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Abstract

All forecast models, whether they represent the state of the weather, the spread
of a disease, or levels of economic activity, contain unknown parameters. These
parameters may be the model’s initial conditions, its boundary conditions, or other
tunable parameters which have to be determined. Four dimensional variational data

assimilation (4D-Var) is a method of estimating this set of parameters by optimizing
the fit between the solution of the model and a set of observations which the model
is meant to predict. The four dimensional nature of 4D-Var reflects the fact that
the observation set spans not only three dimensional space, but also a time domain.

Although the method of 4D-Var described in this report is not restricted to any
particular system, the application described here has a Numerical Weather Predic-
tion (NWP) model at its core, and the parameters to be determined are the initial

conditions of the model.

The purpose of this report is to give a survey covering assimilation of Doppler
radar wind data into a high-resolution NWP model. Some associated problems, such
as sensitivity to small variations in the initial conditions or due to small changes in
the background variables, and biases due to nonlinearity are also studied.

Key words: NWP, Data Assimilation, 3D-Var, 4D-Var, Adjoint, Doppler Radar,
Sensitivity, Nonlinear Bias.
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1 Introduction

Weather forecast models use observations and numerical methods to represent
the atmosphere. However, to predict weather more than 24 hours in advance,
forecasters rely on Numerical Weather Predictions (NWPs) that are gener-
ated by integrating the governing dynamical equations in time. All possible
atmospheric information is collected for a given time, and then diagnosed to
produce regular descriptions of the atmosphere at that time. This analysis is
applied, as the initial conditions, to the initial value differential equations that
reflect the physical behaviour of the atmosphere, integrating those equations
to predict future events. One of the major challenges in NWP is obtaining
accurate initial conditions. A small error in the initial conditions affects the
forecast in space and time.

Doppler radars, which provide observations of radial velocity and reflectivity
of hydrometeors with spatial resolutions of a few kilometers every 3-10 min
both in clear air and inside heavy rainfall regions, are practically the only
instrument capable of sampling the four-dimensional structure of severe storm
flows. However, consideration needs to be given to identify the optimum way
of assimilating these observations into numerical weather prediction models.
In this study we survey these needs, and some methods that have been used
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in assimilating such data to produce as accurately as possible the initial state
of the atmospheric model.

Of course, the fact that weather predictions may be wrong demonstrates that
there are problems with the models, the initial conditions, or both. The error
in NWP comes from two main sources: One is the inherent inaccuracies in the
models used to describe the atmosphere. The second comes from the sensitivity
of the output to small changes in the initial conditions [22]; further discussion
of these issues is given in §6.

The goal of Four Dimensional (space and time) Data Assimilation (4DDA) is
to incorporate actual observations (satellite, radar, ship, land surface, balloon)
into mathematical and computational models in order to create a unified,
complete description of the atmosphere. This can be used by community-wide
scientists to study important phenomena associated with environmental global
change; such as greenhouse-gas research, ozone-loss research, or atmospheric
pollution. In other words, 4DDA is a process whereby a state forecast and
observations are combined to form a best estimate, or analysis of the state.

Optimization of the NWP initial conditions can be regarded as a class of in-
verse problem. Indeed, we assume that the forward problem is soluble, i.e.
given a set of initial conditions, a set of forward models (governing equations)
can be run to predict the observations. The most important forward model is
the core NWP forecast model which gives the evolution in time of the model’s
state. Examples of such predicted observations commonly used in a NWP
context are the meteorological variables (wind, temperature and humidity)
interpolated from the model grid to the position of an instrument (in a field
station, or on a sonde or aircraft). Of course, the predicted observations may
or may not match the actual observations; this depends on the choice of initial
conditions (and on the suitability of the models). We are here interested in
solving the inverse problem which can be posed as follows: what set of ini-
tial conditions will seed the models to best predict the known observations?
Such inverse problems are in general much harder to solve than the forward
analogue. Indeed, the inverse problem relies on the existence of the forward
models themselves which are run many times in an iterative fashion to give
the analysis (see [28,35]).

Although a considerable progress has been made in assimilation of Doppler
radar winds, this area remains important and demands further investigations.
This report carries out a survey of four-dimensional variational data assim-
ilation through adjoint methods (see §2 & §3). An extension to assimilating
Doppler radar winds into atmospheric model is presented in §4, and numeri-
cal implementation is discussed in §5. Issues associated with data assimilation
and NWP, such as sensitivity analysis and nonlinear bias, are also considered
(see §6).
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2 What is Data Assimilation?

Recently, there has been growing interest in data assimilation in NWP (see,
e.g., [5,16]). As indicated in the introduction to this report, NWP is an initial-
boundary value problem: given an estimate of the present state of the at-
mosphere, the model simulates (forecasts) its evolution. The problem of de-
termining the initial conditions for a forecast model is very important and
complex, and has become a science in itself. Clearly, specification of proper
initial conditions and boundary conditions for the numerical dynamical mod-
els is essential in order to have a well-posed 3 problem and then a good forecast
model. Hence Data assimilation can be described as the process through which
all the available information is used in order to determine, as accurately as
possible, the state of the atmospheric flow on a regular grid. Basically, current
atmospheric data assimilation systems use two sources of data: observations,
and a recent forecast valid at the current time. The most recent forecast is
called the background (sometimes called the ”first guess”) field because it is
the best guess of the state of atmosphere before any observations are taken.
Data assimilation for NWP uses the average of two pieces of data 4 represent-
ing the observations and the background 5 , combined with the atmospheric
model, in order to produce the best possible model initial state.

