
Journal of Multivariate Analysis 79, 191�218 (2001)

A Nonparametric Test of Serial Independence for
Time Series and Residuals

Kilani Ghoudi

Universite� du Que� bec a� Trois-Rivie� res, Trois-Rivie� res, Que� bec, Canada
E-mail: ghoudi�uqtr.uquebec.ca

Reg J. Kulperger

University of Western Ontario, London, Ontario, Canada
E-mail: rjk�fisher.stats.uwo.ca

and

Bruno Re� millard

Universite� du Que� bec a� Trois-Rivie� res, Trois-Rivie� res, Que� bec, Canada
E-mail: remillar�uqtr.uquebec.ca

Received November 17, 1998; published online June 19, 2001

This paper presents nonparametric tests of independence that can be used to test
the independence of p random variables, serial independence for time series, or
residuals data. These tests are shown to generalize the classical portmanteau
statistics. Applications to both time series and regression residuals are discussed.
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1. INTRODUCTION

Testing for independence is very important in statistical applications.
These tests arise in many different settings, in particular when checking the
dependence of p random variables, one usually carries out an independence
test. Such a test is also required when verifying that consecutive observations
of a time series are independent. Finally when checking the hypotheses of
most linear models, one often needs to test serial independence of the error
terms.
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The problem of testing the independence of p random variables is quite
old. The first tests were based on correlation measures (Kendall, Spearman).
More powerful tests are based on the empirical distribution function, and
were considered by Hoeffding (1948), Blum et al. (1961), and Cotterill and
Cso� rgo� (1982, 1985).

In a time series setting, one is more interested in testing serial inde-
pendence, that is one would like to verify if consecutive observations
Ui , ..., Ui+ p&1 are independent. This problem received considerable atten-
tion in the literature. It is usually tackled using Portmanteau statistics
based on the autocorrelation functions (see Brockwell and Davis, 1991;
Kulperger and Lockhart, 1998). Recently, Skaug and Tjo% stheim (1993)
proposed a test for serial pairwise independence based on the empirical
distribution function. Their work generalizes Hoeffding (1948) to serial
independence. Interesting extensions of this test can be found in Hong (1998)
and Hong (2000). Delgado (1996) used a Blum, Kiefer, and Rosenblatt
statistic in the serial independence context. He showed that the process
converges weakly, but that the limiting process is not very useful when
trying to tabulate critical values of test statistics.

Portmanteau type statistics are also used when checking serial
independence of the errors of a linear model. The Durbin Watson test is
the standard diagnostic for serial independence of the errors of linear
regression and is also based on some measure of the correlation between
the errors (see Jobson, 1991).

This paper develops nonparametric tests of independence and serial inde-
pendence that can be applied in either of the above three cases. In other
words, the tests proposed here apply when testing the independence of p
random variables or the serial independence of time series data and
residuals. These tests are Crame� r�von Mises or Kolmogorov�Smirnov
functionals of some empirical processes. This paper shows that under the
independence (serial independence) hypothesis these empirical processes
converge to Gaussian limits with quite convenient covariance functions.

It is also shown that if the Ui 's have continuous distribution function
then the limiting distributions of the test statistics do not depend on the
underlying law of the Ui 's. This holds when testing independence of p
random variables, serial independence of time series data and serial
independence of residuals of a classical linear regression. In other cases
such as residuals of an autoregressive model, the limiting distribution
depends, in general, on the law of the Ui 's.

The test of the independence of p random variables shall be called
Setting 1 while that of the serial independence in time series data is called
Setting 2. Test of serial independence for residuals or residual-likes observations
is referred to as Setting 3, and using the terminology of Ghoudi and Re� millard
(1998a), this shall also be called the pseudo-observations situation.
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The idea behind the construction in the time series setting is quite similar
to that proposed by Skaug and Tjo% stheim (1993) and Delgado (1996). It
uses the famous method of time delay, which is well known in the chaotic
time series literature. The construction together with few definitions are
given in the next section. Section 3 presents the properties of the limiting
processes. It is shown, in particular, that these processes have very con-
venient covariance functions and that they admit attractive representations
in terms of Brownian drums. Section 4 defines test statistics used in this
work. It is shown that for Crame� r�von Mises type statistics, one obtains a
closed form for the asymptotic distribution. The Cornish�Fisher
asymptotic expansion (Abramowitz and Stegun, 1964) and Imhof 's charac-
teristic function inversion algorithm (Imhof (1961)) are used to tabulate
the distribution and the quantiles of these statistics. Section 5 discusses
applications of these statistics. A first subsection considers the case where
Ui 's are time series data. It uses a special alternative to provide a power
study. The second subsection provides a simulation study comparing the
power of the tests discussed in Section 4 with Delgado's (1996) test.
Section 6 is devoted to the proofs of the results stated within this work.

2. DEFINITIONS AND RESULTS

This section defines and states the results for the asymptotic behavior of
the empirical processes used to develop the test procedures. First a charac-
terization of the independence of p random variables is provided. Then the
section gets divided into three subsections. Each subsection presents one of
the three particular cases described earlier.

Let U1 , ..., Up be p�2 random variables. For 1� j� p, let K ( j) denotes
the marginal distribution function of Uj and for any t=(t(1), ..., t( p)) in R p,
let Kp(t)=P[U1�t(1), ..., Up�t ( p)] be the joint distribution function of
U1 , ..., Up . Now for any A/Ip=[1, ..., p], and any t # R p, set

+A(t)= :
B/A

(&1) |A"B| Kp(tB) `
j # A"B

K ( j)(t( j)),

where |A| denotes the number of elements in A, where by convention,
><=1 and where (tB) is the vector with components

(tB) (i)={t(i),
�,

i # B;
i # Ip"B.

Then one can state the following characterization of the independence of
U1 , ..., Up .
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Proposition 2.1. U1 , ..., Up are independent if and only if +A #0, for all
A/[1, ..., p].

