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Abstract—Predicting users’ future requests in the World Wide4
Web can be applied effectively in many important applications,5
such as web search, latency reduction, and personalization sys-6
tems. Such application has traditional tradeoffs between mod-7
eling complexity and prediction accuracy. In this paper, we8
study several hybrid models that combine different classification9
techniques, namely, Markov models, artificial neural networks10
(ANNs), and the All-Kth-Markov model, to resolve prediction11
using Dempster’s rule. Such fusion overcomes the inability of the12
Markov model in predicting beyond the training data, as well as13
boosts the accuracy of ANN, particularly, when dealing with a14
large number of classes. We also employ a reduction technique,15
which uses domain knowledge, to reduce the number of classifiers16
to improve the predictive accuracy and the prediction time of17
ANNs. We demonstrate the effectiveness of our hybrid models by18
comparing our results with widely used techniques, namely, the19
Markov model, the All-Kth-Markov model, and association rule20
mining, based on a benchmark data set.21

Index Terms—Artificial neural networks (ANNs), association22
rule mining (ARM), Dempster’s rule, Markov model, N-gram.23

I. INTRODUCTION24

W EB PREDICTION is the problem of predicting the next25

web page that a user might visit after surfing in a26

website. The importance of web prediction originates from the27

fact that various applications, such as latency reduction, web28

search, and recommendation systems, can be made more effec-29

tive through the use and the improvement of web prediction.30

One of the early applications of web prediction is the latency31

of viewing of web documents [6]. Traditional solutions are32

based on caching and prefetching [2], [3], [9]. Other advanced33

intelligent methods [10], [11] acquire knowledge from surfers’34

previous path history and utilize that in prediction. Pandey et al.35

[10] present an intelligent prefetching method based on a36

proxy server using association rule mining (ARM) to generate37

association rules that are later used to predict future requests.38

World Wide Web (WWW) prediction can also improve39

search engines. The entire structure of the WWW can be40

pictured as a connected graph, where each node corresponds to41

a website, and surfers navigate from one node to another. The42

distribution of the visits over all WWW pages can be computed43
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and used in reweighting and reranking results. In such scenario, 44

we consider the surfer path information to be more important 45

than the keywords that were entered by the user [14]. 46

Another application of web prediction is recommendation 47

systems, in which we try to find the top k users having the same 48

interests or tastes to a target user record. ARM is a well-known 49

model that is used in recommendation systems. Mobasher et al. 50

[7] propose the frequent item set graph to match an active user 51

session with frequent item sets and predict the next page that the 52

user is likely to visit. Prediction for the active session is based 53

on the confidence of the corresponding association rule. 54

Other prediction models that are widely used in WWW pre- 55

dictions and its related applications include k nearest neighbors 56

(NN), artificial neural network (ANN), fuzzy interference, and 57

Markov model. Joachims et al. [18] propose the kNN-based 58

recommender WebWatcher. The WebWatcher is a learning tour 59

guide agent that extracts knowledge from user’s previous clicks 60

and from the hypertext structure. Nasraoui and Krishnapuram 61

[19] propose a web recommendation system using fuzzy in- 62

ference. Clustering is applied to group profiles using hierar- 63

chical unsupervised niche clustering. Context-sensitive uniform 64

resource locator (URL) association is inferred using a fuzzy- 65

approximate-reasoning-based engine. Levene and Loizou [1] 66

compute the information gain from the navigation trail to con- 67

struct a Markov chain model to analyze user navigation pattern 68

through the web. The main contribution of [1] is that they 69

present a mechanism to estimate the navigation trail. Pitkow 70

and Pirolli [5] explore pattern extraction and pattern matching 71

based on the Markov model that predicts future surfing paths. 72

Longest repeating subsequences (LRS) is proposed to reduce 73

the model complexity (not predictive accuracy) by focusing on 74

significant surfing patterns. 75

Our work is related to the path-based prediction model using 76

the N-gram model [14] and the LRS model [5]. However, our 77

approach differs from them in the following ways: First, only 78

one path-based prediction technique is used when combining 79

different N-gram models. Second, the main focus of LRS is to 80

reduce the modeling complexity by reducing the data set. Third, 81

all these models are probabilistic, i.e., it depends on the fre- 82

quencies of patterns/occurrences in the training set. Therefore, 83

our model can predict some values that Markov models cannot 84

(i.e., our model can predict for some unobserved values). In 85

the work of Nasraoui and Krishnapuram [19], the focus is to 86

use a set of URL predictors by creating a neural network for 87

each profile independently with a separate training set. Their 88

goal is to overcome the high complexity of the architecture 89

and training in case that one neural network is used. In our 90

work, we not only use a set of predictors but also fuse them 91
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in a hybrid model for prediction. Our goal is to improve the92

accuracy using different prediction techniques, namely, ANN,93

the Markov model, the All-Kth model, and using different94

N-gram models.95

One important subtlety of web prediction is that web pre-96

diction is a multiclass problem of a large number of classes97

(11 700 classes in our experiments). Here, we define a class (or98

a label) as a unique identifier that represents a web page in a99

web site. Most multiclass techniques, such as one-versus-one100

and one-versus-all, are based on generalizing binary classifiers,101

and prediction is resolved by checking against all these binary102

classifiers. As a result of that, prediction accuracy is very103

low [4], because the prediction model has many conflicting104

outcomes from the classifiers.105

There are several problems with the current state-of-the-art106

solutions. First, models such as Markov and ARM models are107

unable to generalize beyond training data [5]. This is because108

prediction using ARM and LRS pattern extraction is done based109

on choosing the path of the highest probability in the training110

set; hence, any new surfing path is misclassified, because it has111

zero probability. Second, prediction using ARM suffers from112

well-known limitations including scalability and efficiency [7],113

[13]. Finally, many of the previous methods have ignored114

domain knowledge as a means to improving prediction.115

In this paper, we present a new approach to improving the ac-116

curacy in web prediction. Our approach is based on generating117

a hybrid prediction model by fusing two different classification118

models. We use four classification models, namely: 1) ANNs;119

2) ARM; 3) Markov model; and 4) All-Kth-model. ARM and120

Markov model are powerful techniques for predicting seen data,121

i.e., already observed data; however, they cannot predict beyond122

training data (see Section III-A). On the other hand, the All-123

Kth model and ANN are powerful techniques that can predict124

beyond training data. In other words, the ANN and All-Kth125

models can predict some values that the Markov model and126

ARM cannot. We combine the All-Kth model with ANN by127

fusing their outcomes using Dempster’s rule.128

Nonetheless, when dealing with a large number of classes or129

when there is a possibility that one instance may belong to many130

classes, their predictive power may decrease. To overcome131

these shortcomings, we extract domain knowledge from the132

training data and incorporate such knowledge during prediction133

to improve prediction time and accuracy. Specifically, domain134

knowledge is used to eliminate irrelevant classes and reduce135

the conflict during prediction. Notice that we combine different136

prediction models in which each model has different strengths137

and drawbacks over other models. We strive to overcome138

major drawbacks in each technique and improve the predictive139

accuracy for the final hybrid model.140

The contribution of this paper is given as follows: First, we141

use ANN in web navigation. Second, we incorporate domain142

knowledge in ANN prediction to eliminate irrelevant classes143

and to improve prediction time and accuracy. Third, we fuse144

ANN, the Markov model, and All-Kth-Markov classifiers in145

a hybrid prediction model using Dempster’s rule [17] to im-146

prove prediction accuracy and to overcome the drawbacks of147

using each model separately. Finally, we compare our hybrid148

model with different models, namely, Markov model, ARM,149

All-Kth-ARM, All-Kth-Markov, and ANN using a standard 150

benchmark data set and demonstrate the superiority of our 151

method. 152

The organization of this paper is given as follows: In 153

Section II, we present the background of the N-gram concept 154

and sliding window. In Section III, we present different pre- 155

diction models that are used in web prediction. In Section IV, 156

we present the utilization of domain knowledge to improve 157

prediction. In Section V, we present a new hybrid approach 158

combining ANN, the Markov model, and the All-Kth-Markov 159

model in web prediction using Dempster’s rule for evidence 160

combination. In Section VI, we compare our results with 161

other methods using a standard benchmark training set. In 162

Section VII, we summarize this paper and outline some future 163

research. 164

II. N-GRAM REPRESENTATION OF PATHS 165

In web prediction, the available source of training data is 166

the users’ sessions, which are the user’s history of navigation 167

within a period of time. User sessions are extracted from 168

the logs of the web servers, and it contains sequences of 169

pages/clicks that the users have visited, time, data, and the pe- 170

riod of time that the user stays in each page. In web prediction, 171

the best known representation of the training session is the 172

N-gram. N-gram is tuples of the form 〈X1,X2, . . . , Xn〉 that 173

depict sequences of page clicks by a population of users surfing 174

a website. Each component of the N-gram takes a specific page 175

id value that identifies a web page. For example, the N-gram 176

〈X10,X21,X4,X12〉 depicts the fact that the user has visited 177

pages in the following order: page 10, page 21, page 4, and 178

finally, page 12. 179

Many models further process these N-gram sessions by 180

applying a sliding window to make training instances have 181

the same length [5], [7]. For example, if we apply a sliding 182

window of size 3 on the N-gram 〈X10,X21,X4,X12,X11〉, 183

we will have the following 3-gram sessions: 〈X10,X21,X4〉, 184

〈X21,X4,X12〉, and 〈X4,X12,X11〉. In general, the number of 185

additional sessions using sliding window w applied on session 186

A is |A| − w + 1, where |A| is the length of session A. 187

In this paper, we also use the term number of hops, which 188

is related to the sliding window. The number of hops for a 189

session of length N is N − 1, i.e., the number of clicks (or 190

hops) that the user makes to reach the last page in the session. 191

When applying sliding window of size w, the number of hops 192

in the resulted subsessions is w − 1. In the previous example, 193

the number of hops in the resulted 3-gram sessions is 2. 194

III. PREDICTION MODELS 195

In this section, we briefly present various prediction models 196

that have been used in web prediction. First, we present the 197

Markov model; next, we present the ANN model along with 198

improvement modifications. 199

A. Markov Model 200

The basic concept of the Markov model is to predict the 201

next action, depending on the result of previous actions. In 202
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Fig. 1. Design of ANN.