There are two broad classes of data assimilation methods: sequential data
assimilation and variational data assimilation. Firstly, sequential data assimi-
lation involves an analysis produced by combining a forecast background and
the observation available at a given time. The numerical method is then inte-
grated forward to the next observation time, starting from the analysis initial
conditions. Each new observational element is used for correcting the last es-
timate, so that the best fit of the model solution to observations is achieved
at the end of the assimilation period through the propagation of information
from the past in a sequential manner. Secondly, the variational assimilation
seeks an optimal fit of the model solution to observations over an assimilation
period by adjusting the estimation states in this period simultaneously. To
achieve this goal, a numerical model is used to link the state of the atmo-
sphere at different times. The estimated states over the assimilation period
are influenced by all the observations distributed in time. The information is
propagated both from the past into the future and from the future into the
past; we shall discuss this further in §3.

The variational approach has been extensively used in data assimilation for
meteorological models and shows promising results for NWP [13,14,34]. This

3 A well-posed inital/boundary problem has a unique solution that depends con-
tinuously of the initial/bounday conditions.
4 Each piece of data should be weighted according to its accuracy.
5 In most cases the data is sparse and indirectly related to the model variables.
In order to make the model a well posed problem it is necessary to rely on some
background information in the form of the a priori estimate of the model state.
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approach includes three-dimensional variational data assimilation (3D-Var)
and the four-dimensional variational data assimilation (4D-Var). The 4D-Var
(four dimensional variational) searches for an optimal set of model parameters
(e.g., optimal initial state of the model) which minimizes the discrepancies
between the model forecast and time distributed observational data over the
assimilation window. A practical implementation of the minimization process
requires a fast and accurate evaluation of the gradient of a cost function which
may be provided by adjoint modelling; we shall discuss this further in §3.1.

2.1 The cost function

The assimilation problem includes unknown errors that come from the model,
the background, and the observations. Assume that these errors are indepen-
dent, then the total probability density function (pdf) is a product of the
component pdf’s of the model Pm, the background Pb, and the observation Po

P = PmPbPo ≈ exp(− log Pm − log Pb − log Po). (1)

The maximum of the probability density function can be expressed in term of
a cost function J as follows:

minJ = min(− log Pm − log Pb − log Po) ≡ min(Jm + Jb + Jo). (2)

This means that the maximum likelihood approach to solving the inverse
problem requires the minimization of a cost function (see next). A detailed
description of the various assumptions used by data assimilation techniques,
including probabilistic interpretation may be found in [5].

2.2 Sequential Assimilation– 3D-Var

If all the variable information and associated uncertainty are given and the
errors are assumed to be an unbiased Gaussian distribution, an idealized equa-
tion for finding the optimal estimate of the atmospheric flow can be derived
based on Bayesian statistics where the probability density functions are given
by

Pb =
1

√

2π|B|
exp

(

−
1

2
(xb − x)TB−1(xb − x)

)

, (3)

Po =
1

√

2π|E|
exp

(

−
1

2
(y −H[x])TE−1(y −H[x])

)

. (4)
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If we ignore the model’s error, the statistical cost function J [x] takes the form
(see [21])

J [x] =Jb + Jo

=
1

2
(xb − x)TB−1(xb − x) +

1

2
(y −H[x])TE−1(y −H[x]), (5)

where x denotes the analysis vector, xb the background vector, and y the ob-
servation vector. The first term Jb is a measure of the distance of the initial
state from the background estimate and the second term Jo is a measure of the
distance between the model trajectory and observations over the assimilation
window. B and E are background and observation error covariance matrices,
respectively (T denotes the matrix transpose). Since x and y are different
variables and on different grids, the observation operator H represents an an-
alytical function 6 that relates the model variables to the observation variable
and a transformation between the different grid meshes 7 . It should also be
noted that radar observations are concentrated within a certain area of the
radar, and data voids are often present in the model domain. A background
estimate xb can be used to fill these data voids and to provide a first guess for
the minimization procedure.

The nonlinear observation operation H can be linearized as

H[x + δx] = H[x] + Hδx. (6)

The matrix H, denoted the linear observation operator with elements hij =
∂Hi/∂xj, transforms vectors in model space into their corresponding values in
observation space. Its transpose or adjoint HT transforms vectors in observa-
tion space into vectors in model space. Therefore, we can expand the second
term of (5), the observation differences, assuming that the analysis is a close
approximation to the truth and therefore to the observation. Linearizing H
around the background value xb gives

y −H[x] = y −H[xb + (x − xb)] = (y −H[xb]) − H(x − xb). (7)

The analytical equation (exact solution) that defines the minimum of J (the
best analysis x = xa) can be obtained by taking the first order derivative of
J and setting it to zero (∇xJ [xa] = 0), which yields the best analysis:

6 for instance, the relation between Cartesian components u, v, w of the wind ve-
locity from the model and the radial velocity vr from Doppler-radar observations.
7 In practice there are fewer observations than variables in the model and they are
irregularly disposed, hence the only way to compare the observations with the state
vector is through the use of an observation operator H.
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xa = xb + W(y −H[xb]) (8)

where

W = BHT (HBHT + E)−1. (9)

The vector (y−H[xb]) in Eq. (8) is often referred to as the observation innova-
tion vector (or departure vector) and the matrix W is called the gain matrix.
Eq. (8) shows that the analysis is the sum of prior information and a correc-
tion term, which is proportional to the difference between the new information
brought in from the observation and the prior information (background). Di-
rectly solving (8) & (9) is not an easy task due to the large dimension of the
matrices involved. Simplification and approximation needs to be carried out
in order to reduce the computation. Different approximations lead to different
techniques.

