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Abstract 
Similarity between two DNA sequences is based on alignment. 
There are different approaches of alignments; each has its own 
specialty of bearing different information on DNA sequence. 
This paper presents a study on similarity kernels based on 
different similarity schemes and proposes a hybrid one. 
Similarity Kernel is required in order to represent the distance 
or similarity between two DNA sequences. The different 
schemes of alignments and the cost of computing them, make it 
further more difficult to decide what scheme to use. In this 
study we combine different similarity schemes; each scheme is 
deduced based on alignment. We demonstrate that combining 
different similarity scheme does in fact generalize well in 
machine learning. The scoring scheme also turned to have 
impact on generalization. 

 
1. Introduction 
Many approaches have been proposed in the field of bio-
informatics to classify DNA sequences. One of the most 
powerful techniques is Support Vector Machines, which was 
successfully applied on many real world problems, such as digit 
recognition, face detection, text categorization, and 
Protein/DNA classification/prediction [14,15]. Support Vector 
Machine showed a great deal in not over fitting features which 
can be explained by the VC theory [13][14]. The use of Kernel 
function has played an important role in machine learning in 
high dimensional space. Since not all problems are linear, then 
we can transform the data points to another high dimensional 
space such that the data points will be linearly separated. In the 
area of DNA and Protein Classification, the similarity kernel 
function should be chosen carefully to reflect and mimic the dot 
product operation, which the kernel function is based on.  
It also needs to make sense in the score produced because this 
score will reflect how similar those two sequences/proteins are.  
One of the subtle issues is this area, is how to represent an 
amino acid or DNA sequence. Many approaches were used 
including using frequencies and encoding. However, there are 
many problems with these methods. First the input space will be 
expanded unnecessarily large leaving large part of the space 
unused. And most importantly, second, the use of Euclidean 
space has no theoretic background in Biology or Chemistry and 
may reduce model accuracy.  
Instead we can use similarity techniques, which were used in 
Biology to reflect a correct distance between two DNA 
sequences.  
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Such approaches include global alignment, local alignment, 
semi-global alignment, etc.  
This paper investigates the use of different similarity 
approaches and a hybrid approach to reflect the best score 
representing the distance between two DNA bases.  
This paper is organized as follow. In section 2 we present 
related works in the field of DNA sequencing, and alignments. 
In sections 3 we introduce our approach of similarity. In section 
4 we present our results, analysis, and rationale. In section 5 we 
state the conclusion, and in section 6 we show our intentions in 
future work. 
2. Related Work 
Many similarity approaches with different scoring schemes 
have been proposed. Among those were the global comparison, 
local comparison, and semi-global comparison. In global 
comparison, best alignment between two DNA sequences is 
sought by inserting spaces. In the local comparison, largest 
common substring between two sequences is sought. In the 
semi-global comparison, spaces inserted at the beginning and/or 
at the end of any of the two sequences are ignored. The work by 
Waterman [6] is a good review on optimal alignments, 
similarity, distance, and related algorithms. [8] by Needleman 
and Wunsch, is considered the first important contribution in 
sequence comparison from the point of view of biologists, 
although S.Ulam had already considered distances on sequence 
spaces in the 1950s. Similar phenomenon occurred with local 
alignments.  
PAM matrices were introduced by Margaret Dayhoff and 
coworkers [9].  
Most of the studies used only one kind of alignment to 
determine the similarity between two sequences. In using only 
one technique, we might discard information that can be useful 
and critical in other techniques. We investigate the use of each 
similarity alignment, its impact on training support vector 
machines, and we used a new hybrid approach. 

 
3. Our approach 
In this study, we are using different similarity approaches to 
find out which one best representing the similarity between two 
DNA sequences. In Biological point of view, similarity between 
two DNA sequences reflects the functional similarity, the 
existence of some common subsequence, or/and the existence of 
a mutation, which e.g. causes cancer.  
We study the impact of each similarity approach not only 
separately, but also a combination of them, to see how well the 
trained support vector machine generalizes.  

 
3.1 Problem statement. 
Given a set of DNA sequences s1, s2... sN, we want to find the 
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similarity scheme, which is most suitable to represent the 
distance between two DNA sequences. The similarity scheme 
will be represented as a function, which is used as a kernel 
function in the support vector machine. Also we want to find 
out, is there any benefits from using a combination of different 
similarity schemes? 
 