web prediction, the next action corresponds to predicting the203

next page to be visited. The previous actions correspond to204

the previous pages that have already been visited. In web205

prediction, the Kth-order Markov model is the probability that206

a user will visit the kth page, provided that he/she has visited207

k − 1 pages, i.e.,208

Pr(Pk|Pk−1, . . . , Pk−n)

= Pr(Sk = Pk|Sk−1 = Pk−1, . . . , Sk−n = Pk−n) (1)

where Pi is a web page, and Si is the corresponding state in the209

Markov model state diagram. Notice that the Markov model210

cannot predict for a session that does occur in the training set,211

because such session will have zero probability. Alternatively,212

one can generate all orders of the Markov models and utilize213

them in the prediction. This model is called all-Kth orders [5],214

[7]. The idea here is that, for a given session x of length k, the215

kth-order Markov model is used in the prediction. If the kth-216

order Markov model cannot predict for x, the (k − 1)th-order217

Markov model is considered for prediction using a new session218

x′ of length k − 1. x′ is computed by ignoring the first page id in219

x. This process repeats until prediction is obtained. Thus, unlike220

the basic Markov model, the all-Kth orders Markov model can221

predict beyond training data, and it fails only when all orders of222

basic Markov models fail to predict.223

B. ANNs224

ANN is a very powerful and robust classification technique225

that has been used in many applications and domains [15]. In226

this paper, we employ a network of two layers that uses the227

backpropagation algorithm for learning. The backpropagation228

algorithm attempts to minimize the squared-error function.229

A typical training example in web prediction is 〈[kt−τ+1,230

. . . , kt−1, kt]T , d〉, where [kt−τ+1, . . . , kt−1, kt]T is the input231

to the ANN and d is the target web page. Notice that the232

input units of the ANN in Fig. 1 are τ previous pages that the233

user has recently visited, i.e., [kt−τ+1, . . . , kt−1, kt]T , where234

k is a web page id. The output of the network is a Boolean235

value and not probability. We approximate the probability of the236

output by fitting a sigmoid function after the ANN output (see237

Section V-A for details). The approximated probabilistic output238

Fig. 2. ANN design in our implementation.

becomes o′ = f(o(I)) = pt+1, where I is an input session and 239

pt+1 = p(d|kt−τ+1, . . . , kt). We choose the sigmoid function 240

o = σ(w.I) σ(y) =
1

1 + e−y
(2)

as a transfer function, so that the ANN can handle nonlinearly 241

separable data sets [15]. 242

In (2), I is the input to the network, O is the output of the 243

network, W is the matrix of weights, and σ is the sigmoid 244

function. We implement the backpropagation algorithm for 245

training the weights. The backpropagation algorithm employs 246

gradient descent to attempt to minimize the squared error 247

between network output values and the target values of these 248

outputs. In our implementation, we set the step size, to update 249

the ANN weights, dynamically based on the distribution of 250

the classes in the data set. First, we set the step size to large 251

values when updating the training examples that belong to low- 252

distribution class and vice versa. This is because, when the 253

distribution of the classes in the data set varies widely (for 254

example, positive examples are equal to 10% and negative 255

examples are equal to 90%), the network weights converge 256

toward the examples from the class of larger distribution, which 257

causes a slow convergence. Second, we adjust the learning 258

rates slightly by applying a momentum constant to speed up 259

the convergence of the network. Fig. 2 presents our multilayer 260

ANN design that we use in our experiments. As we can see, the 261

ANN is composed of two fully connected hidden layers. Each 262

layer is composed of three neurons. 263

IV. DOMAIN KNOWLEDGE AND 264

CLASSIFICATION REDUCTION 265

In web prediction, the number of classes/labels is large. Each 266

page id is considered as a different label/class. For example, 267

in our data set, we have 11 700 different page ids. Recall 268

that, when using one-versus-one or one-versus-all, we have to 269

consult many classifiers to resolve prediction. As a result, pre- 270

diction time may increase, conflict can arise among classifiers, 271
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Fig. 3. Frequency matrix.

and prediction accuracy becomes low. One way to reduce/filter272

this large number of outcomes is to use domain knowledge in273

what we call frequency matrix. Frequency matrix is defined as274

an N × N matrix, where N is the number of web pages (see275

Fig. 3). The first row and column represent the enumeration of276

web page ids. Each entry in the matrix represents the frequency277

that the users have visited two pages in a sequence. For exam-278

ple, entry (1, 2) in Fig. 3 contains the frequency of users who279

have visited page 2 after 1. Notice that freq(x, x) is always280

zero. We can use the frequency matrix to eliminate/filter the281

number of classifiers during prediction as follows: For a given282

session X = 〈x1, x2, . . . , xn〉 and a classifier Ci, we exclude283

Ci in the prediction process if freq(xn, ci) = 0, where xn is284

the last page id that the user has visited in testing session X .285

The frequency matrix represents the first order of Markov286

model. One can extend that to a higher order frequency matrix.287

In this case, an nth-order frequency matrix corresponds to the288

nth-order Markov model. Notice that the increase of frequency289

matrix order leads to fewer number of classes in prediction.290

For example, given a testing session S3 = 〈p1, p2, p3〉, the291

following relation holds:292

|B1| ≥ |B2| ≥ |B3|

where293

B1 = {x| < p3, x >∈ T}
B2 = {x| < p2, p3, x >∈ T}
B3 = {x| < p1, p2, p3, x >∈ T}

where T is the training sessions, x is a page id, Bi is the set of294

outcomes by applying a frequency matrix of order i, and |Bi|295

is the length of set Bi. Hence, there is a tradeoff between the296

number of classifiers during prediction (i.e., accuracy) and the297

order of frequency matrix. Based on our observations and ex-298

periments, we find that first-order frequency matrix is adequate299

to balance such tradeoff and to reduce the number of classifiers300

in prediction without affecting the accuracy. (See Section VI-D301

for details.)302

V. HYBRID MODEL FOR WEB PREDICTION303

USING DEMPSTER’S RULE304

In this section, we present our hybrid model for web predic-305

tion, which is based on Dempster’s rule for evidence combina-306

tion, using the ANN and Markov models as bodies of evidence.307

In our model, prediction is resolved by fusing two separate308

classifiers models, namely: 1) ANN and 2) Markov model (see309

Fig. 4).310

Fig. 4. Hybrid model using the Dempster’s rule for evidence combination.

Dempster’s rule is one part of the Dempster–Shafer Evidence 311

Combination frame for fusing independent bodies of evidence. 312

In Dempster’s rule, the sources of evidence should be in the 313

form of basic probability. Since the ANN output value is not 314

probability [15], we need to convert/map this output into a 315

posterior probability P (class|input). 316

In this section, we will present, first, a method to convert the 317

ANN output into a posterior probability by fitting a sigmoid 318

function after the ANN output [16]. Next, we present the 319

background of the Dempster–Shafer theory. 320

A. Fitting Sigmoid After ANN Output 321

We have implemented the backpropagation learning algo- 322

rithm based on minimizing the squared-error function. Hence, 323

the output of ANN cannot be considered probability. Since 324

we are using ANN as an independent body of evidence in the 325

Dempster’s rule frame, we should consequently map the output 326

of ANN into probability. 327

One interpretation of the output of ANN, in the context of 328

the classification problem, is an estimate of the probability 329

distribution. There are several ways to interpret the ANN output 330

in terms of probability. One traditional way is to estimate 331

the probability density function (pdf) from the training data. 332

The assumption here is that we know that the training data 333

follow some distribution (typically the normal distribution). 334

The normal distribution is widely used as a model parameter 335

in which analytical techniques can be applied to estimate such 336

parameters [19], [22] as mean and standard deviation. 337

Another approach is to consider learning to minimize a 338

probabilistic function, instead of squared error, such as the cross 339

entropy shown in (3). Once learning is done, the output of the 340

network is an estimate of the pdf. In (3), D is the training set, 341

td is the target class of example d, and od is the output of 342

ANN, i.e., 343

min−
∑
d∈D

td log(od) + (1 − td) log(1 − od). (3)

Since the backpropagation algorithm minimizes the squared- 344

error function, we choose to implement a parametric method to 345

fit the posterior p(y = 1|f) directly, instead of estimating the 346

class-conditional densities p(f |y) [16], where y is the target 347

class and f is the output function of ANN. The output of ANN 348

is computed as follows: 349

f(I) =
{

1, if σ(I) ≥ 0.5
−1, otherwise

(4)
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where I is the input to the network, and σ is the output of350

the sigmoid transfer function defined as in (2). It follows that351

class-conditional densities between the margins are apparently352

exponential [16]. Bayes’ rule on two exponential suggests using353

a parametric form of sigmoid as follows:354

P (y = 1|f) =
1

1 + exp(Af + B)
. (5)