2.1. Testing the Independence of p Random Variables. This section deals
with the classical problem of testing the independence of p random
variables. This problem received considerable attention in the literature.
Here one is mainly interested in tests based on the empirical distribution
function. Such tests were considered by Hoeffding (1948), Blum et al.
(1961), and Cotterill and Cso� rgo� (1982, 1985). In particular, if one lets
=i=(=(1)

i , ..., = ( p)
i ); i=1, ..., n be a random sample of R p valued random

variables, it is desired to test the independence of the components
=(1), ..., =( p). Blum et al. (1961) proposed the following empirical process

;n, p(t)=- n {Kn, p(t)& `
p

i=1

K (i)
n (t (i))= ,

where Kn, p is the joint empirical distribution function and where K (i)
n is the

ith empirical marginal distribution function. It is shown that, except for the
case p=2, the asymptotic covariance function of the process ;n, p is not
very convenient. In other words it does not provide a nice way to produce
critical values of some useful test statistics. Here alternative processes are
proposed. The idea behind the introduction of these processes comes from
the characterization of independence given in Proposition 2.1.

To this end, for any A/Ip=[1, ..., p] and any t=(t (1), ..., t ( p)) # R p let

Rn, A(t)=- n :
B/A

(&1) |A"B| Kn, p(tB) `
i # A"B

K (i )
n (t (i )).

Using the multinomial formula (8) in Section 6, the above reduces to

Rn, A(t)=
1

- n
:
n

i=1

:
B/A

(&1) |A"B| `
k # B

I[= (k)
i �t(k)] `

j # A"B

K ( j )
n (t( j ))

=
1

- n
:
n

i=1

`
k # A

[I[= (k)
i �t (k)]&K (k)

n (t(k))] ,

where I denotes the indicator function. The asymptotic behaviour of these
processes is stated next.

Theorem 2.1. Let =1 , ..., =n be independent and identically distributed
random vectors and suppose that K (k), the marginal distribution function of
=(k)

1 , is continuous for k=1, ..., p. Then if = (1)
1 , ..., = ( p)

1 are independent, the
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processes (Rn, A)A/Ip
converge in D(R p) to independent mean zero Gaussian

processes RA having covariance functions given by

CA(s, t)=Cov[RA(s), RA(t)]

= `
i # A

[min[K(i )(s(i )), K (i )(t(i ))]&K(i )(s(i )) K(i )(t (i))] .

In fact one can easily verify that the processes Rn, A are related to the
process ;n, p through the following representations

;n, p(t)= :
B/Ip ; |B|>1

Rn, B(tB) `
i # Ip"B

K (i )
n (t(i )),

and

Rn, A(t)= :
B/A

(&1) |A"B| ;n, p(tB) `
i # A"B

K (i )
n (t(i )).

As a corollary one gets the asymptotic behaviour of the ;n, p given in Blum
et al. (1961). The inverse is also true, that is the above theorem can be
obtained using the results of Blum et al. (1961). This does not shorten the
proof, therefore a direct proof is presented in Section 6.

Test statistics based on these processes are introduced in Section 4. In
particular, asymptotics of Crame� r�von Mises and Kolmogorov�Smirnov
type statistics shall be discussed. The presentation of these tests is delayed
to Section 4, in order to treat the three settings together, that is p random
variables, serial independence in time series and serial independence with
pseudo-observations.

2.2. Testing Serial Independence of Time Series Data. Here the time
series framework is presented. Let [Ui]i�1 be a stationary and ergodic
time series. Let p�2 be a fixed integer. For any integer 1�i�n& p+1,
set =i=(Ui , Ui+1 , ..., Ui+ p&1) and for any t=(t(1), ..., t( p)) # R p, define

Kn, p(t)=
1
n

:
n& p+1

i=1

I[= (1)
i �t(1), ..., = ( p)

i �t ( p)].

Let Kp be the distribution function of (= (1)
1 , ..., = ( p)

1 ), that is,

Kp(t)=P(= (1)
1 �t (1), ..., = ( p)

1 �t ( p))=P(U1�t(1), ..., Up�t( p)).

As in the previous section, for any set A/Ip=[1, 2, ..., p], let

Rn, A(t)=- n :
B/A

(&1) |A"B| Kn, p(tB) `
i # A"B

K (i )
n (t(i )) (1)
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It follows that Rn, A=0 if |A|�1 and that the coefficient of >i # A K (i )
n (t(i ))

in Rn, A is (&1) |A|&1 ( |A|&1). One can also rewrite

Rn, A(t)=
1

- n
:

n& p+1

i=1

:
B/A

(&1) |A"B| `
k # B

I[= (k)
i �t (k)] `

j # A"B

K ( j )
n (t( j ))

=
1

- n
:

n& p+1

i=1

`
k # A

[I[= (k)
i �t(k)]&K (k)

n (t(k))] .

In this setting, it is clear that a translate B=A+k of a given set A
generates basically the same process Rn, A . Therefore, without loss of
generality, one can restrict the attention to the processes Rn, A where
A # Ap=[A/Ip ; 1 # A, and |A|>1].

Let K denotes the common distribution function of the Ui 's. The
asymptotic behaviour of Rn, A is stated in the following theorem.

Theorem 2.2. If K is continuous and if the Ui 's are independent, then the
processes (Rn, A)A # Ap

converge in D(R p) to independent mean zero Gaussian
processes RA having covariance functions given by

CA(s, t)=Cov[RA(s), RA(t)]= `
i # A

[min[K(s(i )), K(t(i ))]&K(s(i )) K(t(i ))] .

Skaug and Tjo% stheim (1993) based their test for serial independence on
Cramer�von Mises functional of the above process Rn, A where A is of the
form [1, k] for some 2�k� p. This shows that their test is only for serial
pairwise independence and not serial independence in general. But it was
argued that for many alternatives, this test is more powerful then tests
based on the joint distribution of p variables.

Delgado (1996) used the following process

;n, p(t)=Kn, p(t)& `
p

i=1

K (i )
n (t(i )).