3.2 Support Vector Machine 
Support Vector Machines (SVM) are learning systems that use a 
hypothesis space of linear functions in a high dimensional 
feature space, trained with a learning algorithm from 
optimization theory. This learning strategy, introduced by 
Vapnik and co-workers, is a principled and very powerful 
method that in the few years since its introduction has already 
outperformed most other systems in a wide variety of 
applications. SVM is based on the idea of hyper-plane classifier, 
or linearly separability. Suppose we have N training data points 
{(x1, y1), (x2, y2), (x3, y3) ... (xN, yN)}, where Rxi ∈ d and 

}1,1{ −+∈iy . We would like to learn a linear separating 
hyper-plane classifier:  
 

)()( bsignxf −⋅= χω    (1). 
 

Furthermore , we want this hyper-plane to have the maximum 
separating margin with respect to the two classes. This problem 
can be formalized as:  
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Although finding the perfect classifier is what we desire, in 
many applications it's reasonable to allow some noise or 
imperfect separation. In order to do that we introduce penalty 
variable C, where ∞<c (If C = infinity, we come back to the 
original perfect separation case). We introduce non-negative 
slack variable �i >= 0 so that: 
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We also add to the objective function (2) a penalizing term 
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Where m is usually set to 1, which gives us:  
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Subject to: 01)( ≥−≥−⋅ iii bxy εω  (7) 
 
Where 0≥iε  for all i. 

This is a convex quadratic programming problem (inω , b), in a 
convex set. Introducing Lagrange multiplier �i>=0, [2], and 
solving the Wolfe dual instead gives us: 
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classify a new object x with 
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Note that in the objective function and the solution, the training 
vectors ix occur only in the form of dot product. Also iα are 
Lagrange multipliers, one of each training point. When the 
maximal margin hyper-plane is found, only points which lie 
closest to the hyper-plane have 0≥iα  and these points are 
called support vectors. All other points have 0=iα . This 
means that the representation of the hypothesis/classifier is 
given only by those points which lie closest to the hyper-plane 
and they are the most informative patterns in the data. Their 
number can also be used to give an independent bound on the 
reliability of the hypothesis/classifier.  

 
3.3 Similarity 
Each similarity scheme assigns score to the comparison of two 
DNA sequences. The more similar the comparison the bigger is 
the score assigned to it. Similarity score between two DNA 
sequences can be obtained easily by aligning them. Many 
different alignments can occur, but the best one is the one which 
aligns as many matching between DNA bases as possible.  
In the following sections we explain the similarity schemes we 
consider in this study. 

 
3.3.1 Global similarity. 
Alignment of two sequences s1 and s2, can be defined as the 
insertion of one or more spaces in arbitrary locations in the 
DNA sequence, such that s1 and s2 end up with the same size. 
Having the same size, the augmented sequences s1 and s2 can be 
placed one over the other, creating correspondences between 
bases or spaces in the s1 and bases or spaces in s2. In addition, 
no space can be aligned in one sequence with space in the other. 
Given alignment between two sequences, we should have 3 
parameters to tune the alignment process between two character 
�, � and µ as figure 2 shows.  
 

�: The match score between two aligned characters. 
�: The mismatch between two aligned characters. 
µ: The Score assigned in alignment involving a space. 
Such that 
� > � AND 
� > µ AND 
�, �, µ � R 

Figure 2: The scoring scheme 
 
Choosing the scores should be done carefully, especially we 
don’t want to get a negative value as a final score for aligning 
two DNA sequences. That’s because the score obtained will be 
used as a kernel function to train the support vector machines to 
classify DNA sequences. Since the kernel function is based on 
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dot products, and one of the metrics reflected by the dot product 
is distance, hence having a negative score has little sense. 
The score is simply the summation of the score for each column 
in the alignment. For example, if we have the scoring scheme � 
= 0.6, � = -0.1, and µ = -0.2. Figure 3 shows an example of the 
score obtained from global alignments.  
We used dynamic programming to obtain the scores. It basically 
consists of solving an instance of a problem by taking 
advantage of already computed solution for smaller instances of 
the same problem. We leave to the reader the opportunity to 
look at these algorithms in the references [1].  