This sigmoid model is equivalent to assuming that the output355

of ANN is proportional to the log odds of a positive example.356

Parameters A and B of (5) are fitted using maximum-likelihood357

estimation and can be found by minimizing the negative log358

likelihood of training data, which is a cross-entropy error359

function (3). od in (3) is defined as follows:360

od =
1

1 + exp(Afd + B)
. (6)

The minimization in (3) is a two-parameter minimization.361

Hence, it can be performed in many optimization algorithms.362

For robustness, we implement the model-trust minimization363

algorithm based on the Levenberg–Marquardt algorithm [17].364

B. Dempster–Shafer Evidence Combination365

The Dempster–Shafer theory is a mathematical theory366

of evidence [17], which is considered to be a generaliza-367

tion of the Bayesian theory of subjective probability. The368

Dempster–Shafer theory is based on two ideas. The first idea369

is the notion of obtaining degrees of belief for one question370

based on subjective probabilities for a related question, and371

Dempster’s rule for combining such degree of belief when372

they are based on independent items of evidence. Since we373

use two independent sources of evidence, namely, ANN and374

Markov model, we are interested in the latter part of the375

Dempster–Shafer theory, namely, Dempster’s rule. See [17] for376

more details regarding this theory.377

Some may question why we do not use boosting and bagging378

rather than Dempster’s rule to improve the classifier accuracy.379

We prefer Dempster’s rule over boosting and bagging because380

boosting and bagging require partitioning the data set into a381

large number of independent bootstrap samples (> 1000) and382

then generating a classifier for each partition separately [12].383

Hence, there is a computation overhead not only in training384

but also in preprocessing and prediction. Furthermore, boosting385

and bagging cannot perform effectively if the data set does386

not have enough points for each class/label. In web prediction387

applications, many pages are sparse in the data set, because they388

receive very few clicks.389

C. Using Dempster–Shafer Theory in Web Prediction 390

We have two sources of evidence: 1) the output of ANN 391

and 2) the output of Markov model. These two models operate 392

independently. Furthermore, we assume that, for any session x 393

for which it does not appear in the Markov model, the Markov 394

prediction probability is zero. If we use Dempster’s rule for 395

combination of evidence, we get the following: 396

mANN,Markov(C)=

∑
A,B⊆Θ,A∩B=C

mANN(A)mMarkov(B)
∑

A,B⊆Θ,A∩B =φ

mANN(A)mMarkov(B)

(7)

where mANN is the probabilistic output of ANN, mMarkov is the 397

output of Markov model, C ∈ 2Θ is a hypothesis (for example, 398

what is the prediction of a testing session?), and Θ is the frame 399

of discernment. A frame of discernment is an exhaustive set of 400

mutually exclusive elements (hypothesis, propositions). 401

In web prediction, we can simplify this formulation because 402

we have only beliefs for singleton classes (i.e., the final pre- 403

diction is only one web page and it should not have more 404

than one page) and the body of evidence itself (m(Θ)). This 405

means that, for any proper subset A of Θ for which we have no 406

specific belief, m(A) = 0. After eliminating zero terms, we get 407

the simplified Dempster’s combination rule, for a web page PC 408

in (8) which is shown at the bottom of the page. Since we are 409

interested in ranking the hypothesis, we can further simplify 410

(8), where the denominator is independent of any particular 411

hypothesis, as follows: 412

rank(PC) ∝ mANN(PC)mMarkov(PC)

+ mANN(PC)mMarkov(Θ) + mANN(Θ)mMarkov(PC). (9)

∝ is the “is proportional to” relationship. mANN(Θ) and 413

mMarkov(Θ) represent the uncertainty in the bodies of evi- 414

dence for mANN and mMarkov, respectively. For mANN(Θ) 415

and mMarkov(Θ) in (9), we use the following. For ANN, we 416

use the output of ANN to compute the uncertainty. We call the 417

output of ANN for specific session x as the margin because 418

the ANN weights correspond to the separating surface between 419

classes and the output ANN is the distance from this surface. 420

Uncertainty is computed based on the maximum margin of all 421

training examples as follows: 422

mANN(Θ) =
1

ln(e + ANNmargin)
. (10)

ANNmargin is the maximum distance of training examples 423

from the margin. For Markov model uncertainty, we use the 424

mANN,Markov(PC) =
mANN(PC)mMarkov(PC) + mANN(PC)mMarkov(Θ) + mANN(Θ)mMarkov(PC)∑

A,B⊆Θ,A∩B =φ

mANN(A)mMarkov(B)
(8)
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maximum probability of training examples as follows:425

mMarkov(Θ) =
1

ln(e + Markovprobability)
. (11)

Markovprobability is the maximum probability of training ex-426

amples. Note that, in both models, the uncertainty is inversely427

proportional to the corresponding maximum value.428

Here, we would like to show the basic steps that are involved429

in web prediction using Dempster’s rule.430

Step 1) Train ANN (see Section III-B).431

Step 2) Map ANN output a probability (see Section V-A).432

Step 3) Compute Uncertainty (ANN) (see Section V-C,433

(10)).434

Step 4) Construct Markov Model (see Section III-A).435

Step 5) Compute Uncertainty of Markov model (see436

Section V-C, (11)).437

Step 6) For each testing session x, do438

Step 6.1) Compute mANN(x) and output ANN439

probabilities for different pages.440

Step 6.2) Compute mMarkov(x) and output Markov441

probability for different pages.442

Step 6.3) Compute mANN,Markov(x) using (9) and443

output the final prediction.444

Step 7) Compute prediction accuracy. // see Section VI-C.445

VI. EVALUATION446

In this section, we first define the prediction measurements447

that we use in our results. Second, we present the data set that448

we use in this paper. Third, we present the experimental setup.449

Finally, we present out results. In all models, we use the N-gram450

representation of paths [5], [7].451

The following definitions will be used in the succeed-452

ing sections to measure the performance of the prediction.453

Pitkow and Pirolli [5] have used these parameters to mea-454

sure the performance of the Markov model. These defin-455

itions are given as follows: Pr(match) is the probability456

that a penultimate path that was observed in a validation457

set was matched by the same penultimate path in the train-458

ing set. Pr(hit|match) is the conditional probability that459

page xn is correctly predicted for the testing instance s =460

〈xn−1, xn−2, . . . , xn−k〉 and s matches a penultimate path in461

the training set. Pr(hit) is defined as pr(hit) = pr(match) ×462

pr(hit|match). Pr(miss|match) is the conditional proba-463

bility that page xn is incorrectly classified, given that its464

penultimate path matches a penultimate path in the training465

set. Pr(miss) is defined as pr(match) × pr(miss|match).466

Since we are considering the generalization accuracy and467

the training accuracy, we add two additional measurements468

that take into account the generalization accuracy, namely,469

Pr(hit|mismatch) and overall accuracy. Pr(hit|mismatch)470

is the conditional probability that page xn is correctly predicted471

for the testing instance s = 〈xn−1, xn−2, . . . , xn−k〉 and s does472

not match any penultimate path in the training set. The overall473

accuracy is defined as pr(hit|mismatch) × pr(mismatch) +474

pr(hit|match) × pr(match). The overall accuracy considers475

both matching and mismatching testing examples in computing476

the accuracy. The following relations hold for the preceding 477

measurements: 478

Pr(hit|match) = 1 − pr(miss|match) (12)
Pr(hit)/Pr(miss) =Pr(hit|match)/Pr(miss|match).

(13)

Pr(hit|match) corresponds to the training accuracy, be- 479

cause it shows the proportion of training examples that are 480

correctly classified. Pr(hit|mismatch) corresponds to the 481

generalization accuracy, because it shows the proportion of 482

unobserved examples that are correctly classified. The overall 483

accuracy combines both. 484

A. Data Set 485

For equal comparison purposes and in order to avoid dupli- 486

cating already existing work, we have used the data that were 487

collected by Pitkow and Pirolli [5] from Xerox.com for the 488

dates May 10, 1998 and May 13, 1998. Several numbers of at- 489

tributes are collected using the aforementioned method, which 490

includes the Internet Protocol address of the user, time stamp 491

with date and starting time, visiting URL address, referred URL 492

address, and the browser information or agent [20]. 493

B. Experimental Setup 494

We have implemented the backpropagation algorithm for 495

multilayer neural network learning. In our experiments, we 496

use a dynamic learning rate setup based on the distribution of 497

the examples from different classes. Specifically, we setup the 498

learning rate inversely to the distribution of the class, i.e., we 499

set the learning rate to a high value for low-distribution class 500

and vice versa. 501

In ARM, we generate the rules using the Apriori algorithm 502

proposed in [9]. We set the minsupp to a very low value 503

(minsupp = 0.0001) to capture the pages that were rarely 504

visited. We implement the recommendation engine that was 505

proposed by Mobasher et al. [7]. We divide the data set into 506

three partitions. Two partitions are used in training, and one 507

partition is used in testing. 508

C. Results 509

In this section, we present and compare the results of pre- 510

diction using four different models, namely: 1) ARM; 2) ANN; 511

3) the Markov model; and 4) the hybrid model. In addition, we 512

consider the All-Kth-Markov model and All-Kth-ARM model. 513

In the following, we will refer to the results of combining 514

the Markov model with ANN as the Dempster’s rule and 515

combining ANN with the All-Kth-Markov model as the All- 516

Kth-Dempster’s rule. 517

We consider up to seven hops in our experiments for all 518

models. Results vary based on the number of hops, because 519

different patterns are revealed for different numbers of hops. 520

Furthermore, we introduce the concept of ranking in our results. 521

Rank n means that prediction is considered to be correct if the 522

predicted page happens to be among the top n pages that has 523

the highest confidence. 524
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TABLE I
PROBABILITY MEASUREMENTS USING ONE HOP AND RANK 1