Once again this process is related to our processes via the representations

;n, p(t)= :
B/Ip ; |B|>1

Rn, B(tB) `
i # Ip"B

K (i )
n (t(i )),

Rn, A(t)= :
B/A

(&1) |A"B| ;n, p(tB) `
i # A"B

K (i )
n (t(i )).

Next, set

;p(t)= :
B/Ip ; |B|>1

RB(tB) `
i # Ip"B

K(t(i )),
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As a corollary one gets the asymptotic behavior of the ;n, p given in
Lemma 1 of Delgado (1996). The inverse is also true, as illustrated in the
remark following Theorem 2.1.

Corollary 2.1. If K is continuous and if the Ui 's are independent, then
the process ;n, p converges in D(R p) to a continuous Gaussian process ;p with
covariance function 1; given by

1;(x, y)=Kp(xp 7yp)&Kp(xp) Kp( yp)

+ :
p&1

k=1

Kk(xk) Kk(({ p&k y)k)[Kp&k( yp&k 7 ({kx)p&k)

&Kp&k( yp&k) Kp&k(({kx)p&k)]

+ :
p&1

k=1

Kk( yk) Kk(({ p&kx)k)[Kp&k(xp&k 7 ({ky)p&k)

&Kp&k(xp&k) Kp&k(({ky)p&k)], x, y # R p,

where for any d�1, Kd is the distribution function of (U1 , ..., Ud) and where
a7 b is the vector with components [min(a(1), b(1)), ..., min(a(k), b(k))],
a, b # Rk and ({ jx)k=(x( j+1), ..., x( j+k)).

As noted by Delgado the asymptotic covariance function of ;n, p is not
convenient for the tabulation of critical values of Crame� r�von Mises func-
tionals. In his paper Delgado proposed the use of a permutation method
to approximate these critical values. However, one should be very careful
when using simulations to tabulate critical values of tests of independence,
since any simulation procedure uses pseudo-random variables having some
kind of serial dependence. The effect of using simulation could be negligible
in relatively small samples, as pointed by Delgado (1996) and the results
in Section 4. However, theoretically one should be able to detect this kind
of serial dependence at least for very large samples. Thus using simulation
will result in miscalculating the critical values. It is therefore essential to
have an alternate method for evaluating these critical values. This is exactly
the main aim of this paper. As shown in Sections 3 and 4, the covariance
functions of the processes Rn, A are quite easy to handle. In fact, explicit
form of their eigenvalues and eigenfunctions will be given.

Remark 2.1. If the distribution function K is known, one could use the
statistics R� n, A obtained by replacing K (i )

n by K in (1). For example, this
would be the case if one wishes to verify if sequence of observations is a
sequence of independent and identically distributed random variables with
uniform marginals. As noted in Section 6, the processes R� n, A and Rn, A are
asymptotically equivalent.
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2.3. Testing Serial Independence with Pseudo-Observations. This section
deals with the pseudo-observations situation. To be precise, let [Xi] i�1 be
an X valued time series. Let H be a function from X to an interval T of
R and consider the series [Ui=H(Xi)] i�1 . Suppose that the series of U i 's
is stationary and ergodic and that the distribution function K of U1 is
continuous. The aim is to test if Ui ..., Ui+ p&1 are independent. If H is
known, this reduces to the time series setting discussed in the previous
section. On the other hand, if H is unknown and is estimated by some
function Hn and Ui is estimated by U� i=Hn(Xi), then this is called the
pseudo-observations case. Even though the U� i 's depend on n, no subscript
is added for the sake of simplicity. Residuals are just a special case of
pseudo-observations. Empirical processes based on pseudo-observations
like the U� i 's are considered by Barbe et al. (1996) and Ghoudi and
Re� millard (1998a, 1998b). This section redefines the processes Rn, A , A # Ap

for this setting and studies their asymptotic behavior.
For each i=1, ..., n& p+1 set =i=(Ui , ..., Ui+ p&1) and e i=(U� i , ...,

U� i+ p&1). Let K� n, p be the empirical distribution function of the e i 's and let
K� (k)

n ; k=1, ..., p be the k th empirical marginal distribution. Then, for this
setting, the process Rn, A(t) is given by

Rn, A(t)=
1

- n
:

n& p+1

i=1

:
B/A

(&1) |A"B| `
k # B

I[e (k)
i �t (k)] `

j # A"B

K� ( j )
n (t( j ))

=
1

- n
:

n& p+1

i=1

`
k # A

[I[e (k)
i �t(k)]&K� (k)

n (t (k))]. (2)

One also defines the processes

;� n, p(x)=- n {K� n, p(t)& `
p

i=1

K� (i )
n (t(i ))= ,

and

;� *n, p(x)=- n {K� n, p(t)& `
p

i=1

K(t (i))= .

The process ;� *n, p is a special case of the empirical process based on pseudo-
observations studied by Ghoudi and Remillard (1998b). In particular their
Theorem 2.1 applied to this context yields the asymptotic behavior of ;� *n, p .
Before the precise statement of this result, we introduce the following
conditions.

(R1) There exists some positive continuous function r: X � R such
that infx # X r(x)>0 and E[r(X)] is finite. Further let Cr be a closed subset
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of the Banach space of all continuous functions f from X to R such that
& f &r=supx # X | f (x)�r(x)| is finite. Assume that there exists a continuous
version H� n of Hn such that - n &H� n(x)&Hn(x)&r converges in probability
to zero.

(R2) Suppose also that for any f # Cr with g= f �r, and any
continuous � on R, 0���1, the processes

:n, j, � b g(s, t)

=
1

- n
:

n& p+1

i=1
_�(g(Xi+ j)) I[= ( j )

i �t( j )+sr(Xi+ j)] `
k{ j

I[= (k)
i �t(k)]

&E {�(g(X j)) I[= ( j )
1 �t( j )+sr(Xj)] `

k{ j

I[=(k)
1 �t(k)]=& ,

are such that for any compact subset C of R and for s # R,

sup
t # C

|:n, j, � b g(s�- n , t)&:n, j, � b g(0, t)| (3)

converge in probability to zero. Finally suppose that if :n(t)=:n, 1, 1(0, t)
and Hn=- n(H� n&H), then (:n , Hn) converges in C(Rd)_Cr to a process
(:, H).