In practice, the 3D-Var technique attempts to find an approximate solution
of the minimum of Eq. (5) by iteratively minimizing the cost function. The
commonly used minimization algorithm is a form of conjugate gradient or
quasi-Newton iterative methods (see [11]).

The 3D-Var cost function (5) can be written as an incremental formula 8

J [δx] =
1

2
δxTB−1δx +

1

2
[Hδx − d]TE−1[Hδx − d], (10)

where δx = (xa−xb) is the analysis increment vector in the analysis space, and
d = (y−H[xb]) is the observational innovation vector in the observation space.
The model state vector x may include the wind components, temperature,
humidity and the surface pressure.

In the iterative procedure, the cost function and its gradient are computed at
each iteration and used to define the best descending direction towards the op-
timal direction. The error covariance of the forecast background B are usually
modelled based on some simple hypotheses on the shape and spatial extension
of the pre-assumed covariance functions. Gao et al. [8] applied this technique
to the convective-scale and demonstrated its potential in wind retrieval from
Doppler-radar observations; see also [19].

We may note from Eq. (8) an important property: the result obtained by the
3D-Var approach (finding the optimal analysis that minimizes the distance to
the observations weighted by the inverse of the error variance) is equivalent to
the result obtained by the Optimal Interpolation (OI) approach (finding the
optimal weights that minimizes the analysis error variance through a least

8 Minimizing the cost function in a full forecast resolution is sometimes out of the
bounds of computational divisibilities. Thus variational problem can be solved at
lower resolution using the incremental formula.
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squares approach) [21]. However, in the 3D-Var approach the control variable
is the analysis xa, not the weights as in OI. Both of these methods do not
include the evolution of the model in the assimilation. Despite the fact that
there is a formal equivalence between 3D-Var and OI techniques, there are
some advantages of the 3D-Var over the OI. In 3D-Var, the cost function is
minimized using global minimizing algorithms, as a result it makes unneces-
sary many of simplifying approximations required by OI. In addition, there is
no data selection, in 3D-Var, all available data are used simultaneously. This
avoids jumpiness in the boundaries between regions that have selected differ-
ent observations. For further discussions and comments about variational and
OI techniques, we may refer to [16].

3 Variational Assimilation–4D-Var

The 4D-Var assimilation technique can be considered as an extension of 3D-
Var in such a way that all observations distributed within a time window
(0 ≤ i ≤ N) are taken into account in defining the cost function. A numerical
model that is supposed to represent the evolution of the estimate vector x is
used as a priori information. Assume the nonlinear model equation is given in
the form

∂x

∂t
= F (x), (11)

where F stands for the mathematical functions involved in the dynamical
nonlinear model. If the observational error covariance E is dependent of time,
the cost function which measures the misfit between the model variables and
both a prior estimate (background) and the observations is reformulated in
4D-Var to take the form

J [x(t0)] =
1

2
[xb(t0) − x(t0)]

TB−1[xb(t0) − x(t0)]

+
1

2

N
∑

i=0

[y(ti) −H[x(ti)]]
TE−1

i [y(ti) −H[x(ti)]] (12)

=Jb + Jo, J [xa(t0)] = min
x(t0)

J [x(t0)].

The control variable (the variable with respect to which the cost function is
minimized) is the initial state of the model x(t0), whereas the analysis at the
end of the time interval is given by integration (t0 ≤ tn ≤ tN) of the nonlinear
model (11) to give

x(tn) = M [x(t0)]. (13)

Thus the model is used as a strong constraint, i.e., the analysis has to satisfy
the model equations. In other words, 4D-Var seeks an initial condition such
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that the forecast best fits the observations within the assimilation interval.
Thus 4D-Var analysis is performed using a continuous cycling procedure. The
length of the assimilation cycle is [0, 2τ ], consisting of assimilation period
[0, τ ] and forecasting period [τ, 2τ ] (see Fig. 1). An optimal initial condition
is obtained from each cycle using data within the assimilation period. The
analysis fields at the final time of the assimilation window are also used as
first guess fields and background for the next analysis sequence. We may note
that in 3D-Var, we apply the assimilation at only one point, say at t = 0 or
t = τ/2.

In practice, solving the minimization problem (12) can represent a major com-
puting problem. Iterative minimization schemes require the estimation of the
cost function gradient, ∇J , with respect to the control variable. The first
term, Jb, of the cost function is not a complicated term. The evaluation of the
second term Jo would seem to require N integrations of the forecast model
from the analysis time to each of the observation times i, and even more for
the computation of the gradient ∇Jo. Consequently, due to the complex na-
ture of the 4D-Var for dealing with the large dimension problems, the adjoint
technique is introduced to efficiently calculate the gradient of the cost function
with respect to the control variable.