TABLE II
RESULTS OF USING THREE HOPS AND RANK 1

In Table I, there are several points to note. First, the value525

of pr(hit|mismatch) is zero for both ARM and the Markov526

model, because neither model can predict for the unobserved527

data. Second, the Dempster’s rule achieves the best scores528

using all measurements. For example, the training accuracy529

pr(hit|match) for ARM, Markov, ANN, and Dempster’s rule530

is 6%, 19%, 15%, and 19%, respectively. The overall accu-531

racy for ARM, Markov, ANN, and Dempsters’ rule is 3%,532

11%, 13%, and 15%, respectively. Third, even though the533

pr(hit|match) for ANN is less than that for the Markov534

model, the overall accuracy for ANN is better. This is because535

pr(hit|mismatch) is zero in case of the Markov model, while536

it is 10% in case of ANN. Finally, notice that ARM has the low-537

est prediction results. The ARM uses the concept of frequent538

item sets, instead of item lists (ordered item set); hence, the539

support of one path is computed based on the frequencies of that540

path and its combinations. In addition, ARM is very sensitive to541

the minsupp values. This might cause important patterns to be542

lost or mixed. Table II shows the results using three hops and543

rank 1. Notice that All-Kth-Markov outperforms the Markov544

model, and the All-Kth-ARM outperforms the ARM model.545

That is because lower orders of the models are consulted in546

case prediction is not possible for higher orders. As a result547

of this, pr(hit|mismatch) is not zero in such models. For548

example, the pr(hit|mismatch) for All-Kth-Markov and All-549

Kth-ARM are 10.5% and 4.4%, respectively. In addition, com-550

bining the All-Kth-Markov model with ANN using Dempster’s551

rule has boosted the final prediction; for example, the overall552

accuracy for ARM, All-Kth-ARM, Markov, All-Kth-Markov,553

ANN, Dempster’s rule, and All-Kth-Dempster’s rule is 1.6%,554

6.6%, 8.7%, 15.2%, 12.7%, 15.5%, and 17.9%, respectively.555

In Figs. 5 and 6, the accuracy approximately increases lin-556

early with the rank. For example, in Fig. 5, the pr(hit|match)557

for All-Kth-Markov is 23%, 29%, 34%, 38%, 42%, 46%, 50%,558

and 54% for ranks 1–8, respectively. In Fig. 6, the overall559

Fig. 5. pr(hit|match) results using three-hop sessions and ranks from
1 to 8.

Fig. 6. Overall accuracy results using two-hop sessions and ranks from 1 to 8.

Fig. 7. Comparable results of all techniques based on pr(hit|match) using
rank 6.

accuracy of All-Kth-Markov models is 12, 17, 21, 24, 27, 30, 560

and 35 for ranks 1–8, respectively. 561

Fig. 7 presents pr(hit|match) results of using rank 6. Notice 562

that the Dempster’s rule and All-Kth-Dempster’s rule methods 563

outperform all other techniques. 564

In Fig. 8, we notice that All-Kth-Dempster’s rule has 565

achieved the best overall accuracy, because it combines ANN 566

and the All-Kth-Markov model. Both models have a high train- 567

ing and generalization accuracy. For example, the overall accu- 568

racy using four hops for Markov, ANN, Dempster’s rule, ARM, 569

All-Kth-ARM, All-Kth-Markov, and All-Kth-Dempster’s 570

rule is 7%, 11%, 13%, 1%, 6%, 15%, and 16%, respectively. 571

In addition, notice that ANN has outperformed the Markov 572

model based on overall accuracy. This is because ANN gen- 573

eralizes better than the Markov model beyond training data. 574
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Fig. 8. Comparable results based on the overall accuracy using rank 1.

TABLE III
AVERAGE PREDICTION TIME WITH/WITHOUT DOMAIN KNOWLEDGE

All-Kth-Dempster’s rule proves to combine the best of both575

the ANN and All-Kth-Markov models, because it has kept576

its superiority over all techniques using all measurements and577

using different numbers of hops.578

D. Effect of Domain Knowledge on Prediction579

As we mentioned previously in Section IV, we have extended580

this model to include higher orders of domain knowledge.581

Recall that a frequency matrix of order n corresponds to a582

Markov model of order n.583

Table III shows that the average prediction time using do-584

main knowledge is 0.567, 1.17, 6.41, and 1.11 ms for the585

Markov, All-Kth-Markov, ANN, and Dempster’s rule models,586

respectively. The average prediction time without using do-587

main knowledge is 0.544, 0.801, 556.0, and 788.0 ms for the588

Markov, All-Kth-Markov, ANN, and Dempster’s rule models,589

respectively. It is very evident that prediction time is reduced590

dramatically for ANN and Dempster’s rule. The overhead in591

prediction without domain knowledge is a consequence of592

loading a very large number of classifiers, i.e., 4563 classifiers,593

and consulting them to resolve prediction. The prediction time594

in case of the Markov model and All-Kth-Markov has not been595

affected, because such models, contrary to ANN, can handle a596

multiclass problem without the used of an on-VS-all model.597

In part A of Fig. 9, the overall accuracy without using598

any domain knowledge is 18.4%, 18.4%, 0.5%, and 15.7%599

for Markov, All-Kth-Markov, ANN, and Dempster’s rule, re-600

spectively. The overall accuracy in case of using first-order601

frequency matrix (DK) is 18.4%, 18.5%, 21.6%, and 24.5%602

for Markov, All-Kth-Markov, ANN, and Dempster’s rule, re-603

spectively. Recall that the domain knowledge is based on the604

frequency matrix of order n, which is another representation of605

the nth order of the Markov model; hence, the overall accuracy606

for the basic knowledge is already included in such models. On607

the other hand, the performance of ANN and Dempster’s rule is608

Fig. 9. Comparable results using the overall accuracy with/without domain
knowledge. (a) One hop using rank 3. (b) Three hops using rank 3.

Fig. 10. Effect of domain knowledge order on the overall accuracy.
(a) Five hops using rank 4. (b) Eight hops using rank 4.

affected by not using any domain knowledge, and the overall 609

accuracy has dropped largely. Similar results can be seen in 610

Fig. 9(b) when using three hops and rank 4. Fig. 10 presents 611

the effect of using different orders of domain knowledge on 612

the overall accuracy. Since we obtained similar results when 613

using different rankings and different number of hops, we 614

only show the results for five and eight hops using rank 4. 615

Recall that, in the previous experiments, we considered only 616

the first-order frequency matrix. Here, we consider a frequency 617

matrix of different orders as domain knowledge applied to the 618

All-Kth-Markov model, ANN, and Dempster’s rule. The three 619

curves (from top to bottom) in each subfigure represent the 620

overall accuracy of All-Kth-Markov, ANN, and Dempster’s 621

rule. For example, the overall accuracy for Dempster’s rule 622
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is 31%, 28%, 28%, 28%, and 28% using domain knowledge623

of orders 1, 2, 3, 4, and 5, respectively. Notice that the use624

of higher order for domain knowledge did not improve the625

accuracy. On the contrary, it slightly affects the overall accu-626

racy negatively. This can be related to the tradeoff between627

the number of classifiers to consult and the order of domain628

knowledge. Using higher order domain knowledge leads to629

less number of classes to consult. This may positively affect630

the accuracy and speed up the retrieval process. However,631

this might exclude correct classes, decrease the accuracy, and632

finally offsets the improvement of accuracy. Conversely, not633

using domain knowledge leads to consulting a huge number of634

classifiers that cause conflict. From Fig. 10, we find that using635

domain knowledge of order 1 or 2 can balance such tradeoffs,636

because accuracy is not affected dramatically.637

VII. CONCLUSION AND FUTURE WORK638

In this paper, we use a hybrid method in web prediction based639

on Dempster’s rule for evidence combination to improve pre-640

diction accuracy. We used two sources of evidence/prediction in641

our hybrid method. The first body of evidence is ANNs. To im-642

prove the prediction of ANN further, we incorporated different643

orders of domain knowledge in prediction to improve prediction644

accuracy. The second body of evidence is the widely used645

Markov model, which is a probabilistic model. Furthermore,646

we applied the All-Kth-Markovmodel. The All-Kth-Dempster’s647

rule proves its effectiveness by combining the best of ANN and648

the All-Kth-Markov model, as demonstrated by the fact that its649

predictive accuracy has outperformed all other techniques.650

We would like to extend our research in the following direc-651

tions. First, we would like to study the impact/effect of other652

features in the session’s logs by extracting statistical features653

from the data set to improve accuracy. Next, we would like654

to perform more experiments and analyses on the effect of the655

frequency matrix order on prediction. Finally, we would like to656

use boosting and bagging in the same context, and compare it657

with our hybrid approach.658
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Web Navigation Prediction Using Multiple Evidence
Combination and Domain Knowledge