(R3) The support T of K is an interval of R, K admits a density k( } )
on T which is bounded on every compact subset of T and that there exists
a version of the conditional distribution of X >k{ j I[= (k)

1 �t(k)] given
=( j )

1 =H(Xj)=t ( j ), denoted by Pj, t , such that for any f = f0+%r with
f0 # Cr and % # R, the mappings

t [ +j (t, f )=kj (t( j )) E { f (X j) `
k{ j

I[= (k)
1 �t (k)] | = ( j )

1 =t( j )= ,

are continuous on T.

Finally suppose that for any compact subset C of T,

lim
M � � |

�

M
sup
s # C

Ps(r(X)>u) du=0.

With these notations Theorem 2.1 of Ghoudi and Remillard (1998b)
applied to this context may be restated as follows
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Theorem 2.3. If [Ui] i�1 is a stationary and ergodic time series and if
U1 , ..., Up are independent, then if conditions R1�R3 are satisfied the process
(;� *n, p) converges in D(R p) to

;� *p (t)=;p (t)& :
d

j=1

+j (t, H).

As a corollary one gets.

Corollary 2.2. Under the conditions of Theorem 2.3 the process
Rn, A(t) converges in D(R p) to

R� A(t)= :
B/A

(&1) |A"B| ;� *p (tB) `
i # A"B

K(t(i )).

As an example it will be shown how these results apply to the linear
regression residuals.

Linear Regression Residuals. Consider a classical linear regression
model, Y=a+b$Z+U, where Y # R, Z # Rd and where Z and U are inde-
pendent. To apply the results of this paper to this case, note that in this
context X=(Y, Z) and U=H(X)=H(Y, Z)=Y&a&b$Z. One also has
Hn(x)=Hn( y, z)= y&an&b $nz where an and bn could be taken as the least
square estimate of a and b respectively. r( y, x)=r(z)=1+&z&, Cr=
[a+b$z; a # R and b # Rd] and H( y, z)=A+B$z where (A, B, ;p) is the
joint weak limit of (- n(an&a), - n(bn&b), ;n, p). The +j (t, H)'s reduce to

+j (t, H)=k(t( j )) `
k{ j

K(t(k))[A+B$E(Z)].

The application of Corollary 2.2 to this setting yields the following
proposition.

Proposition 2.2. Suppose that the design matrix is not singular,
E(&Z&2) is finite and U admits a support T that is an interval of R and
a continuous bounded density on this support. Then if an and bn are the least
square estimates of a and b, the processes Rn, A , defined by (2) for A # Ap ,
converge to the independent centered Gaussian processes [RA]A # Ap

given in
Theorem 2.2.

Remark 2.2. Note that for general linear models the limiting process
does not necessarily simplify to RA , in particular, for the autoregressive
model, Yi&+=,(Yi&1&+)+Ui , the process R� A is not equal to RA . In
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fact, even for the simple case of A=[1, j], it follows from (3.7) in Ghoudi
and Re� millard (1998b) that

R� [1, j](t)=R[1, j](t)+k(t( j )) G(t(1)) , j&28,

where G(s)=E(=1I[=1�s]) and 8 is a random variable representing the
limit of - n(,� n&,).
Note also that for ;� n, p , even in the linear regression setting, the extra term
in the limit does not simplify.

3. PROPERTIES OF THE LIMITING PROCESSES

This section shows that the limiting processes admit very convenient
covariance functions and that they can be represented in term of the
process ;p defined in Corollary 2.1 or more appropriately in terms of
Brownian drums.

The covariance functions CA , A # Ap are very easy to use. In fact CA is
the product of |A| covariance functions of Brownian bridges. That is, the
eigenvalues and the eigenfunctions of CA are quite easy to obtain and are
summarized in the next proposition.

Proposition 3.1. Let k=|A|. Then the covariance function CA admits
eigenvalues and eigenfunctions given by

*j1, ..., jk
= `

k

l=1

( j l?)&2 and f j1, ..., jk
(t1 , ..., tk)= `

k

l=1

sin( jl?t l),

respectively, for ( j1 , ..., jk) # Nk.

Next consider the representation of the process RA . The first result is
straightforward and is stated in the next proposition.

Proposition 3.2. If K is a continuous distribution function then

RA(t)= :
B/A

(&1) |A"B| ;p(tB) `
i # A"B

K(t (i )).

For the second representation, recall that by Theorem 2.2, the processes
(RA)A # Ap

are all independent with covariance function CA , A # Ap . This
representation shows that these processes can also be written in terms of
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Wiener sheets. For, let W be a Wiener sheet on [0, 1] p, that is a mean zero
continuous Gaussian process on [0, 1] p with covariance function given by

E[W(s) W(t)]= `
p

i=1

s(i ) 7 t(i ), s, t # [0, 1] p.

Next, define the Wiener drums or Brownian drums DA , A # Ap , in terms
of W by

DA(s)= :
B/A

(&1) |A"B| W(sB) `
k # A"B

s(k), A # Ap ,

where s (i )
B =s(i ) if i # B and 1 otherwise. To simplify the statement of the

results, assume K is continuous and consider the following rescaled version
of the processes RA .

D� A(s)=RA[K&1(s(1)), ..., K&1(s( p))], A # AP .

The representation of D� A(s) is given in the following proposition.

Proposition 3.3. The joint law of (DA)A # Ap
is the same as that of

(D� A)A # Ap
. Moreover

DA(s)=W(sA)&E[W(sA) | KA],

where KA is the sigma-algebra generated by the values of the Wiener sheet
on the boundary of [0, 1]A, that is,

KA=_[W(t); t(i )=0 or 1, for some i # A].

It is thus justified to call Dp a Wiener drum or a Brownian drum, since
it vanishes on the boundary of [0, 1] p. The proof of the proposition
requires two steps and is given in Section 6.