Truth
Observations
First guess
Analysis

Truth
Observations
First guess
Analysis

3D−Var 

x
1
 

4D−Var 

3D−Var 

t 
0 τ 2τ 

x
2
 

t 
0 τ 2τ 

4D−Var 

τ/2 

τ/2 

Assimilation window Forecasting period 

Fig. 1. Adjusting the initial conditions of the models using 3D-Var/4D-Var for the
best fit. Every cycle, 2τ , a 3D-Var/4D-Var is performed to assimilate the most recent
observations in [0, τ ], using a segment of the previous forecast as background. This
updates the initial model trajectory for the next cycle. This graph plots one solution of
Lorenz equations, with true observations generated from a model run.
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3.1 Adjoint method for minimizing the cost function

Adjoint methods are increasingly being developed for use in meteorology, data
assimilation and sensitivity analysis. In data assimilation tasks, the adjoint
model is used to compute (in reverse mode) the gradient of the cost function
with respect to the control variable [10,17]. The main goal of using the adjoint
method is to avoid repeat computing of the gradient of the cost function every
iteration of the 4D-Var minimization routine during a forward integration. It
has the advantages, especially for large systems, that the adjoint model reduces
the run over time, and the computed gradient is exact.

Remark 1 If we have a quadratic function F (x) = 1
2
xTAx, where A is a

symmetric matrix, then ∇F (x) = Ax, and δF = (∇F )T δx.

Using the above Remark, the gradient of the background component of (12)
Jb with respect to x(t0) is given by

∇Jb = B−1[x(t0) − xb(t0)] ≡ B−1δx(t0). (14)

However the gradient of the observational term of (12) Jo is more complicated
because, x(ti) is a function of the control variable, x(ti) = Mi[x(t0)].

Remark 2 For a given nonlinear model (13), if we introduce a perturbation
in the initial conditions δx(t0), neglecting terms of order [δx(t0)]

2, then

x(t) + δx(t) = M [x(t0) + δx(t0)] ≈ M [x(t0)] +
∂M

∂x
δx(t0) (15)

so that the initial perturbation evolves like

δx(t) = L(t0, t)δx(t0). (16)

The Jacobian L(t0, t) =
∂M

∂x
is the tangent linear operator that propagates

the perturbation from t0 to t. If there are N steps between t0 and tN = t, this
matrix is equal the product of matrices of corresponding each time step:

L(t0, tN) = L(tN−1, tN) . . .L(t1, t2)L(t0, t1) :=
0

∏

j=N−1

L(tj, tj+1). (17)

Therefore, the adjoint (transpose of the linear tangent model) is given by

LT (tN , t0) =
N−1
∏

j=0

LT (tj+1, tj). (18)

Eq. (18) shows that the adjoint model advances a perturbation backwards in
time, from the final to initial time.
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From Remark 2 (Eq. (16)) we have

∂(y(ti) −H[x(ti)])

∂x(t0)
=

∂H[x(ti)]

∂x(ti)

∂M [x(t0)]

∂x(t0)
= HiL(t0, ti). (19)

Therefore, by using Remark 1 and Eq. (19), the gradient of the observation
cost function with respect to the control variable x(t0) is

∇Jo =
N

∑

i=0

LT (ti, t0)HiE
−1
i [H[x(ti)] − y(ti)]. (20)

We note that parts of the backward adjoint integration are common to several
time intervals, the summation in (20) can be arranged more conveniently.
Assume for example, the assimilation period is between t = t0 and t = tN , i.e.
we have (N +1) observations. We compute during the forward integration the
weighted observation increments

d̄i = HiE
−1
i [H[x(ti)] − y(ti)] := HiE

−1
i di.

The adjoint model LT (ti, ti−1) := LT
i−1 applied on a vector advances it from ti

to ti−1. Then one can write (20) as

∇Jo = d̄0 + LT
0

(

d̄1 + LT
1

(

d̄2 + . . . + LT
N−2

(

d̄N−1 + LT
N−1d̄N

)))

. (21)

From (14) and (21) we obtain the gradient of the cost function, and the mini-
mize algorithm modifies appropriately the control variable x(t0). After this, a
new forward integration and new observational increments are computed and
the process is repeated.

From the above the 4D-Var can then be written in an incremental form with
the cost function defined as

J [δx0] =
1

2
δxT

0 B−1δx0 +

1

2

N
∑

i=1

[HiL(t0, ti)δx0 − di]
TE−1

i [HiL(t0, ti)δx0 − di], (22)

where, the observational increment, di := [H[x(ti)] − y(ti)] and x0 := x(t0).

4 Assimilation of Radar Wind Data

With the advent of operationally available Doppler radial wind data inter-
est has increased in assimilating these data into NWP models. This interest
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has been accelerated by the increasing use of limited area high resolution nu-
merical models for cloud scale prediction. The limited area models require
observations with high spatial-temporal resolution for determining the initial
conditions. Doppler radar wind measurements are one possible source of in-
formation, albeit over limited areas within about 100 km of each radar site
[6]. The resolution of raw data is however much higher than the resolution of
the numerical models, and these data must be preprocessed, to be representa-
tive of the characteristic scale of the model, before the analysis: When several
observations are too close together then they will be more correlated and as a
result the forecast error correlations at the observation points will be large. In
contrast, the individual (single) observations are less dependent and they will
be given more weight in the analysis than observations that are close together.
To reduce the representativeness error, as well as the computational cost, one
may use (i) the vertical profiles of horizontally averaged wind in the form of
Velocity Azimuth Display (VAD) technique, (ii) the observations of spare res-
olution, or (iii) calculate spatial averages from the raw data to generate the
so called super-observations 9 . The generated data correspond more closely to
the horizontal model resolutions than do the raw observations (see [1]).