1

2

Mamoun A. Awad and Latifur R. Khan3

Abstract—Predicting users’ future requests in the World Wide4
Web can be applied effectively in many important applications,5
such as web search, latency reduction, and personalization sys-6
tems. Such application has traditional tradeoffs between mod-7
eling complexity and prediction accuracy. In this paper, we8
study several hybrid models that combine different classification9
techniques, namely, Markov models, artificial neural networks10
(ANNs), and the All-Kth-Markov model, to resolve prediction11
using Dempster’s rule. Such fusion overcomes the inability of the12
Markov model in predicting beyond the training data, as well as13
boosts the accuracy of ANN, particularly, when dealing with a14
large number of classes. We also employ a reduction technique,15
which uses domain knowledge, to reduce the number of classifiers16
to improve the predictive accuracy and the prediction time of17
ANNs. We demonstrate the effectiveness of our hybrid models by18
comparing our results with widely used techniques, namely, the19
Markov model, the All-Kth-Markov model, and association rule20
mining, based on a benchmark data set.21

Index Terms—Artificial neural networks (ANNs), association22
rule mining (ARM), Dempster’s rule, Markov model, N-gram.23

I. INTRODUCTION24

W EB PREDICTION is the problem of predicting the next25

web page that a user might visit after surfing in a26

website. The importance of web prediction originates from the27

fact that various applications, such as latency reduction, web28

search, and recommendation systems, can be made more effec-29

tive through the use and the improvement of web prediction.30

One of the early applications of web prediction is the latency31

of viewing of web documents [6]. Traditional solutions are32

based on caching and prefetching [2], [3], [9]. Other advanced33

intelligent methods [10], [11] acquire knowledge from surfers’34

previous path history and utilize that in prediction. Pandey et al.35

[10] present an intelligent prefetching method based on a36

proxy server using association rule mining (ARM) to generate37

association rules that are later used to predict future requests.38

World Wide Web (WWW) prediction can also improve39

search engines. The entire structure of the WWW can be40

pictured as a connected graph, where each node corresponds to41

a website, and surfers navigate from one node to another. The42

distribution of the visits over all WWW pages can be computed43
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and used in reweighting and reranking results. In such scenario, 44

we consider the surfer path information to be more important 45

than the keywords that were entered by the user [14]. 46

Another application of web prediction is recommendation 47

systems, in which we try to find the top k users having the same 48

interests or tastes to a target user record. ARM is a well-known 49

model that is used in recommendation systems. Mobasher et al. 50

[7] propose the frequent item set graph to match an active user 51

session with frequent item sets and predict the next page that the 52

user is likely to visit. Prediction for the active session is based 53

on the confidence of the corresponding association rule. 54

Other prediction models that are widely used in WWW pre- 55

dictions and its related applications include k nearest neighbors 56

(NN), artificial neural network (ANN), fuzzy interference, and 57

Markov model. Joachims et al. [18] propose the kNN-based 58

recommender WebWatcher. The WebWatcher is a learning tour 59

guide agent that extracts knowledge from user’s previous clicks 60

and from the hypertext structure. Nasraoui and Krishnapuram 61

[19] propose a web recommendation system using fuzzy in- 62

ference. Clustering is applied to group profiles using hierar- 63

chical unsupervised niche clustering. Context-sensitive uniform 64

resource locator (URL) association is inferred using a fuzzy- 65

approximate-reasoning-based engine. Levene and Loizou [1] 66

compute the information gain from the navigation trail to con- 67

struct a Markov chain model to analyze user navigation pattern 68

through the web. The main contribution of [1] is that they 69

present a mechanism to estimate the navigation trail. Pitkow 70

and Pirolli [5] explore pattern extraction and pattern matching 71

based on the Markov model that predicts future surfing paths. 72

Longest repeating subsequences (LRS) is proposed to reduce 73

the model complexity (not predictive accuracy) by focusing on 74

significant surfing patterns. 75

Our work is related to the path-based prediction model using 76

the N-gram model [14] and the LRS model [5]. However, our 77

approach differs from them in the following ways: First, only 78

one path-based prediction technique is used when combining 79

different N-gram models. Second, the main focus of LRS is to 80

reduce the modeling complexity by reducing the data set. Third, 81

all these models are probabilistic, i.e., it depends on the fre- 82

quencies of patterns/occurrences in the training set. Therefore, 83

our model can predict some values that Markov models cannot 84

(i.e., our model can predict for some unobserved values). In 85

the work of Nasraoui and Krishnapuram [19], the focus is to 86

use a set of URL predictors by creating a neural network for 87

each profile independently with a separate training set. Their 88

goal is to overcome the high complexity of the architecture 89

and training in case that one neural network is used. In our 90

work, we not only use a set of predictors but also fuse them 91

1083-4427/$25.00 © 2007 IEEE
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in a hybrid model for prediction. Our goal is to improve the92

accuracy using different prediction techniques, namely, ANN,93

the Markov model, the All-Kth model, and using different94

N-gram models.95

One important subtlety of web prediction is that web pre-96

diction is a multiclass problem of a large number of classes97

(11 700 classes in our experiments). Here, we define a class (or98

a label) as a unique identifier that represents a web page in a99

web site. Most multiclass techniques, such as one-versus-one100

and one-versus-all, are based on generalizing binary classifiers,101

and prediction is resolved by checking against all these binary102

classifiers. As a result of that, prediction accuracy is very103

low [4], because the prediction model has many conflicting104

outcomes from the classifiers.105

There are several problems with the current state-of-the-art106

solutions. First, models such as Markov and ARM models are107

unable to generalize beyond training data [5]. This is because108

prediction using ARM and LRS pattern extraction is done based109

on choosing the path of the highest probability in the training110

set; hence, any new surfing path is misclassified, because it has111

zero probability. Second, prediction using ARM suffers from112

well-known limitations including scalability and efficiency [7],113

[13]. Finally, many of the previous methods have ignored114

domain knowledge as a means to improving prediction.115

In this paper, we present a new approach to improving the ac-116

curacy in web prediction. Our approach is based on generating117

a hybrid prediction model by fusing two different classification118

models. We use four classification models, namely: 1) ANNs;119

2) ARM; 3) Markov model; and 4) All-Kth-model. ARM and120

Markov model are powerful techniques for predicting seen data,121

i.e., already observed data; however, they cannot predict beyond122

training data (see Section III-A). On the other hand, the All-123

Kth model and ANN are powerful techniques that can predict124

beyond training data. In other words, the ANN and All-Kth125

models can predict some values that the Markov model and126

ARM cannot. We combine the All-Kth model with ANN by127

fusing their outcomes using Dempster’s rule.128

Nonetheless, when dealing with a large number of classes or129

when there is a possibility that one instance may belong to many130

classes, their predictive power may decrease. To overcome131

these shortcomings, we extract domain knowledge from the132

training data and incorporate such knowledge during prediction133

to improve prediction time and accuracy. Specifically, domain134

knowledge is used to eliminate irrelevant classes and reduce135

the conflict during prediction. Notice that we combine different136

prediction models in which each model has different strengths137

and drawbacks over other models. We strive to overcome138

major drawbacks in each technique and improve the predictive139

accuracy for the final hybrid model.140

The contribution of this paper is given as follows: First, we141

use ANN in web navigation. Second, we incorporate domain142

knowledge in ANN prediction to eliminate irrelevant classes143

and to improve prediction time and accuracy. Third, we fuse144

ANN, the Markov model, and All-Kth-Markov classifiers in145

a hybrid prediction model using Dempster’s rule [17] to im-146

prove prediction accuracy and to overcome the drawbacks of147

using each model separately. Finally, we compare our hybrid148

model with different models, namely, Markov model, ARM,149

All-Kth-ARM, All-Kth-Markov, and ANN using a standard 150

benchmark data set and demonstrate the superiority of our 151

method. 152

The organization of this paper is given as follows: In 153

Section II, we present the background of the N-gram concept 154

and sliding window. In Section III, we present different pre- 155

diction models that are used in web prediction. In Section IV, 156

we present the utilization of domain knowledge to improve 157

prediction. In Section V, we present a new hybrid approach 158

combining ANN, the Markov model, and the All-Kth-Markov 159

model in web prediction using Dempster’s rule for evidence 160

combination. In Section VI, we compare our results with 161

other methods using a standard benchmark training set. In 162

Section VII, we summarize this paper and outline some future 163

research. 164

II. N-GRAM REPRESENTATION OF PATHS 165

In web prediction, the available source of training data is 166

the users’ sessions, which are the user’s history of navigation 167

within a period of time. User sessions are extracted from 168

the logs of the web servers, and it contains sequences of 169

pages/clicks that the users have visited, time, data, and the pe- 170

riod of time that the user stays in each page. In web prediction, 171

the best known representation of the training session is the 172

N-gram. N-gram is tuples of the form 〈X1,X2, . . . , Xn〉 that 173

depict sequences of page clicks by a population of users surfing 174

a website. Each component of the N-gram takes a specific page 175

id value that identifies a web page. For example, the N-gram 176

〈X10,X21,X4,X12〉 depicts the fact that the user has visited 177

pages in the following order: page 10, page 21, page 4, and 178

finally, page 12. 179

Many models further process these N-gram sessions by 180

applying a sliding window to make training instances have 181

the same length [5], [7]. For example, if we apply a sliding 182

window of size 3 on the N-gram 〈X10,X21,X4,X12,X11〉, 183

we will have the following 3-gram sessions: 〈X10,X21,X4〉, 184

〈X21,X4,X12〉, and 〈X4,X12,X11〉. In general, the number of 185

additional sessions using sliding window w applied on session 186

A is |A| − w + 1, where |A| is the length of session A. 187

In this paper, we also use the term number of hops, which 188

is related to the sliding window. The number of hops for a 189

session of length N is N − 1, i.e., the number of clicks (or 190

hops) that the user makes to reach the last page in the session. 191

When applying sliding window of size w, the number of hops 192

in the resulted subsessions is w − 1. In the previous example, 193

the number of hops in the resulted 3-gram sessions is 2. 194

III. PREDICTION MODELS 195

In this section, we briefly present various prediction models 196

that have been used in web prediction. First, we present the 197

Markov model; next, we present the ANN model along with 198

improvement modifications. 199

A. Markov Model 200

The basic concept of the Markov model is to predict the 201

next action, depending on the result of previous actions. In 202
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Fig. 1. Design of ANN.