 
GA_CGGATTAG  
GATCGGAATAG 

_______________________________ 
(0.6 * 9) + (- 0.1 * 1) + (– 0.2 * 1) = 5.3 

Figure 3: Global alignment score 
 

t = ATTGTTGCT  
s = TTATTG  

q = CTTGCGCTT 
� = 0.6  
� = -0.1  
µ = -0.2 

Figure 4: Local alignment example. 
3.3.2 Local similarity. 
When the compared two sequences have different lengths, we 
end up inserting many spaces to align them globally. 
Meanwhile, two different sequences can be similar locally. A 
local alignment between s and t is an alignment between a 
substring of s and a substring of t. Not only the score of the 
longest substring between two sequences considered, but we 
added the score of all common substring between them. In this 
study, we considered all the common substrings between two 
sequences. Hence the score for the local alignment between two 
sequences is the summation of the scores of all common 
substrings between them. Further more, we obtained the 
average, hence:   

Score = NS
N

i i /
1� =

  
Where Si is the score for the substring Si, and N is the total 
number of common substrings. Also notice that we can restrict 
the length of the common substrings between two sequences. In 
our study, we tried all the common substring greater that 3 

 
3.3.3 Semi-global similarity. 
In semi-global comparison, we score alignments ignoring some 
of the end spaces in the sequences. Hence in semi-global 
alignment, we ignore the end spaces, when aligning two 
sequences, i.e. we don’t charge for spaces after the last 
character, or before the first character of the smaller sequence. 
For example, all the spaces in the second sequence in the 
alignment below are end spaces, while the single space in the 
first sequence is not an end space, where � denotes a space. 

 CAGC  A�CT  TGGA TTCTCGG 
���C AGCG  TGG� ������� 

Notice that the lengths of the two sequences are different, and in 
order to align them, we added spaces. Of course adding spaces 
will decrease the score given to their alignment, even though 
they are similar.  
Given alignment between two sequences, and scores value same 

as in figure 4.The global score given to this alignment is 12 * -
0.2 (spaces) + .6 * 6 (match) + 1 * -0.1 (mismatch) = + 1.1  
Notice that this is not the only alignment between those two 
sequences, here is another one: 

CAGC ACTTG  GAT TCTC GG 
CAGC �����  G�T    ����  GG 

The global score give to this alignment is: 
 10 * -0.2 (spaces) + .6 * 8 (match) = + 2.6, which is far better 
that the previous one. 
Although we have a better score in the second alignment, the 
inserted spaces scattered the sequences, which made it less 
interests in the biology point of view. Inserting a space or a gap 
is considered as if a single mutation event which removed a 
whole of stretch of residues, while separated spaces are most 
probably due to a distinct events, and the occurrence of one 
event is more common that the occurrence of several events.  
From the previous example, we can see that the new score given 
to the alignment is +3.5. 

 
3.3.4 Hybrid similarity 
In this study, we added one more scheme, which is the 
combination of all the previous alignment, to see the effects of 
that on training the support vector machine. We expect that 
combination of similarity scheme will affect positively the 
training process. By combining alignment, we mean adding the 
score of global, local, and semi-global scores. If we add all 
these scores together, this will add more meaning to each 
sequence toward other sequences. It could be the case that one 
sequence has small score in global alignment, but it has better 
one in local or semi-global alignments.  

 
4. Results 
We used the UCI Molecular Biology datasets, specifically the 
Promoter DNA dataset, and the Splice DNA data sets. For each 
dataset we train support vector machines differently as the 
following sections explain. We implemented the Kernel-
Adatron Algorithm, and used it for classification and testing. 
One advantage of this algorithm is that it does not require vector 
manipulation, i.e. adding, subtracting, multiplication, a vector 
with other scalars. Especially we are using sequences and 
similarity scores, which might only be used to replace a kernel 
function 

 
4.1 Promoter dataset 
The promoter dataset is of 106 DNA sequences, each of length 
57 base-pair. These sequences belong to two classes. Either the 
sequence is a member/non-member of class of sequences with 
biological promoter activity (promoters initiate the process of 
gene expression). In the following tables, the name data set is 
noted at the top of the table. We used two types of kernel, the 
linear kernel similarity function, in which we just used the 
similarity scores. The second one is quadric kernel, in which we 
used the dxxxxK jiji −>=< 2.),( . The dot product is 
replaced with the similarity score obtained, raised to the power 
of 2.  
The similarity scheme is global, local, semi-global or hybrid, 
which is as indicated before the summation of all scores. We 
used two different scoring schemes to charge for matching, 
mismatching, and spaces. Table1 shows two different scoring 
values we used in our tests. 
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Table1: the scoring types used in our test. 
Score values Score 

