On the Approximation of Singular Integrals of Cauchy Type

Mostefa Nadir
Department of Mathematics
University of M’sila
28000 ALGERIA
E-mail: mostefanadir@yahoo.fr and mostefa.nadir@univ-msila.dz

Abstract

The aim of this work is to approximate numerically the singular integral of Cauchy type on a piecewise smooth curve by expressions based on the cubic spline, which is one of the recent ideas in numerical analysis.

AMS Subject Classification: Primary 45D05, 45E05, 45L05; Secondary 45L10, 65R20.

Key words: Singular integral, Interpolation, Hölder space and Hölder condition, Cubic spline.

Let Γ be a a piecewise regular curve, in other words, Γ consists of a finite number of smooth non-intersecting contours in a complex plane, where Γ can be represented in the form

$$t(s) = x(s) + iy(s), \quad a \leq s \leq b, \quad a, b \in \mathbb{R},$$

where $x(s)$ and $y(s)$ are continuous functions in the interval $[a, b]$ with the following property:

The functions $x(s)$ and $y(s)$ have continuous first derivatives $x'(s)$ and $y'(s)$ within the interval $[a, b]$, including the endpoints, and these derivatives are never simultaneously zero.

Let $F(t_0)$ be a singular integral defined by

$$F(t_0) = \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(t)}{t - t_0} dt, \quad t_0 \in \Gamma. \quad (1)$$

For the existence of the principal value for a given density $\varphi(t)$, we will need more than mere continuity, in other words, the density $\varphi(t)$ has to satisfy the Hölder condition ($\varphi \in H(\mu)$) [2].
Let us now consider an arbitrary natural number N, generally we take it large enough, we divide the interval $[a, b]$ into N subintervals of $[a, b] = \{ a = s_0 < s_1 < \cdots < s_N = b \}$ called I_i to I_N, so that $I_{\sigma+1} = [s_\sigma, s_{\sigma+1}]$. Also define $h_{\sigma+1} = s_{\sigma+1} - s_\sigma$, noting that the subintervals need not be of equal length.

But, in our case and for reasons of programming one takes the subintervals of the same length, into N equal parts by the points

$$ s_\sigma = a + \sigma \frac{l}{N}, \quad l = b - a, \quad \sigma = 0, 1, 2, \ldots, N. $$

Denoting $t_\sigma = t(s_\sigma)$ and using the smoothness of Γ, we can take $h_{\sigma+1} = t_{\sigma+1} - t_\sigma$ [3, 7] and assuming that $\sigma, \nu = 0, 1, 2, \ldots, N - 1$, we consider now that the point t_0 belongs to the arc $t_{\nu}t_{\nu+1}$, where t_{ν} denotes the smallest arc with ends t_ν and $t_{\nu+1}$ [3, 6].

For the arbitrary numbers σ, ν from 1, 2, \ldots, $N - 1$ we define the function $\beta_{\sigma\nu}(\varphi; t, t_0)$ dependent on φ, t and t_0 by

$$ \beta_{\sigma\nu}(\varphi; t, t_0) = (S_3(\varphi; t, \sigma) - S_3(\varphi; t_0, \nu)) \frac{2(t - t_0)}{(t_\sigma - t_0) + (t_{\sigma+1} - t_0)}, \quad (2) $$

where the expression $S_3(\varphi; t, \sigma)$ denotes the cubic spline to the function density $\varphi(t)$ on the curve Γ given by the following formula

$$ S_3(\varphi; t, \sigma) = \frac{M_\sigma(t_{\sigma+1} - t)^3}{6h_{\sigma+1}} + \frac{M_{\sigma+1}(t - t_\sigma)^3}{6h_{\sigma+1}} $$

$$ + \left(\varphi(t_\sigma) - \frac{M_\sigma h_{\sigma+1}^2}{6} \right) \frac{t_{\sigma+1} - t}{h_{\sigma+1}} $$

$$ + \left(\varphi(t_{\sigma+1}) - \frac{M_{\sigma+1} h_{\sigma+1}^2}{6} \right) \frac{t - t_\sigma}{h_{\sigma+1}} $$

and the density φ still represents a given function on the curve Γ of class $H(\mu)$.

Seeing that the equality $[(t_\sigma - t_0) + (t_{\sigma+1} - t_0)] = 0$ is possible only when $\sigma = \nu$, in this case we take the function $\beta_{\sigma\sigma}(\varphi; t, t_0)$ omitting the expression $\frac{2(t - t_0)}{(t_\sigma - t_0) + (t_{\sigma+1} - t_0)}$, as given by

$$ \beta_{\sigma\sigma}(\varphi; t, t_0) = S_3(\varphi; t, \sigma) - S_3(\varphi; t_0, \sigma). \quad (3) $$

It is simple to see that, for N large enough, the limit of the expression $\frac{2(t - t_0)}{(t_\sigma - t_0) + (t_{\sigma+1} - t_0)}$ is equal to the unit. However, the expressions (2) and (3) are almost equal, so we can confirm that the function $\beta_{\sigma\nu}(\varphi; t, t_0)$ is defined for all values of the variables $t, t_0 \in \Gamma$, and almost continuous at all points, for all $\sigma, \nu = 0, 1, \ldots, N - 1$.