web prediction, the next action corresponds to predicting the203

next page to be visited. The previous actions correspond to204

the previous pages that have already been visited. In web205

prediction, the Kth-order Markov model is the probability that206

a user will visit the kth page, provided that he/she has visited207

k − 1 pages, i.e.,208

Pr(Pk|Pk−1, . . . , Pk−n)

= Pr(Sk = Pk|Sk−1 = Pk−1, . . . , Sk−n = Pk−n) (1)

where Pi is a web page, and Si is the corresponding state in the209

Markov model state diagram. Notice that the Markov model210

cannot predict for a session that does occur in the training set,211

because such session will have zero probability. Alternatively,212

one can generate all orders of the Markov models and utilize213

them in the prediction. This model is called all-Kth orders [5],214

[7]. The idea here is that, for a given session x of length k, the215

kth-order Markov model is used in the prediction. If the kth-216

order Markov model cannot predict for x, the (k − 1)th-order217

Markov model is considered for prediction using a new session218

x′ of length k − 1. x′ is computed by ignoring the first page id in219

x. This process repeats until prediction is obtained. Thus, unlike220

the basic Markov model, the all-Kth orders Markov model can221

predict beyond training data, and it fails only when all orders of222

basic Markov models fail to predict.223

B. ANNs224

ANN is a very powerful and robust classification technique225

that has been used in many applications and domains [15]. In226

this paper, we employ a network of two layers that uses the227

backpropagation algorithm for learning. The backpropagation228

algorithm attempts to minimize the squared-error function.229

A typical training example in web prediction is 〈[kt−τ+1,230

. . . , kt−1, kt]T , d〉, where [kt−τ+1, . . . , kt−1, kt]T is the input231

to the ANN and d is the target web page. Notice that the232

input units of the ANN in Fig. 1 are τ previous pages that the233

user has recently visited, i.e., [kt−τ+1, . . . , kt−1, kt]T , where234

k is a web page id. The output of the network is a Boolean235

value and not probability. We approximate the probability of the236

output by fitting a sigmoid function after the ANN output (see237

Section V-A for details). The approximated probabilistic output238

Fig. 2. ANN design in our implementation.

becomes o′ = f(o(I)) = pt+1, where I is an input session and 239

pt+1 = p(d|kt−τ+1, . . . , kt). We choose the sigmoid function 240

o = σ(w.I) σ(y) =
1

1 + e−y
(2)

as a transfer function, so that the ANN can handle nonlinearly 241

separable data sets [15]. 242

In (2), I is the input to the network, O is the output of the 243

network, W is the matrix of weights, and σ is the sigmoid 244

function. We implement the backpropagation algorithm for 245

training the weights. The backpropagation algorithm employs 246

gradient descent to attempt to minimize the squared error 247

between network output values and the target values of these 248

outputs. In our implementation, we set the step size, to update 249

the ANN weights, dynamically based on the distribution of 250

the classes in the data set. First, we set the step size to large 251

values when updating the training examples that belong to low- 252

distribution class and vice versa. This is because, when the 253

distribution of the classes in the data set varies widely (for 254

example, positive examples are equal to 10% and negative 255

examples are equal to 90%), the network weights converge 256

toward the examples from the class of larger distribution, which 257

causes a slow convergence. Second, we adjust the learning 258

rates slightly by applying a momentum constant to speed up 259

the convergence of the network. Fig. 2 presents our multilayer 260

ANN design that we use in our experiments. As we can see, the 261

ANN is composed of two fully connected hidden layers. Each 262

layer is composed of three neurons. 263

IV. DOMAIN KNOWLEDGE AND 264

CLASSIFICATION REDUCTION 265

In web prediction, the number of classes/labels is large. Each 266

page id is considered as a different label/class. For example, 267

in our data set, we have 11 700 different page ids. Recall 268

that, when using one-versus-one or one-versus-all, we have to 269

consult many classifiers to resolve prediction. As a result, pre- 270

diction time may increase, conflict can arise among classifiers, 271
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Fig. 3. Frequency matrix.

and prediction accuracy becomes low. One way to reduce/filter272

this large number of outcomes is to use domain knowledge in273

what we call frequency matrix. Frequency matrix is defined as274

an N × N matrix, where N is the number of web pages (see275

Fig. 3). The first row and column represent the enumeration of276

web page ids. Each entry in the matrix represents the frequency277

that the users have visited two pages in a sequence. For exam-278

ple, entry (1, 2) in Fig. 3 contains the frequency of users who279

have visited page 2 after 1. Notice that freq(x, x) is always280

zero. We can use the frequency matrix to eliminate/filter the281

number of classifiers during prediction as follows: For a given282

session X = 〈x1, x2, . . . , xn〉 and a classifier Ci, we exclude283

Ci in the prediction process if freq(xn, ci) = 0, where xn is284

the last page id that the user has visited in testing session X .285

The frequency matrix represents the first order of Markov286

model. One can extend that to a higher order frequency matrix.287

In this case, an nth-order frequency matrix corresponds to the288

nth-order Markov model. Notice that the increase of frequency289

matrix order leads to fewer number of classes in prediction.290

For example, given a testing session S3 = 〈p1, p2, p3〉, the291

following relation holds:292

|B1| ≥ |B2| ≥ |B3|

where293

B1 = {x| < p3, x >∈ T}
B2 = {x| < p2, p3, x >∈ T}
B3 = {x| < p1, p2, p3, x >∈ T}

where T is the training sessions, x is a page id, Bi is the set of294

outcomes by applying a frequency matrix of order i, and |Bi|295

is the length of set Bi. Hence, there is a tradeoff between the296

number of classifiers during prediction (i.e., accuracy) and the297

order of frequency matrix. Based on our observations and ex-298

periments, we find that first-order frequency matrix is adequate299

to balance such tradeoff and to reduce the number of classifiers300

in prediction without affecting the accuracy. (See Section VI-D301

for details.)302

V. HYBRID MODEL FOR WEB PREDICTION303

USING DEMPSTER’S RULE304

In this section, we present our hybrid model for web predic-305

tion, which is based on Dempster’s rule for evidence combina-306

tion, using the ANN and Markov models as bodies of evidence.307

In our model, prediction is resolved by fusing two separate308

classifiers models, namely: 1) ANN and 2) Markov model (see309

Fig. 4).310

Fig. 4. Hybrid model using the Dempster’s rule for evidence combination.

Dempster’s rule is one part of the Dempster–Shafer Evidence 311

Combination frame for fusing independent bodies of evidence. 312

In Dempster’s rule, the sources of evidence should be in the 313

form of basic probability. Since the ANN output value is not 314

probability [15], we need to convert/map this output into a 315

posterior probability P (class|input). 316

In this section, we will present, first, a method to convert the 317

ANN output into a posterior probability by fitting a sigmoid 318

function after the ANN output [16]. Next, we present the 319

background of the Dempster–Shafer theory. 320

A. Fitting Sigmoid After ANN Output 321

We have implemented the backpropagation learning algo- 322

rithm based on minimizing the squared-error function. Hence, 323

the output of ANN cannot be considered probability. Since 324

we are using ANN as an independent body of evidence in the 325

Dempster’s rule frame, we should consequently map the output 326

of ANN into probability. 327

One interpretation of the output of ANN, in the context of 328

the classification problem, is an estimate of the probability 329

distribution. There are several ways to interpret the ANN output 330

in terms of probability. One traditional way is to estimate 331

the probability density function (pdf) from the training data. 332

The assumption here is that we know that the training data 333

follow some distribution (typically the normal distribution). 334

The normal distribution is widely used as a model parameter 335

in which analytical techniques can be applied to estimate such 336

parameters [19], [22] as mean and standard deviation. 337

Another approach is to consider learning to minimize a 338

probabilistic function, instead of squared error, such as the cross 339

entropy shown in (3). Once learning is done, the output of the 340

network is an estimate of the pdf. In (3), D is the training set, 341

td is the target class of example d, and od is the output of 342

ANN, i.e., 343

min−
∑
d∈D

td log(od) + (1 − td) log(1 − od). (3)

Since the backpropagation algorithm minimizes the squared- 344

error function, we choose to implement a parametric method to 345

fit the posterior p(y = 1|f) directly, instead of estimating the 346

class-conditional densities p(f |y) [16], where y is the target 347

class and f is the output function of ANN. The output of ANN 348

is computed as follows: 349

f(I) =
{

1, if σ(I) ≥ 0.5
−1, otherwise

(4)
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where I is the input to the network, and σ is the output of350

the sigmoid transfer function defined as in (2). It follows that351

class-conditional densities between the margins are apparently352

exponential [16]. Bayes’ rule on two exponential suggests using353

a parametric form of sigmoid as follows:354

P (y = 1|f) =
1

1 + exp(Af + B)
. (5)