Type1 
Score 
Type2 

� (Match score) 0.6 0.5 
� (Mismatch 
score) 

-0.1 -0.25 

µ (Space 
charge) 

-0.2 -0.5 

 
The last column of each table is the percentage of correct 
classification. We followed the leave-one-out approach to 
calculate the error of classification. For each dataset, we trained 
the support vector machine with all the dataset except for one 
picked randomly. Then we check to see if the picked sample 
data was classified correctly or not. We repeated that for each 
data set in the promoter data set because it’s relatively small. 
Table 2 shows that the best result obtained in the promoter data 
set is by using a semi-global scheme. The local scheme did very 
well and hence the hybrid scheme. Since the hybrid scheme is 
obtained by summing all scores, it’s dependent on all of them, 
Hence we see that it scored very well, in both score types. As 
the table shows the semi-global and the local schemes have the 
best generalization results. The hybrid approach did very well 
because it combined local, global, and semi-global similarity. 
This is as if we combined many kind of similarity from different 
angles, and different views. 
Even though the general score using the first score type was 
good, the second score type is far better than the first. We think 
that making the difference between match, mismatch, and 
penalty scores large has an implication on the results. For 
example, in the first score type, the difference is 0.7 between 
match and mismatch, and 0.8 between match and space charge 
respectively. Meanwhile, it’s 0.75 and 1.0 in the second scoring 
type. 
Table3 which uses quadric kernel dxjxixjxiK −>=< 2.),( , 
shows a similar results to table2. The quadric kernel takes the 
dimensionality of feature space one level up. The difference 
between the two kernels, linear and quadric, is that the hybrid 
scheme did better than the local scheme using scoring type 1, 
and less using scoring type 2. This shows that no matter the 
variation in the similarity schemes, the hybrid scheme gives in 
between results. 

 
4.2 Splice data set 
The Splice dataset is larger than the previous one. It’s 3190 
DNA sequences, and there are three classes each sequence 
should belong to, EI, IE, or None. Splice junctions are points on 
a DNA sequence at which `superfluous’ DNA is removed 
during the process of protein creation in higher organisms. The 
table columns have the same meaning as explained in the 
previous section. However there is a different in the way we 
trained the support vector machine, which affected the results. 
Since the splice data set was large, we picked randomly 300 
sample data for training. The rest were used for testing the 
generalization.  
Table 4 shows a resemblance results to the promoter database, 
table 2. Even though the local alignment didn’t generalize well, 
the hybrid kept its ordered. The generalization results are lower 
than the ones in the promoter data set, because of the way we 
trained the support vector machines. We used 10% of the data 

set to train the support vector machines, mean while the rest, 
90%, was used for testing. The Semi-global scores the best in 
both scoring type, then the hybrid, the global, and the local 
score the least. 
 

Table 2: The promoter data set results, using linear 
similarity kernel. Ordered by best results 

Similarity 
Scheme 

Score 
type 

Correct 
classification rate 
(%) 

Semi-global 1 89.5 
Semi-global 2 95 

Local 1 87.5 
Local 2 92.4 

Hybrid 1 85.5 
Hybrid 2 92 

Global 1 80 
Global 2 86.6 

 
Table 5 which uses the quadric kernel: 

dxxxxK jiji −>=< 2.),(  
It shows similar results to table 4. The quadric kernel takes the 
dimensionality of feature space one level up. The difference 
between the two kernels, linear and quadric, is that the hybrid 
scheme did better than the semi-global using scoring type 1 and 
type 2. This shows that no matter the variation in the similarity 
schemes, the hybrid scheme gives in between results. 