4. TEST STATISTICS

This section studies test statistics based on the processes considered
earlier. In fact for the three settings of Subsections 2.1, 2.2, and 2.3 one can
introduce Crame� r�von Mises or Kolmogorov�Smirnov type statistics using
the processes Rn, A 's. It will be shown that the limiting distribution of the
Crame� r�von Mises statistics is in general easy to obtain.
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First, define the Crame� r�von Mises statistics as

Tn, A=| R2
n, A(t) dKn, p(t), (4)

for the first two settings and

T� n, A=| R2
n, A(t) dK� n, p(t),

for the pseudo-observations setting. Next the Kolmogorov�Smirnov
statistic is given by

Sn, A=sup
t

|Rn, A(t)|. (5)

To test the independence or the serial independence one can, in particular,
use the statistics Vn, p=�A Tn, A , V� n, p=maxATn, A or Wn, p=maxASn, A ,
where A ranges over all the subset of IP for the test of independence of p
random variables and over the class Ap for the test of serial independence
in a time series. When dealing with pseudo-observations one replaces Tn, A

by T� n, A in the above.
Next the asymptotic distribution of Tn, A is established. But first, set

!k= :
(i1, ..., ik) # Nk

1
?2k(i1 } } } ik)2 Z2

i1, ..., ik
,

where the Zi1, ..., ik
's are independent N(0, 1) random variables. The

asymptotics of Tn, A are given next

Lemma 4.1. Under the conditions of Theorem 2.1 or Theorem 2.2, the
statistic Tn, A converges in law to ! |A| .

The critical values of the asymptotic distribution of !k are easy to
compute. In fact this can be achieved by first computing the cumulants
given by (6), and then applying the Cornish Fisher asymptotic expansion,
or by inversion of the characteristic function. This inversion is obtained by
the numerical integration method proposed by Imhof (1961), or the
improved version of this algorithm introduced by Deheuvels and Martynov
(1996). The following provides the cumulant of order m of the !k

}m=
2m&1(m&1)!

?2km `(2m)k, (6)

where `( } ) denotes the Riemann zeta function.
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TABLE I

Critical Values of the Distribution of !k

Table I provides an approximation of the cut-off values obtained from
the Cornish Fisher asymptotic expansion with the first six cumulants.

A careful examination of the asymptotic distributions of the Tn, A 's shows
that their expectations and their variances diminish considerably as the car-
dinality of A increases. For example, the mean of !k is equal to 1�6k and
the asymptotic variance is given by Var(!k)=2�90k. So when using the
statistics Vn, p or V� n, p , the biggest contribution tends to come from the sets
A of small sizes. To avoid this problem it is more convenient to work with
a standardized version of the statistics. To be specific let T*n, A=(Tn, A&
E(!k))�- Var(!k) and define V*n, p=�A T*n, A and V� *n, p=maxA T*n, A , where
the range of the sets A is that given in the definition of Vn, p and V� n, p .
Lemma 4.1 implies that T*n, A converges in distribution to !k*=(!k&E(!k))�
- Var(!k), that V*n, p converges in distribution to V p* and that V� *n, p

converges in distribution to V� p*, where Vp*=�A !*|A| and V� p*=maxA !*|A| with
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TABLE II

Distributions of !*
k ; k=2, 3, and 4 and of V� *

3 and V� *
4 for Settings 1 and 2

!*|A| independent for different A's. Table II provides the distribution func-
tion of the statistics !k* and V� p* , as approximated by Imhof 's technique.

Imhof's technique can also be used to tabulate the distribution of Vp*. Unfor-
tunately, no closed form can be given for the Kolmogorov�Smirnov statistic.
However, for continuous Ui 's and for both the independence of p random
variables and the serial independence in a time series, Sn, A and Tn, A are dis-
tribution free, therefore one can approximate their limiting distributions by
simulating the limiting Brownian drum process. Note that one can also
simulate sequences of independent uniform (0, 1) random variables. Table III
reports the result of 5000 simulation of pseudo-random sequences generated
using the KISS algorithm, Marsaglia and Zaman (1995). It shows that the effect
of the dependence contained in pseudo-random sequence is negligible.

This fact is also illustrated in Table IV, where the simulation procedure
used Splus random number generator, for Crame� r�von Mises (4) and

TABLE III

Sample 0.95 Quantiles for V� *n, 2
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TABLE IV

Sample 0.95 Quantiles for Lags k=1, 2, 3

Kolmogorov�Smirnov (5) functionals in the time series setting, for sets A
of the form [1, 1+k] where k=1, 2 and 3. k is often called the lag. These
simulations were done for different sample sizes n=100, n=200 and
n=400 and with 2500 Monte Carlo replicates. Observe that the results for
the Crame� r�von Mises statistics compares very well with the asymptotic
quantiles given in Table I. One also notices from the simulation results that
the asymptotics take effect for reasonable sample sizes and does so more
quickly for the Crame� r�von Mises statistic than the Kolmogorov�Smirnov
statistic. One also notices that the critical values are indeed consistent with
Rn, A being identically distributed for different |A|. It is also seen that the
Crame� r�von Mises statistic is quite consistent across different sample sizes
n, but that the Kolmogorov�Smirnov statistic has critical values that change
a small amount as the sample size n increases. This is quite consistent with
the results for Kolmogorov�Smirnov statistic in the usual setting where a
finite sample correction is often used; see, for example, Stephens (1986).

Moreover, a careful examination of these results show that, as expected,
the processes for different lags are independent and identically distributed
Gaussian processes. This pairwise independence of the processes occurs for
moderate sample size n (in the range of 100).

Note that by Proposition 2.2, all the results stated above for the serial
independence in the time series setting will apply to the test of serial inde-
pendence for the residuals of linear regression models. In fact, when work-
ing with the residuals of a classical linear regression model, the limiting
processes are exactly the same as those obtained for the time series setting.
In particular Tables I, II and IV apply to these residuals.