4.1 3D-Var for Doppler radial winds

The 3D-Var has been used operationally to assimilate radar wind information
in the form of VAD wind profiles (see [23]). Recently, 3D-Var, for the Swedish
Meteorological and Hydrological Institute (SMHI) High Resolution Limited
Area Model (HIRLAM), has been developed for assimilating Doppler radar
wind data either as radial super-observations or as VAD wind profiles (see
[12,18,19]).

Under the assumption that the background and observation errors are Gaus-
sian, random and independent of each other, the optimal estimate of the radial
wind in the analysis space is given by the increment cost function (10),

J [δx] =
1

2
δxTB−1δx +

1

2
[Hδx − y + Hxb]

TE−1[Hδx − y + Hxb], (23)

where x is the state vector of the analysis (i.e., the estimated radial winds),
xb is the state variable of the background radial winds, and y denotes the
observed radial winds in the observation space. Some constructions of the
background and observation error covariance matrices B and E are given in
[5,36]. To avoid the computationally overwhelming problem of inverting the
covariance matrix B in the minimization of the cost function (23) and to
accelerate the convergence of the minimization algorithm, a pre-conditioning

9 Super-observations are spatial averages of raw measurements with different reso-
lutions.
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of the minimization problem is needed (see [20]). The purpose of the pre-
conditioning is to ensure that the Hessian matrix of the background error
term (the second derivative of Jb with respect to the control variables) is an
identity matrix. This can be achieved by defining a variable U to be applied to
the assimilation increment δx (Uδx ≡ X ) such that it transforms the forecast
error ε in the model space into ε̃, a variable of an identity covariance matrix
(i.e., < ε̃, ε̃T >= I, where < ., . > is an inner product). This change of variable
can be written as ε = U−1ε̃. Thus

B =< ε, ε >= U−1 < ε̃, ε̃T > U−T , or B−1 = UTU. (24)

This leads to a new representation of the incremental cost function of the form

J [X ] =
1

2
X TX +

1

2
[HU−1X − y + Hxb]

TE−1[HU−1X − y + Hxb], (25)

where X = Uδx. With this cost function (25), no inversion of B is needed.

4.1.1 Observation operator for radar radial winds

The radar wind observation operator H produces the model counterpart of
observed quantity that is presented to the variational assimilation. In the
case of a horizontal wind observation from VAD profiles (see Fig. 2), the
observation operator consists of a simple interpolation of the model wind field
to the location of the observation. In the case of a radar radial wind super-
observation, which is not a model variable, the observation operator involves:
(i) a bilinear interpolation of the NWP model horizontal wind components u
and v to the observation location; (ii) a projection of the interpolated NWP
model horizontal wind, at the point of measurement, towards the radar beam
using the formula

vh = u cos θ + v sin θ, (26)

where θ is the azimuth angle of the radar beam; and (iii) the vh is finally
projected in the slanted direction of the radar beam as

vr = vh cos(φ + α), where φ = arctan
(

r cos α

r sin α + d + h

)

, (27)

where α is the elevation angle of the radar beam (see [19]). The formula for φ
takes approximately into account the curvature of the Earth. In the term φ,
r is the range, d is the radius of the Earth and h is the height of the radar
above the sea level.

Some assumptions are, however, built into the standard formulation of the
observation operator (27). First, the radar beam broadening is not taken into
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Fig. 2. Geometry for scan of velocities on a VAD circle

account. Second, the bending of the radar beam due to the hydrolapse in the
boundary layer is not properly taken into account. Third, it is assumed that
there is no mean velocity towards the radar due to the vertical motion of
the precipitation, resulting in validity of measurements only for low elevation
angles. This implicit assumption is embedded into (26) where only the NWP
model horizontal wind is included.

One possible solution to relax the first assumption is to introduce a weighted
average, using a Gaussian beam pattern, for the vertical interpolation of model
horizontal wind components u, v of (26) to the observation location (see [27]).
Then to model the broadening of the radar beam in the observation operator,
one can use the Gaussian weight function

w =
1

2π
exp(−

(z − z0)
2

k
) (28)

in the vertical instead of linear interpolation when defining the model horizon-
tal components u and v to the observation height. Where, in formula (28), z
is the model level height and z0 is the observation height. The k-term defines
the width of the filter response function.

