that 0! = 1! = 1.

Output
The output should be saved in a file “factorials.out” and the result should be the rightmost
non-zero digit of n!

Sample Input:
3
5
9
7
-1

Sample Output:
6
2
8
4

 Page 6 of 19

UAE-ACM National Programming Contest 2006

Problem D
Source file:points.{.c|.cpp|.java}
Input File: points.in
Output File: points.out

Lines and Points

Given a set of points in two-dimensional (2D) coordinate space, each with integer x and y
coordinates, find the largest number K of points lying exactly on the same line.

Input
The input file “points. in” contains an unknown number of data points sets. Every set is
preceded by an integer n specifying the number of points in that set. If n is 0, then there
are no more sets.

Each line in the file stores the x coordinate and the y coordinate (in this order) separated
by a space.

Output
The output file “points.out” contains the number K for each set in a separate line.

Sample Input
6
2 6
4 10
6 14
8 20
10 22
9 30
7
2 9
4 11
15 22
20 32
6 15
8 15
12 19
0

Sample Output
4
5

 Page 7 of 19

UAE-ACM National Programming Contest 2006

Problem E
Source file:farmer.{.c|.cpp|.java}
Input File: farmer.in
Output File: farmer.out

Farmer and Corn Fields

A farmer harvests crops from different farmers’ fields that he gets a percentage of the
harvested corn as his payment. However every time he goes to a field, he has to measure
the area of the field so that he can estimate if harvesting this field is profitable or not.
Obviously this is not a straight forward task, as their shapes are usually irregular that any
simple formula can’t be applied; and the fields are filled with corn that farmer can’t get in
the fields. Therefore, the only method that he has to use is to walk around each field’s
periphery to record the distance and the direction of each move. This gives him a non-self
intersecting polygon (none of the lines intersect with each other) representing the
periphery of the fields. This smart farmer knows that if he gets an imaginary straight line
that is not intersecting the polygon, he can draw two perpendicular lines to the imaginary
line from staring and ending points of each move and parallel to each other (Figure 1). By
this method he finds trapezoids with signed area (some positive if the move is away from
the starting point, and some negative if the move is towards the starting point) (Figure 2).
When he adds the area of these trapezoids, he can calculate the area of the corn fields.
The farmer asks you to write a program that he will use for calculating the area of corn
fields.

Figure 1. Polygon and parallel lines

Figure 2. Trapezoid

Area = [(A + B) ÷ 2] x h

Input
The input starts with a number M describing the number of moves. Each line following M
contains decimal pair l and d representing a move: l shows the length of the move and d
shows the direction in degree angle counter clockwise. End of file is marked with 0
(zero).

Output
Display the area of each corn field in the input file.

 Page 8 of 19

UAE-ACM National Programming Contest 2006

Sample Input
3
50 45
100 0
50 225
5
50 45
50 0
50 315
50 225
50 180
5
10 90
10 0
10 90
10 0
28.284 315
0

Sample Output
Area for field 1 is 3535.5 unit-square
Area for field 2 is 6035.5 unit-square
Area for field 3 is 500.0 unit-square

 Page 9 of 19

UAE-ACM National Programming Contest 2006

Problem F
Source file: roman{.c|.cpp|.java}
Input file: roman.in
Output file: roman.out

Roman Numbers

A Roman numeral represents an integer using letters. For examples XVII represent 17.
By contrast, ordinary numbers such as 17 or 1920 are called Arabic numerals. The
following table shows the Arabic equivalent of all the single-letter Roman numerals:
 M 1000 X 10

 D 500 V 5

 C 100 I 1

 L 50

When letters are joined together to form a string, the values of the letters are just added
up, with the following exception. When a letter of smaller value is followed by a letter of
larger value, the smaller value is subtracted from the larger value. For example, IV
represents 5 - 1, or 4. And MCMXCV is interpreted as M + CM + XC + V, or 1000 +
(1000 - 100) + (100 - 10) + 5, which is 1995. In standard Roman numerals, no more than
three consecutive copies of the same letter are used. Following these rules, every number
between 1 and 3999 can be represented as a Roman numeral made up of the following
one- and two-letter combinations:
 M 1000 X 10

 CM 900 IX 9

 D 500 V 5

 CD 400 IV 4

 C 100 I 1

 XC 90

 L 50

 XL 40

Write a program that reads Roman numerals and prints the corresponding Arabic
numeral. The program should end when the user inputs an empty line.

Input
The data input file “roman.in” consists of Roman numerals where each numeral is on a
single line.

 Page 10 of 19

UAE-ACM National Programming Contest 2006

Output
Corresponding Arabic numerals should be stored in a file “roman.out”.