5. POWER STUDIES

This section presents two power studies. The first is a comparison with
the classical portmanteau statistics. The second discusses the performance
of the tests presented earlier compared to that of Delgado (1996). The next
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subsection introduces Portmanteau processes as a special case of the
processes introduced in Section 2. Then it presents a simulation study for
the power of the statistics, introduced in Section 4, in detecting a product
alternative.

5.1. Portmanteau Processes. The classical portmanteau statistic is based
on sample autocorrelations. Its sampling distribution is based on the fact
that if the data comes from an i.i.d. sequence, the normalized sample
autocorrelations are asymptotically independent standard normal random
variables. This section shows that by properly choosing the set A, the
processes Rn, A are in fact empirical processes based on lags and that the
classical Portmanteau statistics are functionals of these processes. Theorem
2.2 shows that these processes are asymptotically independent Gaussian
processes. Some functional of these processes, such as Crame� r�von Mises
and Kolmogorov�Smirnov statistics, are distribution free. In this sense it
will be shown that these empirical processes play the role of a generalized
Portmanteau process. This section presents some uses for this process. It
also gives a power study, for tests based on these processes, against a
product process alternative which consists of a 1-dependent sequence with
zero lag 1 covariance.

Assume one disposes of a stationary and ergodic sequence of random
variables [Ui] i�1 with common distribution K, the idea of the portmanteau
statistics for p=2 is to consider pairs of random variables (Ui , Ui+k) at lag
k. In fact, to simplify the presentation, only the case p=2 will be discussed
here. Now, set Ak=[1, k+1] and consider the process Rn, Ak

. From the
previous results one concludes that if the Ui 's are independent then the
processes Rn, Ak

converge to independent Gaussian processes with common
covariance function C(s1 , s2 , t1 , t2)=[K(s1) 7K(t1)&K(s1) K(t1)][K(s2) 7

K(t2)&K(s2) K(t2)].
In the classical setting of the portmanteau statistics, the lag k covariance

is given by c(k)=Cov(Ui , Ui+k), and its sample estimate is obtained via

cn(k)=
1

n&k
:

n&k

i=1

(Ui&U� )(Ui+k&U� ),

where U� is the sample mean. First note that the normalizing factor n&k
can be replaced with n without affecting the asymptotic of cn(k). With this
modification one easily obtains

- n cn(k)=|
�

&�
|

�

&�
Rn, Ak

(t1 , t2) dt1 dt2 .
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It is well known that under the independence hypothesis, the cn(k)'s con-
verge to independent N(0, {2) distributions, where

{2=_|
�

&�
|

�

&�
[K(s1) 7 K(t1)&K(s1) K(t1)] ds1 dt1&

2

=_4,

where _2=Var(U1) and where the last equality follows from Hoeffding's
Lemma (see Block and Fang, 1988). As discussed in the previous section
one might consider other more powerful statistics such as those of the
Crame� r�von Mises or the Kolmogorov�Smirnov types discussed earlier.

5.1.1. Detection of a Product Process Alternative. To get an idea
about the power of these tests, the following product process alternative is
considered.

Assume that the data generating mechanism for this alternative consist
of the following product process

Ui=Xi&1Xi , (7)

where the Xi 's are independent and identically distributed random
variables with mean zero and finite variance. This process is a 1-dependent
sequence with zero lag 1 covariance c(1). The statistics described earlier are
used to detect if the sequence of Ui 's form an i.i.d. sequence.

The classical portmanteau statistic is usually defined as the sum of
squares of sample correlations, (see Brockwell and Davis, 1991). Such a
test will have poor power, in particular the power does not tend to 1 as the
sample size tends to �. That is, the process (7) is a particularly difficult
alternative to be detected by a portmanteau statistic.

Since the joint bivariate distributions at various lags for this alternative
process are not products of the marginals, one should expect a test based
on the process (1) to have some power against this type of product alter-
native. To this end, a simulation study is considered next. For the purpose
of this study assume that Xi is a N(0, 1) random variable. The simulation

TABLE V

Product Process Rejection Rates at 0.05 Level Test, at Various Lags k=1, 2, 3
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consists of generating sequences of observations from the alternative (12)
and noting the rejection rates for each of the Crame� r�von Mises and the
Kolmogorov�Smirnov functionals discussed earlier. This was done for
different sample sizes with 2000 Monte Carlo replicates. The estimated
critical values from Table IV were used and the study was conducted for
three different lags. Table V summarizes the results.

Since the product process is a 1-dependent sequence, the rejection rates
using the lag 2 or 3, processes should be and are 0.05. The lag 1 process
has good power rejecting the null hypothesis of independence. The
Crame� r�von Mises statistic does better than the Kolmogorov�Smirnov
statistic. The Crame� r�von Mises statistic has power 0.218 at sample size 100
and increases to power 0.986 at sample size 400. The Kolmogorov�Smirnov
statistic has somewhat smaller power, but still has good power for the product
process alternative. The rejection rates for the lag 2 and 3 processes are 0.05.
Thus the tests based on these lags also recognizes that the data is consistent
with a 1-dependent sequence. Again one should notice that a portmanteau

TABLE VI

Percentage of Rejection of Ut=bUt&1+$t
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statistic based on sample correlations has power of about 0.05 for all sample
sizes.

5.2. Comparison with Delgado's Test. In this section a simulation study
is carried out to compare the power of the tests statistics presented here to
that of Delgado (1996). For sake of comparison with Delgado (1996), the
simulation is done using his two alternatives.

First a sequence of observations following an AR(1) model Ut=bVUt&1+
$t is considered, then a second sequence where Ut=b$2

t&1+$t is used. In both
situations $t ; t�1 are independent N(0, 1) random variables. For each of
these studies, 5000 Monte-Carlo replicates are generated and the percent-
age of time the independence hypothesis is rejected is recorded. The cut-off
values for all tests were obtained by simulations. Table VI provides the
results for the first model and Table VII for the second model. It can be
seen that there is no clear winner, that is Delgado statistic performs a little
better for the AR(1) setting. But V, V� , V* or V� * are more powerful in
detecting the nonlinear alternative considered in the second study.