4.2 4D-Var for Doppler radial winds and reflectivities

The 4-dimensional Variational Doppler Radar Analysis System (VDRAS) has
also been developed, at the National Center for Atmospheric Research (NCAR),
to assimilate radial winds and reflectivities, from single or multiple Doppler
radars, by adding a penalty term Jp to (12); see [32,31]. A cloud scale non-
hydrostatic numerical model was used to represent the evolution of the motion
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in the atmosphere. The data were interpolated from the original spherical polar
geometry to the 3D Cartesian model grid. It was assumed that the Doppler
radar observation error correlations can be neglected, i.e., the observational
error covariance is diagonal. The cost function (12) may be reformulated as:

J [x(t0)] = [xb(t0) − x(t0)]
TB−1[xb(t0) − x(t0)]

+
∑

Ω,T

[

ηv[F(vr) − v0
r ]

2 + ηZ [F(Z) − Z0]2
]

+ Jp. (29)

The quantities v0
r and Z0 are the observed radial velocities and reflectivities,

respectively, while vr and Z are their model counterparts. F is the observation
operator 10 that projects the model variables (i.e, u, v, and w) from their
Cartesian model grids to the observation variables (i.e, radial velocity vr) in
the data grids (see Eq. (31)). The coefficients ηv and ηZ give a measure of the
weight 11 given to radial velocity and reflectivity observations, respectively.
The summation is over the spatial domain Ω and the temporal domain T .
Finally, the additional term Jp is a penalty term that enforces the spatial and
temporal smoothness of the analysis. Further discussion on the determination
of Jp and the coefficients in (29) is given in [29,30].

The two variables, radial velocity vr and reflectivity Z are not direct model
prognostic variables but can be computed using the model outputs of Cartesian
velocity and rainwater variable qr. The relation between Z and qr, by assuming
the Marshal-Palmer distribution of raindrop size, is given in the relation (see
[32])

Z = 43.1 + 17.5 log(ρqr). (30)

While the relation between the model radial velocity vr and the model Carte-
sian velocity components (u, v, w), is given by the formula:

vr =
x − xrad

r′
u +

y − yrad

r′
v +

z − zrad

r′
(w − VTm). (31)

Here r′ is the distance between a grid point (x, y, z) and the location of the
radar wind observation (xrad, yrad, zrad). VTm is the terminal velocity of the
rain, that is estimated from the reflectivity data throughout the relation (see
[32])

VTm = 5.4 (p0/p̄)0.4 (ρqr)
0.125, (32)

10 In the case of direct assimilation of raw data, the observation operator relates
the model variables to observation variables and a transformation between different
grid meshes.
11 The constants ηv, ηZ reflect the relative precision of the radial velocity vr and
the reflectivity Z observation, respectively.
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where p0, p̄ are the base-state pressure and the pressure at the ground, respec-
tively. The quantity ρ is the density of the air, and qr is a rainwater variable.

We should mention the fact that, due to the poor vertical resolution of the
radar data, a vertical interpolation of the data from the constant elevation
levels to model Cartesian levels can result in large errors. For this reason a
direct assimilation of the Plan Position Indicator (PPI) 12 data with no vertical
interpolation was recommended. This may be an optimal interpolation within
the context of the 4D-Var formulation (see [29]). In this case the observation
operation F is formulated to map the data from the model vertical levels to
the elevation angle levels via the formula

vr,e = F(vr) =

∑

e−z2/2β2

vr∆z
∑

e−z/2β2∆z
, (33)

where vr,e is the radial velocity on an elevation angle level and ∆z is the model
vertical grid spacing. β is the beam half-width and z is the distance from the
center of radar beam. The summation is over the model grid points that lie in
a radar beam.

Another major challenge in radar data analysis is to provide an analysis with
a smooth transition between regions with and without radar data, or between
data-dense and data-sparse regions. A good analysis should be able to fit
to the observations while maintaining smoothness in space and time. Both
background term and the penalty term in the cost function may help to smooth
the analysis.

5 Numerical Implementation Model

NWP can be summarized in the following three steps: The first is to collect
all atmospheric observations for a given time. Second, those observations are
diagnosed and analyzed (that represented in data assimilation) to produce a
regular, coherent spatial representation of the atmosphere at that time. This
analysis becomes the initial condition for time integration of NWP model
based on the governing differential equations of the atmosphere. These equa-
tions are in general partial differential equations of which the most important
are equations of motion, the first law of thermodynamics, and the mass and
humidity conservation equations. Finally, these equations are solved numeri-
cally to predict the future states of the atmosphere.

12 PPI product takes all data collected during a 360 degree azimuth scan using the
same elevation angle and projects it down onto a plane.
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5.1 Basic equations

The primary set of equations that governs the evolution of the atmosphere
(see [7,15] for details) is given by

dv

dt
= α∇p −∇φ + F − 2vg × v, (34a)

∂ρ

∂t
=−∇.(ρv), (34b)

pα = RT, (34c)

Q = Cp
dT

dt
− α

dp

dt
, (34d)

∂ρp

∂t
=−∇.(ρvq) + ρ(E − C). (34e)

These equations have seven unknowns: velocity v=(u, v, w), temperature T ,

pressure p, density ρ =
1

α
, and evaporation ratio q. The first equation rep-

resents the conservation of momentum, or Newton’s second law, where F , φ,
and vg are, respectively, the frictional force, the geopotential 13 , and the an-
gular velocity of the parcel of the air. The second is the continuity equation
or equation of conservation mass. The third is the equation of state of perfect
gases, where R is the gas constant for air. The fourth expresses the ther-
modynamic energy equation applied to a parcel of air with heat rate Q per
unit mass at constant pressure Cp. The potential temperature θ is defined by

θ = T (p0/p)R/Cp , where p0 is a reference pressure (say, 1000 hPa). Whereas the
fifth equation (34e) represents the equation of conservation of water vapour
mixing ratio q, where E and C are the evaporated and condensed amounts of
water, respectively.