 
Table 3: The promoter data set results, using quadric 
similarity kernel. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 4: The splice data set results, using linear similarity 
kernel ordered by the best results 

Similarity 
Scheme 

Score 
type 

Correct 
classification 
rate (%) 

Semi-Global 1 83.2 
Semi-Global 2 87 
Hybrid 1 81.2 
Hybrid 2 87.5 
Global 1 77.8 
Global 2 86 
Local 1 75 
Local 2 80.3 

Similarity 
Scheme 

Score 
type 

Correct classification 
rate (%) 

Semi-Global 1 83.8 

Semi-Global 2 93.3 

Hybrid 1 84.3 

Hybrid 2 95.6 

Local 1 95.6 

Local 2 91.3 

Global 1 79 

Global 2 80.9 
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Table 5: The splice data set results, using quadric similarity 
kernel. Ordered by the best results 

Similarity 
Scheme 

Score 
Type 

Correct 
classification 

rate (%) 
Hybrid 1 86 
Hybrid 2 90 
Semi-Global 1 86 
Semi-Global 2 88.6 
Global 1 85.7 
Global 2 88.8 
Local 1 78.5 
Local 2 84.3 

 
5 Conclusion and Further work 
In this paper, we proposed a different similarity scheme study, 
where we have tested the impact of each on the generalization 
of the support vector machine. Interestingly enough, the hybrid 
similarity turned to generalize very well even when some other 
schemes did not. The scoring numbers assigned for aligning 
characters has also an impact on the results. Having the 
difference between the matching and mismatching/space bigger 
turned to be better. The experiment using the Splice data set 
showed that support vector machine generalize very well, even 
though the number of data set picked for training, was far less 
than the testing data. We will investigate more hybrid similarity 
scheme, more than just summing up different similarity 
schemes. We are also planning to study the effects of randomly 
choosing training data, and test data, as well as shuffle the 
training data set. 

 
6. References 
[1] Joao Carlos Setubal and Joao Meidanis, Introduction to 
Computational Molecular Biology. PWS Publishing Company. 
[1993]. 
[2] Colin Campbell, and Nello Cristianini Simple Learning 
Algorithms for Training Support Vector Machines. 
[3] Promoter and splice datasets websites: 
http://www.ics.uci.edu/~mlearn/MLSummary.html 
[4] N. Cristianini and J. Shawe-Tayler, Introduction to Support 
Vector Machines. Cambridge University Press 2000 ISBN: 0 
521 78019 5 
[5] W.R. Pearson and W.Miller. Dynamic programming 

algorithms for biological sequence comparison. In L. Brand nd 
M.L. Johnson, editors ,Numerical Computer Methods, volume 
210 of Methods in Enzymology, pages 575-606. New York: 
Academic Press, 1992. 
[6] M.S. Waterman, editor. Mathematical Methods for DNA 
sequences. Boca Raton, FL:CRC Press, 1989. 
[7] G.von Heijne. Sequence Analysis in Molecular Biology: 
Treasure Trove or Trivial Pursuit? New York: Academic Press, 
1987. 
[8] B.Needleman and C.D. Wunsch.A general method 
applicable to the search for similarities in the amino acid 
sequence of two proteins. Journal of Molecular Biology, 
48:443-453 
[9] M. Dayhoff, R.M.Schwartz, and B.C. Orcutt. A model of 
evolutionary change in proteins. In M. Dayhoff, editor, Atlas of 
Protein Sequence and Structure,  
[10] S.F Altschul. Amino acid substitution matrices from an 
information theoretical perspective. Journal of Molecular 
Biology, 219:555-565, 1991. 
[11] J.Meidanis. Distance and similarity in the presence of non 
increasing gap-weighting functions. In proceedings of the 
Second South American Workshop on Sting Processing, 
Valparaiso, Chile, Apr, 1995. 
[12] T.F Smith, M.S. Water, and W.M. Fitch. Comparative bio-
sequence metrics. Journal of Molecular Evolution. 1981. 
[13] Vapnik, V. (1995) The Nature of Statistical Learning 
Theory, Springer Verlag. 
[14] Cortes, C. (1995) Prediction of Generalization Ability in 
Learning Machines. P.hD Thesis, Department of Computer 
Science, University of Rochester. 
[15] LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A., Cortes, 
C., Deker, J.S., Drucker, H., Guyon, I., Muller, U.A., Sackinger, 
E., Siard, P. and Vapnik, V., (1995)Comparison of Learning 
algorithms for handwritten recognition , Internatinal Conference 
on Artificial Neural Networks, Fogelman, F. and Gallinari, P. 
(Ed.), pp. 53-60. 
[16] Batlett P., Shawe-Taylor J.,(1998). Generalization 
Performance of Support Vector Machines and other Pattern 
Classifiers. ‘Advances in Kernel Methods- Support Vector 
Learning’, Bernhard, Scholkopt, Christopher J.C. Burges, and 
Alexander J.Smola (eds), MTT Press, Cambridge, USA. 

 