TABLE VII

Percentage of Rejection of Ut=b$2
t&1+$t
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6. PROOFS

This section provides the proofs of the results stated earlier in the
manuscript. Each subsection is devoted to one proof. Most of the results
stated in this paper involve the covariance function of the processes RA ,
which can be easily manipulated using the following extension of the
binomial formula.

Proposition 6.1. (Multinomial Formula) Let A be a nonempty set and
let u, v # R |A|. Then

:
B/A \`

i # B

u(i )+ \ `
j # A"B

v( j )+= `
i # A

(u(i )+v(i )). (8)

6.1. Proof of Proposition 2.1. Since for any i{ j, +i, j (t)=P(Ui�t (i ),
Uj�t( j ))&K (i )(t (i )) K ( j )(t( j )), 1�i, j� p, the property +i, j #0 yields the
independence of Ui and Uj . Next if [Ui ; i # B] are independent for all
B/Ip with |B|�k, then this is also true for all sets A/Ip with |A|=k+1,
because +A #0 implies that for all t # R p,

0=+A(t)

=Kp(tA)+ :
B/A, B{A

(&1) |A"B| Kp(tB) `
j # A"B

K ( j )(t( j ))

=Kp(tA)+ `
j # A

K ( j )(t( j )) :
B/A, B{A

(&1) |A"B|

=Kp(tA)& `
j # A

K ( j )(t( j )),

proving that [Ui ; i # A] are independent.

6.2. Proof of Theorem 2.1. First, define

R� n, A(t)=
1

- n
:
n

i=1

`
k # A

[I[= (k)
i �t(k)]&K (k)(t (k))] , (9)

where K (k) denote the k th marginal distribution of =1 . Observe that +A(t)
is the expectation of R� n, A(t). The proof of the Theorem proceeds as follows.
First it will be shown that the processes R� n, A(t), A/Ip converge to the
limiting processes RA 's given in the statement. Next it will be established
that supt |Rn, A(t)&R� n, A(t)| converges in probability to zero.
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For the asymptotic behaviour of R� n, A , note that

R� n, A(t)= :
B/A

(&1) |A"B| `
j # A"B

K ( j )(t( j ))

_
1

- n
:
n

i=1 _`
j # B

I[= ( j )
i �t ( j )]& `

j # B

K ( j )(t ( j ))& .

For every fixed B, the summand in the above expression is an empirical
process obtained from a sequence of independent and identically dis-
tributed random vectors and is therefore tight. Since there is only a finite
number of B, the sequence of processes (R� n, A) is therefore tight. The con-
vergence of the finite dimensional distributions to Gaussian limit is also
easy to establish. To complete the proof one just need to verify the expres-
sion of the covariance function. For, let A, B/Ip and let t, s # R p using
representation (9) one gets

Cov(R� n, A(s), R� n, B(t))={
0

`
j # A

[K(min(t( j ), s( j )))&K(t( j )) K(s( j ))]

if A{B

if A=B.

Finally, observe that

|Rn, A(t)&R� n, A(t)|= } :
B/A, B{<

(&1) |B| `
k # B

[K (k)
n (t(k))&K(t(k))]

_
1

- n
:
n

i=1

`
j # A"B

[I[= ( j )
i �t( j )]&K ( j )(t( j ))] }

� :
B/A, B{<

`
k # B

|K (k)
n (t(k))&K (k)(t(k))| |R� n, A"B(tA"B)|,

which goes to zero in probability by the Glivenko�Cantelli lemma and the
fact that R� n, A"B is tight by the above arguments.

6.3. Proof of Theorem 2.2. Once again, define

R� n, A(t)=
1

- n
:
n

i=1

`
k # A

[I[=(k)
i �t(k)]&K(t(k))] .

The proof proceeds exactly like the one of Theorem 2.1. First the
asymptotic behaviour of R� n, A is established, then it is shown that R� n, A(x)
and Rn, A are asymptotically equivalent.
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For the first step, let [.] denote the integer part, set

rn(t)= :
n& p[n�p]

h=1

1

- n
`
j # A

[I[= ( j )
p[n�p]+h�t( j )]&K(t ( j ))]

and observe that it is uniformly bounded by p�- n. Next

R� n, A(t)&rn(t)= :
p

h=1

1

- n
:

[n�p]&1

i=0

`
j # A

[I[= ( j )
pi+h�t( j )]&K(t ( j ))&

= :
p

h=1

:
B/A

(&1) |A"B| `
j # A"B

K(t( j ))

_
1

- n
:

[n�p]&1

i=0 _`
j # B

I[= ( j )
pi+h�t( j )]& `

j # B

K(t( j ))& .

In the above representation for every fixed h and B, the above sum over i
is a p dimensional empirical process of a sequence of i.i.d random vectors
and is therefore tight. Since there is only a finite number of B 's and h's, the
sequence (R� n, A) is therefore tight. To complete the proof one must consider
the finite dimensional distribution of R� n, A . First, note that for all
A{B # Ap , Cov(R� n, A(t), R� n, B(s))=0 and

Cov(R� n, A(t), R� n, A(s))= `
j # A

E[I[= (j )
1 �t(j )]&K(t(j ))]

_[I[= (j )
1 �s(j )]&K(s(j ))]

= `
j # A

[[(min(t(j ), s(j )))&K(t (j )) K(s(j ))] .

Moreover, for any fixed t1 , ..., tk the central limit theorem for p dependent
sequence (Billingsley, 1968) applies and yields the desired Gaussian limit.

For the second step, note that the same argument as that given in the
previous proof yields

|Rn, A(t)&R� n, A(t)|� :
B/A, B{<

`
k # B

|Kn, 1(t(k))&K(t(k))|

_|R� n, A"B(tA"B)|+
p

- n

which goes to zero in probability by the Glivenko�Cantelli lemma and
since R� n, A is tight by the first step.
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6.4. Proof of Corollary 2.2. Once more, redefine

R� n, A(t)=
1

- n
:
n

i=1

`
k # A

[I[e(k)
i �t(k)]&K(t (k))] .