This sigmoid model is equivalent to assuming that the output355

of ANN is proportional to the log odds of a positive example.356

Parameters A and B of (5) are fitted using maximum-likelihood357

estimation and can be found by minimizing the negative log358

likelihood of training data, which is a cross-entropy error359

function (3). od in (3) is defined as follows:360

od =
1

1 + exp(Afd + B)
. (6)

The minimization in (3) is a two-parameter minimization.361

Hence, it can be performed in many optimization algorithms.362

For robustness, we implement the model-trust minimization363

algorithm based on the Levenberg–Marquardt algorithm [17].364

B. Dempster–Shafer Evidence Combination365

The Dempster–Shafer theory is a mathematical theory366

of evidence [17], which is considered to be a generaliza-367

tion of the Bayesian theory of subjective probability. The368

Dempster–Shafer theory is based on two ideas. The first idea369

is the notion of obtaining degrees of belief for one question370

based on subjective probabilities for a related question, and371

Dempster’s rule for combining such degree of belief when372

they are based on independent items of evidence. Since we373

use two independent sources of evidence, namely, ANN and374

Markov model, we are interested in the latter part of the375

Dempster–Shafer theory, namely, Dempster’s rule. See [17] for376

more details regarding this theory.377

Some may question why we do not use boosting and bagging378

rather than Dempster’s rule to improve the classifier accuracy.379

We prefer Dempster’s rule over boosting and bagging because380

boosting and bagging require partitioning the data set into a381

large number of independent bootstrap samples (> 1000) and382

then generating a classifier for each partition separately [12].383

Hence, there is a computation overhead not only in training384

but also in preprocessing and prediction. Furthermore, boosting385

and bagging cannot perform effectively if the data set does386

not have enough points for each class/label. In web prediction387

applications, many pages are sparse in the data set, because they388

receive very few clicks.389

C. Using Dempster–Shafer Theory in Web Prediction 390

We have two sources of evidence: 1) the output of ANN 391

and 2) the output of Markov model. These two models operate 392

independently. Furthermore, we assume that, for any session x 393

for which it does not appear in the Markov model, the Markov 394

prediction probability is zero. If we use Dempster’s rule for 395

combination of evidence, we get the following: 396

mANN,Markov(C)=

∑
A,B⊆Θ,A∩B=C

mANN(A)mMarkov(B)
∑

A,B⊆Θ,A∩B =φ

mANN(A)mMarkov(B)

(7)

where mANN is the probabilistic output of ANN, mMarkov is the 397

output of Markov model, C ∈ 2Θ is a hypothesis (for example, 398

what is the prediction of a testing session?), and Θ is the frame 399

of discernment. A frame of discernment is an exhaustive set of 400

mutually exclusive elements (hypothesis, propositions). 401

In web prediction, we can simplify this formulation because 402

we have only beliefs for singleton classes (i.e., the final pre- 403

diction is only one web page and it should not have more 404

than one page) and the body of evidence itself (m(Θ)). This 405

means that, for any proper subset A of Θ for which we have no 406

specific belief, m(A) = 0. After eliminating zero terms, we get 407

the simplified Dempster’s combination rule, for a web page PC 408

in (8) which is shown at the bottom of the page. Since we are 409

interested in ranking the hypothesis, we can further simplify 410

(8), where the denominator is independent of any particular 411

hypothesis, as follows: 412

rank(PC) ∝ mANN(PC)mMarkov(PC)

+ mANN(PC)mMarkov(Θ) + mANN(Θ)mMarkov(PC). (9)

∝ is the “is proportional to” relationship. mANN(Θ) and 413

mMarkov(Θ) represent the uncertainty in the bodies of evi- 414

dence for mANN and mMarkov, respectively. For mANN(Θ) 415

and mMarkov(Θ) in (9), we use the following. For ANN, we 416

use the output of ANN to compute the uncertainty. We call the 417

output of ANN for specific session x as the margin because 418

the ANN weights correspond to the separating surface between 419

classes and the output ANN is the distance from this surface. 420

Uncertainty is computed based on the maximum margin of all 421

training examples as follows: 422

mANN(Θ) =
1

ln(e + ANNmargin)
. (10)

ANNmargin is the maximum distance of training examples 423

from the margin. For Markov model uncertainty, we use the 424

mANN,Markov(PC) =
mANN(PC)mMarkov(PC) + mANN(PC)mMarkov(Θ) + mANN(Θ)mMarkov(PC)∑

A,B⊆Θ,A∩B =φ

mANN(A)mMarkov(B)
(8)
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maximum probability of training examples as follows:425

mMarkov(Θ) =
1

ln(e + Markovprobability)
. (11)

Markovprobability is the maximum probability of training ex-426

amples. Note that, in both models, the uncertainty is inversely427

proportional to the corresponding maximum value.428

Here, we would like to show the basic steps that are involved429

in web prediction using Dempster’s rule.430

Step 1) Train ANN (see Section III-B).431

Step 2) Map ANN output a probability (see Section V-A).432

Step 3) Compute Uncertainty (ANN) (see Section V-C,433

(10)).434

Step 4) Construct Markov Model (see Section III-A).435

Step 5) Compute Uncertainty of Markov model (see436

Section V-C, (11)).437

Step 6) For each testing session x, do438

Step 6.1) Compute mANN(x) and output ANN439

probabilities for different pages.440

Step 6.2) Compute mMarkov(x) and output Markov441

probability for different pages.442

Step 6.3) Compute mANN,Markov(x) using (9) and443

output the final prediction.444

Step 7) Compute prediction accuracy. // see Section VI-C.445

VI. EVALUATION446

In this section, we first define the prediction measurements447

that we use in our results. Second, we present the data set that448

we use in this paper. Third, we present the experimental setup.449

Finally, we present out results. In all models, we use the N-gram450

representation of paths [5], [7].451

The following definitions will be used in the succeed-452

ing sections to measure the performance of the prediction.453

Pitkow and Pirolli [5] have used these parameters to mea-454

sure the performance of the Markov model. These defin-455

itions are given as follows: Pr(match) is the probability456

that a penultimate path that was observed in a validation457

set was matched by the same penultimate path in the train-458

ing set. Pr(hit|match) is the conditional probability that459

page xn is correctly predicted for the testing instance s =460

〈xn−1, xn−2, . . . , xn−k〉 and s matches a penultimate path in461

the training set. Pr(hit) is defined as pr(hit) = pr(match) ×462

pr(hit|match). Pr(miss|match) is the conditional proba-463

bility that page xn is incorrectly classified, given that its464

penultimate path matches a penultimate path in the training465

set. Pr(miss) is defined as pr(match) × pr(miss|match).466

Since we are considering the generalization accuracy and467

the training accuracy, we add two additional measurements468

that take into account the generalization accuracy, namely,469

Pr(hit|mismatch) and overall accuracy. Pr(hit|mismatch)470

is the conditional probability that page xn is correctly predicted471

for the testing instance s = 〈xn−1, xn−2, . . . , xn−k〉 and s does472

not match any penultimate path in the training set. The overall473

accuracy is defined as pr(hit|mismatch) × pr(mismatch) +474

pr(hit|match) × pr(match). The overall accuracy considers475

both matching and mismatching testing examples in computing476

the accuracy. The following relations hold for the preceding 477

measurements: 478

Pr(hit|match) = 1 − pr(miss|match) (12)
Pr(hit)/Pr(miss) =Pr(hit|match)/Pr(miss|match).

(13)

Pr(hit|match) corresponds to the training accuracy, be- 479

cause it shows the proportion of training examples that are 480

correctly classified. Pr(hit|mismatch) corresponds to the 481

generalization accuracy, because it shows the proportion of 482

unobserved examples that are correctly classified. The overall 483

accuracy combines both. 484

A. Data Set 485

For equal comparison purposes and in order to avoid dupli- 486

cating already existing work, we have used the data that were 487

collected by Pitkow and Pirolli [5] from Xerox.com for the 488

dates May 10, 1998 and May 13, 1998. Several numbers of at- 489

tributes are collected using the aforementioned method, which 490

includes the Internet Protocol address of the user, time stamp 491

with date and starting time, visiting URL address, referred URL 492

address, and the browser information or agent [20]. 493

B. Experimental Setup 494

We have implemented the backpropagation algorithm for 495

multilayer neural network learning. In our experiments, we 496

use a dynamic learning rate setup based on the distribution of 497

the examples from different classes. Specifically, we setup the 498

learning rate inversely to the distribution of the class, i.e., we 499

set the learning rate to a high value for low-distribution class 500

and vice versa. 501

In ARM, we generate the rules using the Apriori algorithm 502

proposed in [9]. We set the minsupp to a very low value 503

(minsupp = 0.0001) to capture the pages that were rarely 504

visited. We implement the recommendation engine that was 505

proposed by Mobasher et al. [7]. We divide the data set into 506

three partitions. Two partitions are used in training, and one 507

partition is used in testing. 508

C. Results 509

In this section, we present and compare the results of pre- 510

diction using four different models, namely: 1) ARM; 2) ANN; 511

3) the Markov model; and 4) the hybrid model. In addition, we 512

consider the All-Kth-Markov model and All-Kth-ARM model. 513

In the following, we will refer to the results of combining 514

the Markov model with ANN as the Dempster’s rule and 515

combining ANN with the All-Kth-Markov model as the All- 516

Kth-Dempster’s rule. 517

We consider up to seven hops in our experiments for all 518

models. Results vary based on the number of hops, because 519

different patterns are revealed for different numbers of hops. 520

Furthermore, we introduce the concept of ranking in our results. 521

Rank n means that prediction is considered to be correct if the 522

predicted page happens to be among the top n pages that has 523

the highest confidence. 524
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TABLE I
PROBABILITY MEASUREMENTS USING ONE HOP AND RANK 1