Sample Input
MXCLVI
LCIIXCL
MXVLCII

Sample Outpu
1146
210
1157

 Page 11 of 19

UAE-ACM National Programming Contest 2006

Problem G
Source file: subsets{.c|.cpp|.java}
Input file: subsets.in
Output file: subsets.out

Sum of Subsets

The jewelry store TREASURE contains valuable items each of which has a label
indicating its weight. The store manager is organizing a special promotion for all
customers. Each customer is given a knapsack that can carry a fix predefined weight.
Every customer who is able to fill his knapsack with the exact weight gets a 20%
discount. You were asked by a friend to write a software program to help him choose the
items that will fit exactly in any particular knapsack. Your friend will run the program on
his portable computer and once inside the store, he will enter the weights of all the items
and a desired target weight for a knapsack and your program will print out all possible
solutions.

Input
The first line of the input file to this problem contains the number N (N <= 1000) of items
available in the store on a separate line followed by the set of N positive integers representing the
weights of the N items. The integers are organized in consecutive lines each of which contains 10
numbers separated by a tabulation character. The last line may contain less than 10 numbers
depending of the value of N. After that, the input file contains the number M (M <= 1000000) of
samples to be tested followed by M lines each of which contains a target weight.

Output
The output for each sample starts with the word “SAMPLE” followed by a single space and the
sequence number of the sample (1, 3 …M) on a separate line. Each possible solution will follow
on a separate line which contains the numbers (weights) separated by a single space. Your
program should output all possible solutions or a message “No Solution” if none is possible. A
solution is a set of weights that sums to the target weight.

Example: The example below shows fourteen (14) items with weights: 13, 17, 99, 71, 7, 1, 66,
73, 53, 529, 4, 71, 70 and 19 and three samples of target weights respectively 3, 25 and 35. The
first sample (weight =3) has no solutions, the second sample (weight =25) has two solutions: 1 4
7 13 and 1 7 17 because 1+4+7+13=25 and 1+7+17=25. The last sample (weight =35) has one
single solution 1 4 13 17 as 1+4+13+17=35.

 Page 12 of 19

UAE-ACM National Programming Contest 2006

Sample Input
14
13 17 99 71 7 1 66 73 53 529
4 71 70 19
3
3
25
35

Sample Output
SAMPLE 1
No Solution
SAMPLE 2
1 4 7 13
1 7 17
SAMPLE 3
1 4 13 17

 Page 13 of 19

UAE-ACM National Programming Contest 2006

Problem H
Source file: piratemap{.c|.cpp|.java}
Input file: piratemap.in
Output file: piratemap.out

Pirate and Sorted Treasures

An old pirate hides his gold coins by distributing them among different cities. As his final
and encoded map, the pirate keeps a flat list of visited cities. In order to convert the list to
a geographic map (G-map) he invented the following golden rules.

1. A city can have direct road to maximum three cities: a city that the pirate comes
from, a city somewhere east or west of this city. Three cities that the pirate visits
can have only one path. For example, if the city Alg has a direct road to the cities
Balg and Calg; then Balg and Calg are not directly connected.

2. Each city name in the list is stored one-by-one and the pirate decides where to
locate it on the G-map by the following logic:

a. If it is the first city read, it is the harbor city.

b. Each city read in sequence from the list is placed on the G-map by
comparing to city names read before and located on the G-map. He adds
up each letter’s numeric value in the city name (such as A is 1 and Z is 26
for small or capital letters) and divides the result with the number of
letters. If the value is smaller than or equal to the city name value being
compared to, it is mapped on somewhere East of that city, else somewhere
on West.

c. Last located city on a direction (East or West) has a direct connection with
the city being placed on the G-map.

3. The amount of gold hidden in each city is twice more than the gold in the city
before. For example, if the pirate moves from the harbor city to Alg, and from Alg
to Balg, he stores twice as much gold coins in Balg than Alg; and twice as much
gold in Alg than the harbor city.

By using these golden mapping rules, find out how many gold coins the old pirate hides
in each city and how much the total treasure is worth.

Input File
The input starts with a number M describing the number of cities. It is followed by
another numeric value showing how much gold coins stored in the harbor city. Following
each line refers to a city name.

Output File
Display each city name with the hidden gold coins sorted from lowest to highest. After
the city list, display the total gold coins that this old pirate hid.