Now we define the function

$$ \psi_{\sigma\nu}(\varphi; t, t_0) = \left\{ \begin{array}{ll} \varphi(t_\sigma) + \beta_{\sigma\nu}(\varphi; t, t_0), & t \in \tau_\sigma \tau_{\sigma+1}, \; t_0 \in \tau_{\nu} \tau_{\nu+1}, \\
\sigma = 0, 1, \ldots, N - 1; & \nu = 0, 1, \ldots, N - 1. \end{array} \right. $$
On the approximation of singular integrals of Cauchy type

It can be easily seen that the function $\beta_{\sigma \nu}(\varphi; t, t_0)\) contains $(t - t_0)$ as a factor, for all $\sigma, \nu = 0, 1, \ldots, N-1$, whence, the function $\psi_{\sigma \nu}(\varphi; t, t_0)$ admits the following representation

$$
\psi_{\sigma \nu}(\varphi; t, t_0) = \varphi(t_0) + (t - t_0)Q_{\sigma \nu}(\varphi; t, t_0).
$$

(4)

After this construction, one replaces the singular integral

$$
F(t_0) = \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(t)}{t - t_0}\, dt
$$

by the following ones

$$
S(\varphi; t_0) = \frac{1}{\pi i} \int_{\Gamma} \frac{\psi_{\sigma \nu}(\varphi; t, t_0)}{t - t_0}\, dt = \varphi(t_0) + \frac{1}{\pi i} \int_{\Gamma} Q_{\sigma \nu}(\varphi; t, t_0)\, dt.
$$

(5)

Let us now cite the theorem concerning the accuracy of approximation of singular integrals (1) by expressions of the form (5).

Theorem Let Γ be a rectifiable simple path of finite length and let φ be a density satisfying the Hölder condition $(H(\mu))$, then the following estimation

$$
| F(t_0) - S(\varphi; t_0) | \leq \frac{C_N}{N^\mu}, \quad N > 1,
$$

holds, where the constant C_N depends only of the curve Γ. Furthermore, if we suppose that φ and its first derivatives are continuous and

$$
\max_{t \in \Gamma} | \varphi^{(4)}(t) | = M,
$$

then one has

$$
| F(t_0) - S(\varphi; t_0) | \leq \frac{C_N}{N^{\mu+4}}, \quad N > 1.
$$

For the sake of simplicity, we try to prove only the first estimate. Indeed, for $t \in t_\sigma t_{\sigma + 1}$ and $t_0 \in t_\nu t_{\nu + 1}$, we consider

$$
\varphi(t) - \psi_{\sigma \nu}(\varphi; t, t_0) = \varphi(t) - \{ \varphi(t_0) + \beta_{\sigma \nu}(\varphi; t, t_0) \}.
$$

For the sake of simplicity we take the cubic spline as a polynomial of degree three characterized by its moments M_{σ},

$$
S_3(\varphi; t, \sigma) = \alpha_{\sigma} + \beta_{\sigma}(t - t_\sigma) + \gamma_{\sigma}(t - t_\sigma)^2 + \delta_{\sigma}(t - t_\sigma)^3 \quad \text{for } t \in [t_\sigma, t_{\sigma + 1}],
$$

where

$$
\alpha_{\sigma} = \varphi(t_\sigma),
\beta_{\sigma} = \frac{\varphi(t_{\sigma + 1}) - \varphi(t_\sigma)}{h_{\sigma + 1}} = \frac{2M_{\sigma} + M_{\sigma + 1}}{6}h_{\sigma + 1},
\gamma_{\sigma} = \frac{M_{\sigma}}{2},
\delta_{\sigma} = \frac{M_{\sigma + 1} - M_{\sigma}}{6h_{\sigma + 1}}.
$$
For all \(t \in t_{\sigma}t_{\sigma + 1} \) and \(t_0 \in t_{\nu}t_{\nu + 1}, \sigma \neq \nu \), we can write
\[
\varphi(t) - \psi_{\sigma\nu}(\varphi; t, t_0) = \varphi(t) - \varphi(t_0) \\
- \{ \varphi(t_{\sigma}) + \beta_{\sigma}(t - t_{\sigma}) + \gamma_{\sigma}(t - t_{\sigma})^2 + \delta_{\sigma}(t - t_{\sigma})^3 \\
- \varphi(t_{\nu}) - \beta_{\nu}(t - t_{\nu}) - \gamma_{\nu}(t - t_{\nu})^2 \\
- \delta_{\nu}(t - t_{\nu})^3 \} \frac{2(t - t_0)}{(t_{\sigma} - t_0) + (t_{\sigma + 1} - t_0)}
\] (6)