However, in order to assimilate a time series of radar observations (radial and
reflectivity) from single or multi-Doppler radars, a cloud-scale NWP model
is used. Sun and Crook [33] reduced the above system into four prognostic
equations: three for the velocity components (u, v, w), and the fourth for the
potential temperature θ. An equation governing the evolution of reflectivity
was also included to assimilate the reflectivity data. The system takes the
form

dv

dt
= δi3

gθ

Θ0

k −∇p̃ + ν∇2v, (35a)

13 The geopotential of a unit mass relative to the sea level, numerically is the work

that would be done in lifting the unit mass from sea level to the height at which
the mass is located.
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∂θ

∂t
=−w

∂Θ

∂z
+ k∇2θ, (35b)

∂Z

∂t
= µ∇2Z, (35c)

where p̃ is the perturbation pressure divided by a reference density, Θ is the
horizontal mean potential temperature, Θ0 is the reference potential temper-
ature, and Z is the reflectivity. The quantity ν is the eddy viscosity, k is the
thermal diffusivity, and µ is the diffusivity of reflectivity, which are assumed
to be constant.

The mass continuity equation is written as

∇.v = 0, (35d)

and the perturbation pressure p̃ is diagnosed through the Poisson equation

∇2p̃ = −∇.(v.∇v) +
g

Θ0

∂θ

∂z
. (35e)

5.2 Numerical algorithm

Suppose that the governing atmospheric equations (35)–(35e) are expressed
in the vector form

∂x(t)

∂t
= F (x(t)),

x(t0) = x0.
(36)

The vector x contains all the prognostic variables.

The following algorithm outlines the steps of estimating (the first order ap-
proximation of ) the cost function, and its gradient.

(1) Discretize Eq. (36), using a suitable numerical method such as a finite
difference or spectral method. This gives a nonlinear model solution, that
depends only on the initial conditions,

x(tn) = M [x(t0)], (37)

where x(tn) represents the model forecast at time tn and x(t0) is the
initial condition vector of the prognostic variables, and M is the time
integration of the numerical scheme from the initial condition to the time
tn.
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(2) Evaluate the first-order variation of x(tn) throughout the formula

δx(tn) = L(t0, tn)δx(t0), (38)

where L(t0, tn) =
∂M

∂x
, is the tangent linear operator.

(3) Find the adjoint model, by taking the transpose of the tangent linear
operator, so that

δx∗(t0) = LT (tn, t0)δx(tn), (39)

where δx∗(t0) represents the adjoint variable, and LT (tn, t0) is the oper-
ator of the adjoint model.

(4) Evaluate the weighted observation increments

d̄n = HnE
−1[H[x(tn)] − y(tn)] ≡ HnE

−1
n dn, (40)

where Hn =
∂H

∂x(tn)
, and H is the observation operator that relates the

model variables to the observations.
(5) Estimate the gradient of the cost function J , (14) & (21), throughout:

(i) Initialize gradient = 0.
(ii) for k = N, 0,−1 do

gradient = LT
k−1[d̄k + gradient] (LT

−1 = 1).
(iii) gradient = B−1δx + gradient.

(6) The control variables are then adjusted (by the minimization routine,
applying quasi-Newton iterative methods subject to constraints (36)) so
as to reduce the value of the cost function;

7- When no further reduction in the value cost function J [x(t0)] is possible,
the best fit values of the initial conditions x(t0) have been found. The
governing equations of the atmosphere (36) are then forward integrated
in time to predict future states from the present state.

8- The process is repeated for the new cycle.

Due to the linearized approximation, an exact adjoint is generated and the
cost function is quadratic and the minimization process speeds up.

6 Why are Weather Forecasts Sometimes Wrong?

In general, forecast skill increases not only by increasing model resolution, but
also by improving the numerical models and the method of solution. However,
even if we had a forecast model that represented atmosphere processes per-
fectly, we would never be able to predict the state of atmosphere accurately
for long lead times 14 . This occurs, because the non-linear dynamical systems

14 A chaotic behaviour occurs (and leads to an unpredictable long-term evolution)
when solving deterministic, nonlinear, dynamical systems that exhibit sensitivity to
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that describe the atmospheric behaviour are sensitive to small changes in ini-
tial conditions.

6.1 Sensitivity to initial conditions

Lorenz [22] has shown the sensitivity dependence on the initial measured state
of the weather when he obtained two solutions of forecast models which were
integrated with slightly different initial conditions. He demonstrated visually
that there was structure in his chaotic weather model, and, when plotted in
three dimensions, the atmospheric motion fell onto a butterfly-shaped set of
points; see Fig. 3.

t 

y 
y 

x 

z 

x 

z 

y 

(a) (b) 

(c) 
(c) 

Fig. 3. Shows the trajectory of a chaotic motion, for the Lorenz system [22] that is
sensitive to its initial values: x′ = σ(y − x); y′ = −xz + rx − y; z′ = xy − bz (where
σ = 10, b = 8/3, and r = 28). (a) plots two solutions of the component y with slightly
change in the initial value. (b) & (c) show also how a system in chaotic motion is
completely unpredictable.