 Page 14 of 19

UAE-ACM National Programming Contest 2006

Sample Input
7
4
Calg
Balg
Dalg
Bolg
Alg
Egle
Tangle

Sample Output
Calg: 4
Balg: 8
Dalg: 8
Bolg: 16
Alg: 32
Tangle: 32
Egle: 64

Total hidden gold coins: 164

 Page 15 of 19

UAE-ACM National Programming Contest 2006

Problem I
Source file: words{.c|.cpp|.java}
Input file: words.in
Output file: words.out

Word Frequencies

Many information retrieval applications make use of document word frequencies in order
to retrieve the most relevant documents from a database of texts according to queries
from users. The calculation of frequencies of words in text documents is the first step to
prepare a database for information retrieval.

Write a program that reads a text from an input file and counts the number of occurrences
of each word. A word is defined by any sequence of characters delimited by a space, a
new line or a punctuation mark. You should write the words to an output file along with
their frequencies first in alphabetical order and in second arranged by the by their
frequencies in descending order. In the later case, words with similar frequency should be
arranged in alphabetical order.

Input
The input consists of a text file containing ASCII text.

Output
The output consists of the list of words in the input file and their frequencies arranged
first in alphabetical order of the words and secondly by frequencies. The first line is the
sentence “Words in alphabetical order:”, then a set of output lines ordered in alphabetical
order. Each line contains a word from the text followed by a space and then its frequency.
Then the sentence “Words in order of frequency:” followed by a set of lines ordered
according to the frequencies of the words as described above. Each line contains a word
followed by a space and then the word frequency.

Sample Input
Constraint satisfaction problems are set of problems with a complete
solution. The problems consist of a set of variables, subject to the
particular constraints of the problems.

 Page 16 of 19

UAE-ACM National Programming Contest 2006

Sample Output
Words in alphabetical order:
a 2
are 1
complete 1
consist 1
constraint 1
constraints 1
of 4
particular 1
problems 4
satisfaction 1
set 2
solution 1
subject 1
the 3
to 1
variables 1
with 1
Words in order of frequency:
of 4
problems 4
the 3
a 2
set 2
are 1
complete 1
consist 1
constraint 1
constraints 1
particular 1
satisfaction 1
solution 1
subject 1
to 1
variables 1
with 1

 Page 17 of 19

UAE-ACM National Programming Contest 2006

Problem J
Source file: password{.c|.cpp|.java}
Input file: password.in
Output file: password.out

Check Password

A password is a sequence of characters that can be used for authentication purposes.
Passwords are widely used in computer systems and networks; and they are often used to
authenticate the identity of an automated data processing (ADP) system user.

A valid password is a personal password that will authenticate the identity of an
individual when presented to a password system.

In this problem you are asked to check the validity of passwords through the development
of some routines that will play the role of a password system. Basic factors shall be
considered in the design, implementation, and use of a password system used to
authenticate the identity of a person. In this problem we only focus on two main factors,
comprising 4 distinct rules:

- Length Range Factor: Length Range is the set of acceptable lengths of
passwords, expressed as a minimum length through a maximum length.

o Rule 1: acceptable number of characters in a valid password must be more
than 6 and less than 15.

- Composition Factor: Composition is the set of acceptable characters which may
be used in a valid password.

o Rule 2: valid password should not be only alphabetic characters

o Rule 3: valid password should not be only numeric characters

o Rule 4: valid password should not be a series of alphabetic characters ending
with ‘99’

Passwords are alphanumeric characters with the ASCI code in the following ranges:

o 48 – 57 for numeric values (0, 1, …, 9)

o 65 - 90 : upper case alphabetic characters (A, B, …, Z)

o 97 – 122: lower case alphabetic characters (a, b, …, z)

Input
The input file contains a number of lines. Each line contains a single word (password to be
checked). Input is terminated by end of file.

 Page 18 of 19

UAE-ACM National Programming Contest 2006

Output
For each line of input produce a line of output. The output should outlines if a password is valid
or not, in case of invalid password the output should identify the violated rules.

Sample Input
NPC2006
CGI
a199
99
CGI99

Sample Output
valid Password
not a valid Password (rule(s): 1,2 violated)
not a valid Password (rule(s): 1 violated)
not a valid Password (rule(s): 1,3 violated)
not a valid Password (rule(s): 1,4 violated)

 Page 19 of 19

	Etisalat University College
	Problem Set Includes
	Farmer and Corn Fields
	No electronically stored information is allowed
	Raise up your hand in case you need anything.

	Input
	Output
	Sample Input
	Sample Output
	Depth Traversal
	
	Input
	Output
	Sample Input
	Sample Output

	Factorials
	6
	2
	8
	4

	Problem E
	Farmer and Corn Fields
	Pirate and Sorted Treasures
	
	Input File
	Output File
	Sample Input
	Sample Output

	Problem I
	Word Frequencies
	
	Input
	Output
	Sample Input
	Sample Output
	
	Check Password
	Input
	Output
	Sample Input
	Sample Output