If \(\sigma = \nu \), we can easily put our expression in the form
\[
\varphi(t) - \psi_{\sigma\nu}(\varphi; t, t_0) = \varphi(t) - \varphi(t_0) \\
- \{ \beta_{\sigma} + \gamma_{\sigma}((t - t_{\sigma}) + (t_0 - t_{\sigma})) + \delta_{\sigma}((t - t_{\sigma})^2 \\
+ (t - t_{\sigma})(t_0 - t_{\sigma}) + (t_0 - t_{\sigma})^2 \} (t - t_0).
\] (7)

Taking into account the expressions (6), (7) above, we have
\[
\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(t) - \psi_{\sigma\nu}(\varphi; t, t_0)}{t - t_0} dt = \sum_{\sigma = 0}^{N-1} \frac{1}{\pi i} \int_{\Gamma} \left\{ \frac{\varphi(t) - \varphi(t_0)}{t - t_0} \\
- \left[\varphi(t_{\sigma}) + \beta_{\sigma}(t - t_{\sigma}) + \gamma_{\sigma}(t - t_{\sigma})^2 + \delta_{\sigma}(t - t_{\sigma})^3 \\
- \varphi(t_{\nu}) - \beta_{\nu}(t - t_{\nu}) - \gamma_{\nu}(t - t_{\nu})^2 \\
- \delta_{\nu}(t - t_{\nu})^3 \right] \frac{1}{t_{\sigma} + t_{\sigma + 1} - t_0} \right\} dt
\] (8)

Passing now to the estimation of the expression (8), we have for \(t_0 \in t_{\nu}t_{\nu + 1} \) and \(\sigma \neq \nu \) the relation
\[
\left| \sum_{\sigma = 0}^{N-1} \int_{t_{\sigma}t_{\sigma + 1}} \left\{ \frac{\varphi(t) - \varphi(t_0)}{t - t_0} - \left[\varphi(t_{\sigma}) - \varphi(t_0) + \beta_{\sigma}(t - t_{\sigma}) \right. \\
- \beta_{\nu}(t - t_{\nu}) \left. \right] \frac{1}{t_{\sigma} + t_{\sigma + 1} - t_0} \right\} dt \right| = O(N^{-\mu}).
\]

Naturally, this estimation given above is obtained using expressions of \(\beta_{\sigma} \) and \(\varphi \in H(\mu) \) [2]. Besides, it is easy to see that
\[
\left| \sum_{\sigma = 0}^{N-1} \int_{t_{\sigma}t_{\sigma + 1}} \left\{ \gamma_{\sigma}(t - t_{\sigma})^2 - \gamma_{\nu}(t_0 - t_{\nu})^2 \right\} \frac{1}{t_{\sigma} + t_{\sigma + 1} - t_0} dt \right| = O(N^{-2})
\]
and
\[\left| \sum_{\sigma=0}^{N-1} \int_{t_{\sigma}t_{\sigma+1}} \{ \delta_\sigma (t - t_\sigma)^3 - \delta_\nu (t_0 - t_\nu)^3 \} \frac{1}{t_{\sigma} + t_{\sigma+1} - t_0} \, dt \right| = O(N^{-2}). \]

Further, using again the condition \(\varphi \in H(\mu) \) and the condition of smoothness of \(\Gamma \), we have
\[\left| \int_{t_\nu t_{\nu+1}} \frac{\varphi(t) - \varphi(t_0)}{t - t_0} \, dt \right| \leq A \int_{s_\nu}^{s_{\nu+1}} |s - s_0|^{\mu-1} \, ds = O(N^{-\mu}). \]

And again on the base of \(\varphi \in H(\mu) \) for the expression of \(\beta_\nu \), we can easily come to
\[\left| \int_{t_\nu t_{\nu+1}} \left\{ \beta_\nu + \gamma_\nu ((t - t_\nu) + (t_0 - t_\nu)) + \delta_\nu ((t - t_\nu)^2 + (t - t_\nu)(t_0 - t_\nu) + (t_0 - t_\nu)^2) \right\} \, dt \right| = O(N^{-\mu}). \]

Numerical experiments: Using our approximation, we apply the algorithms to singular integrals and we present results concerning the accuracy of the calculations. In these numerical experiments each table \(I \) represents the exact value of the singular integral and \(\bar{I} \) corresponds to the approximate calculation produced by our approximation at points of interpolation.

Example Consider the singular integral
\[I = F(t_0) = \frac{1}{\pi i} \int_\Gamma \frac{\varphi(t)}{t - t_0} \, dt, \]
where the curve \(\Gamma \) denotes the unit circle and the function density \(\varphi \) is given by the following expression
\[\varphi(t) = \frac{-2t^2 + 8t + 12}{4t(t^2 - t - 6)}. \]

\[
\begin{array}{|c|c|c|c|}
\hline
N & \| I - \bar{I} \|_1 & \| I - \bar{I} \|_2 & \| I - \bar{I} \|_\infty \\
\hline
20 & 1.8246599E-02 & 9.1665657E-03 & 5.0822943E-03 \\
40 & 3.6852972E-03 & 1.9270432E-03 & 1.5697196E-03 \\
60 & 2.3687426E-03 & 1.1880117E-03 & 6.6070486E-04 \\
\hline
\end{array}
\]
References