To prove this corollary one needs to show that R� n, A converges to the
specified limit and that the processes Rn, A and R� n, A are asymptotically
equivalent, that is, supt |Rn, A(t)&R� n, A(t)| converges in probability to zero
as n goes to infinity.

The convergence of R� n, A to the specified limit is a consequence of
Theorem 2.3 and the representation

R� n, A(t)= :
B/A

(&1) |A"B| ;� *n, p (tB) `
i # A"B

K(t (i)).

For the asymptotic equivalence of Rn, A and R� n, A , the same argument as
in the proof of Theorem 2.1 yields

sup
t

|Rn, A(t)&R� n, A(t)|

� :
B/A, B{<

`
k # B

|K� n, 1(t(k))&K(t (k))| |R� n, A"B(tA"B)|+
p

- n

=
1

n |B|�2 :
B/A, B{<

`
k # B

|;� *n, 1(t(k))| |R� n, A"B(tA"B)|+
p

- n

which goes to zero in probability, since by Theorem 2.3, ;� *n, p is tight and
by the above argument R� n, A"B is tight.

6.5. Proof of Proposition 2.2. First it shall be shown that the
hypotheses of Theorem 2.3 are satisfied. With the regression setting, one
easily verifies that Condition (R1) is verified whenever E(&Z&) is finite.
Condition (R3) holds if U admits a continuous bounded density k. To
show the first part of (R2) write

:q, n, j, � b g(s, t)

&
1

- n
:

[(n�p]&1

i=0
_�(g(Xpi+q+ j))

_I[= ( j )
pi+q�t ( j )+sr(Xpi+q+ j)] `

k{ j

I[= (k)
pi+q�t(k)]

&E {�(g(Xj)) I[= ( j )
1 �t( j )+sr(Xj)] `

k{ j

I[= (k)
1 �t (k)]=& ,
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and observe that

|:n, j, � b g(s�- n, t)&:n, j, � b g(0, t)|

� :
p&1

q=0

|:q, n, j, � b g(s�- n, t)&:q, n, j, � b g(0, t)|.

That is, (3) will follow if

sup
t # C

|:q, n, j, � b g(s�- n, t)&:q, n, j, � b g(0, t)|

goes to zero in probability for each q=0, ..., p&1. Since g(Y, Z)= g(Z) is
independent of U and because R1 and R3 are satisfied the above follows
from Lemma 7.2 of Ghoudi and Re� millard (1998b) whenever E(&Z&2) is
finite. The second part of (R2) is quite easy if an and bn are the least square
estimates of a and b. To complete the proof of this proposition it suffices
to show that the representation of R� A given in Corollary 2.2 reduces to the
RA 's defined in Theorem 2.2. Using the definition of ;� p one obtains

R� A(t)= :
B/A

(&1) |A"B| ;� p(tB) `
i # A"B

K(t (i ))

= :
B/A

(&1) |A"B| ;p(tB) `
i # A"B

K(t(i ))

& :
B/A

(&1) |A"B| :
p

j=1

+ j (tB, IH) `
i # A"B

K(t (i ))

=RA(t)+ :
p

j=1

[A+B$E(Z)]k(t ( j ))

_ `
i # A"[ j]

K(t(i )) :
B/A"[ j]

(&1) |A| &1&|B|

=RA(t).

6.6. Proof of Proposition 3.3. Note that DA(s)&W(sA)=�B/A, B{A

(&1) |A"B| W(sB) >j # A"B s( j ), which is KA-measurable. The rest of the proof
is achieved in two steps. In the first Step, one must prove that the process
DA(s) is orthogonal to W(tC), for any t # [0, 1] p and for any C/A, C{A.
In the second Step one shows that DA and D� A have the same covariance
functions.
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Step 1. Let C be a subset of [1, ..., p].

E[DA(s) W(tC)]= :
B/A

(&1) |A"B| `
i # A"B

s(i )

_ `
i # B & C

(s(i ) 7 t(i )) `
i # B"C

s(i ) `
i # C"B

t(i )

= :
A0/A & C

:
A1/A"C

(&1) |A|&|A0|&|A1| `
i # A"A0

s(i )

_ `
i # A0

s(i ) 7 t(i ) `
i # C"A0

t (i )

= :
A0/A & C

(&1) |C"A0| `
i # A"A0

s(i ) `
i # A0

s(i ) 7 t(i)

_ `
i # C"A0

t(i ) :
A1/A"C

(&1) |A"C|&|A1|

={`
i # A

(s(i ) 7 t(i )&s(i )t(i )) `
i # C"A

t (i ),

0,

A/C

otherwise.

It follows that DA(s)=W(sA)&E[W(sA) | KA].

Step 2. This step is dedicated to the computation of the covariance
between DA and DB . Straightforward computations show that

Cov[DA(s), DB(t)]= :
B0/B

(&1) |B"B0| Cov[DA(s), W(tB0
)] > i # B"B0

t(i ).

(10)

From Step 1, this is equal to zero unless A/B, Inverting the roles of A
and B in the above implies that Cov[DA(s), DB(t)]=0 if A{B. For
A=B, Equation (10) reduces to

Cov[DA(s), DA(t)]=Cov[DA(s), W(tA)]

= `
i # A

(s(i ) 7 t(i )&s(i )t(i ))=CA(s, t).

6.7. Proof of Lemma 4.1. First notice that using Donsker's invariance
principle (Donsker, 1952, or Billingsley, 1968), � R2

n, A(t) dKp(t) converges
in distribution to � R2

A(t) dKp(t)=! |A| . Next, using the fact that if K is
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continuous Tn, A is distribution free and repeating the argument of the
proof of the Lemma in Section 2 of Kiefer (1959) one concludes that

| R2
n, A(t) dKn, p(t)&| R2

n, A(t) dKp(t)

converges in probability to zero.
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