TABLE II
RESULTS OF USING THREE HOPS AND RANK 1

In Table I, there are several points to note. First, the value525

of pr(hit|mismatch) is zero for both ARM and the Markov526

model, because neither model can predict for the unobserved527

data. Second, the Dempster’s rule achieves the best scores528

using all measurements. For example, the training accuracy529

pr(hit|match) for ARM, Markov, ANN, and Dempster’s rule530

is 6%, 19%, 15%, and 19%, respectively. The overall accu-531

racy for ARM, Markov, ANN, and Dempsters’ rule is 3%,532

11%, 13%, and 15%, respectively. Third, even though the533

pr(hit|match) for ANN is less than that for the Markov534

model, the overall accuracy for ANN is better. This is because535

pr(hit|mismatch) is zero in case of the Markov model, while536

it is 10% in case of ANN. Finally, notice that ARM has the low-537

est prediction results. The ARM uses the concept of frequent538

item sets, instead of item lists (ordered item set); hence, the539

support of one path is computed based on the frequencies of that540

path and its combinations. In addition, ARM is very sensitive to541

the minsupp values. This might cause important patterns to be542

lost or mixed. Table II shows the results using three hops and543

rank 1. Notice that All-Kth-Markov outperforms the Markov544

model, and the All-Kth-ARM outperforms the ARM model.545

That is because lower orders of the models are consulted in546

case prediction is not possible for higher orders. As a result547

of this, pr(hit|mismatch) is not zero in such models. For548

example, the pr(hit|mismatch) for All-Kth-Markov and All-549

Kth-ARM are 10.5% and 4.4%, respectively. In addition, com-550

bining the All-Kth-Markov model with ANN using Dempster’s551

rule has boosted the final prediction; for example, the overall552

accuracy for ARM, All-Kth-ARM, Markov, All-Kth-Markov,553

ANN, Dempster’s rule, and All-Kth-Dempster’s rule is 1.6%,554

6.6%, 8.7%, 15.2%, 12.7%, 15.5%, and 17.9%, respectively.555

In Figs. 5 and 6, the accuracy approximately increases lin-556

early with the rank. For example, in Fig. 5, the pr(hit|match)557

for All-Kth-Markov is 23%, 29%, 34%, 38%, 42%, 46%, 50%,558

and 54% for ranks 1–8, respectively. In Fig. 6, the overall559

Fig. 5. pr(hit|match) results using three-hop sessions and ranks from
1 to 8.

Fig. 6. Overall accuracy results using two-hop sessions and ranks from 1 to 8.

Fig. 7. Comparable results of all techniques based on pr(hit|match) using
rank 6.

accuracy of All-Kth-Markov models is 12, 17, 21, 24, 27, 30, 560

and 35 for ranks 1–8, respectively. 561

Fig. 7 presents pr(hit|match) results of using rank 6. Notice 562

that the Dempster’s rule and All-Kth-Dempster’s rule methods 563

outperform all other techniques. 564

In Fig. 8, we notice that All-Kth-Dempster’s rule has 565

achieved the best overall accuracy, because it combines ANN 566

and the All-Kth-Markov model. Both models have a high train- 567

ing and generalization accuracy. For example, the overall accu- 568

racy using four hops for Markov, ANN, Dempster’s rule, ARM, 569

All-Kth-ARM, All-Kth-Markov, and All-Kth-Dempster’s 570

rule is 7%, 11%, 13%, 1%, 6%, 15%, and 16%, respectively. 571

In addition, notice that ANN has outperformed the Markov 572

model based on overall accuracy. This is because ANN gen- 573

eralizes better than the Markov model beyond training data. 574
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Fig. 8. Comparable results based on the overall accuracy using rank 1.

TABLE III
AVERAGE PREDICTION TIME WITH/WITHOUT DOMAIN KNOWLEDGE

All-Kth-Dempster’s rule proves to combine the best of both575

the ANN and All-Kth-Markov models, because it has kept576

its superiority over all techniques using all measurements and577

using different numbers of hops.578

D. Effect of Domain Knowledge on Prediction579

As we mentioned previously in Section IV, we have extended580

this model to include higher orders of domain knowledge.581

Recall that a frequency matrix of order n corresponds to a582

Markov model of order n.583

Table III shows that the average prediction time using do-584

main knowledge is 0.567, 1.17, 6.41, and 1.11 ms for the585

Markov, All-Kth-Markov, ANN, and Dempster’s rule models,586

respectively. The average prediction time without using do-587

main knowledge is 0.544, 0.801, 556.0, and 788.0 ms for the588

Markov, All-Kth-Markov, ANN, and Dempster’s rule models,589

respectively. It is very evident that prediction time is reduced590

dramatically for ANN and Dempster’s rule. The overhead in591

prediction without domain knowledge is a consequence of592

loading a very large number of classifiers, i.e., 4563 classifiers,593

and consulting them to resolve prediction. The prediction time594

in case of the Markov model and All-Kth-Markov has not been595

affected, because such models, contrary to ANN, can handle a596

multiclass problem without the used of an on-VS-all model.597

In part A of Fig. 9, the overall accuracy without using598

any domain knowledge is 18.4%, 18.4%, 0.5%, and 15.7%599

for Markov, All-Kth-Markov, ANN, and Dempster’s rule, re-600

spectively. The overall accuracy in case of using first-order601

frequency matrix (DK) is 18.4%, 18.5%, 21.6%, and 24.5%602

for Markov, All-Kth-Markov, ANN, and Dempster’s rule, re-603

spectively. Recall that the domain knowledge is based on the604

frequency matrix of order n, which is another representation of605

the nth order of the Markov model; hence, the overall accuracy606

for the basic knowledge is already included in such models. On607

the other hand, the performance of ANN and Dempster’s rule is608

Fig. 9. Comparable results using the overall accuracy with/without domain
knowledge. (a) One hop using rank 3. (b) Three hops using rank 3.

Fig. 10. Effect of domain knowledge order on the overall accuracy.
(a) Five hops using rank 4. (b) Eight hops using rank 4.

affected by not using any domain knowledge, and the overall 609

accuracy has dropped largely. Similar results can be seen in 610

Fig. 9(b) when using three hops and rank 4. Fig. 10 presents 611

the effect of using different orders of domain knowledge on 612

the overall accuracy. Since we obtained similar results when 613

using different rankings and different number of hops, we 614

only show the results for five and eight hops using rank 4. 615

Recall that, in the previous experiments, we considered only 616

the first-order frequency matrix. Here, we consider a frequency 617

matrix of different orders as domain knowledge applied to the 618

All-Kth-Markov model, ANN, and Dempster’s rule. The three 619

curves (from top to bottom) in each subfigure represent the 620

overall accuracy of All-Kth-Markov, ANN, and Dempster’s 621

rule. For example, the overall accuracy for Dempster’s rule 622
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is 31%, 28%, 28%, 28%, and 28% using domain knowledge623

of orders 1, 2, 3, 4, and 5, respectively. Notice that the use624

of higher order for domain knowledge did not improve the625

accuracy. On the contrary, it slightly affects the overall accu-626

racy negatively. This can be related to the tradeoff between627

the number of classifiers to consult and the order of domain628

knowledge. Using higher order domain knowledge leads to629

less number of classes to consult. This may positively affect630

the accuracy and speed up the retrieval process. However,631

this might exclude correct classes, decrease the accuracy, and632

finally offsets the improvement of accuracy. Conversely, not633

using domain knowledge leads to consulting a huge number of634

classifiers that cause conflict. From Fig. 10, we find that using635

domain knowledge of order 1 or 2 can balance such tradeoffs,636

because accuracy is not affected dramatically.637

VII. CONCLUSION AND FUTURE WORK638

In this paper, we use a hybrid method in web prediction based639

on Dempster’s rule for evidence combination to improve pre-640

diction accuracy. We used two sources of evidence/prediction in641

our hybrid method. The first body of evidence is ANNs. To im-642

prove the prediction of ANN further, we incorporated different643

orders of domain knowledge in prediction to improve prediction644

accuracy. The second body of evidence is the widely used645

Markov model, which is a probabilistic model. Furthermore,646

we applied the All-Kth-Markovmodel. The All-Kth-Dempster’s647

rule proves its effectiveness by combining the best of ANN and648

the All-Kth-Markov model, as demonstrated by the fact that its649

predictive accuracy has outperformed all other techniques.650

We would like to extend our research in the following direc-651

tions. First, we would like to study the impact/effect of other652

features in the session’s logs by extracting statistical features653

from the data set to improve accuracy. Next, we would like654

to perform more experiments and analyses on the effect of the655

frequency matrix order on prediction. Finally, we would like to656

use boosting and bagging in the same context, and compare it657

with our hybrid approach.658
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