To what lead time forecasts remain skillful depends on how small errors in
the initial conditions, boundary conditions, or model specifications grow to
affect the state output or the forecast. Because errors tend to grow rapidly
in processes that occur at smaller spatial-scales, then forecasts for small scale
processes may be predictable only for few hours. However, forecasts of large

initial conditions.
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scale processes can be predicted for perhaps 2 week ahead. Thus, when solving
the forward problem, it is very important to assess the sensitivity of the state
output variables of the dynamic system with respect to small changes in the
initial conditions. A knowledge of how the state variables can vary with respect
to small changes in the initial data can yield insights into the behaviour of the
model and assist the modelling process to determine (for example) the most
sensitive area. The sensitivity analysis, of the dynamic system, entails finding
the partial derivative of the state variable (or the analysis) with respect to the
parameters, which is a big challenge in a large nonlinear systems; see [3,4].

It should also be noted that the predictability of the atmospheric state depends
mainly on the accuracy of the parameter estimates (the control variables),
when solving the inverse problem. Since the ultimate goal is to produce an
analysis that gives the best forecast, it is desirable to have information about
the effect on the analysis system (or the estimates) due to perturbing the
observations (or noisy data), or small changes in the background.

We give here a simple linear case of sensitivity in the analysis due to small
changes in the observations and the background. Assume that the analysis (8)
is expressed in this form

xa = Wy + [I − WH]xb, (41)

where H is the jacobian matrix to the linearized forward operator H[x]. If the
analysis is projected at the observation locations so that x̂a = Hxa, then

x̂a = HWy + [H − HW]Hxb. (42)

Here Hxb = x̂b is the projected background at the observation locations. Then
x̂a is a weighted mean of y and x̂b.

Thus, the sensitivity of the analysis x̂a to observations is

S ≡
∂x̂a

∂y
= WTHT . (43)

While sensitivity of the analysis to the background in the observation space is

∂x̂a

∂x̂b

= I − WTHT . (44)

Sensitivity functions (43) & (44) are used to estimate the global and partial
influences due to small changes in the observations and the background, in
the observation space. Relative sensitivity functions (0 ≤ tr(S)/m ≤ 1, where
m is the number of observations) give an insight to the modelers to determine

22



the most informative and sensitive area, where the assimilated data is dense
or sparse; short- or long-range.

The adjoint method, is the most common method calculating the sensitivity
functions, and has been used to calculate the sensitivity forecast errors J [x0]
that depend on the dynamic system (36) and the initial conditions (see [9,24]).
By defining, a change δx0 in the initial conditions x0, this will lead to a change
in the forecast error J given by

δJ =< ∇Jo, δx0 >, (45)

where < ., . > is defined as an inner product, and ∇Jo is defined in terms of
the adjoint in the formula (20). Then one can say that, in regions where the
gradient ∇Jo is large, a change in the initial conditions would have created
a large impact on the forecast error. Similarly, in regions where the gradi-
ent is small, such a change in the initial conditions would have affected the
subsequent forecast error very little.

Adjoint equations can also be used to formulate systematically a formula for
sensitivity of the state variable x(t) of the dynamic model (36) to small vari-
ations in the initial data (see [26]):

Theorem 1 If W(t) is an n-dimensional adjoint function which satisfies the
differential equation

dW(t)

dt
= −

∂F T

∂x(t)
W(t), t ≤ t∗,

W(t) = 0, t > t∗; W(t∗) = [0, . . . , 0, 1ith, 0 . . . , 0]T ,

(46)

then the sensitivity coefficients
∂x(t)

∂x0

for the dynamic system (36) can be

expressed by the formula

∂xi(t
∗)

∂x0

=W(0). (47)

Proof:
For simplicity in Eq. (36), we write F (x(t)) = F .

Small variations in the initial data (the system parameters) causes a perturba-
tion in the system state in (36). Then small variations δx0, result in a variation
δx(t) which satisfies (for first-order) the equation

δx′(t) =
∂F

∂x
δx(t)

δx(0) = δx0.
(48)
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If we multiply both sides of (48) by WT (t) (the transpose of the function
W(t)) and integrate both sides with respect to t over the interval [0, t∗], we
obtain

WT (t∗)δx(t∗) − WT (0)δx(0) −

t∗
∫

0

W′T (t)δx(t)dt =

t∗
∫

0

WT (t)
∂F

∂x(t)
δx(t)dt. (49)

Eq. (49), after some manipulation, can be rewritten in the form

WT (t∗)δx(t∗) − WT (0)δx(0) =

t∗
∫

0

[

W′(t) +
∂F T

∂x
W(t)

]T

δx(t)dt, t ≤ t∗. (50)

Under the assumptions given in (46) the above equation takes the form

δxi(t
∗) =WT (0)δx(0) t ≤ t∗. (51)

When δx(0) → 0, we obtain the sensitivity coefficients (47) and the Theorem
is proved. 2

6.2 Biases due to nonlinearity

In this subsection we only address the bias 15 that comes due to nonlinearity
of the model rather than biases that come due to data- and background-errors.
In general, when the model state variable x(t,p) (here p ≡ x0) is linear in all
its parameters, then the cost function J [x(t,p)] has a unique and global min-
imum, and finding it is usually a straightforward task. When the predictions
are governed by models that are non-linear in the parameter estimates, then
the least squares approach usually leads to a nonlinear minimization problem.
Numerical algorithms for the nonlinear least squares approach are generally
iterative procedures for searching the parameter estimates and require ini-
tial starting values. An obvious difficulty is that there may exist several local
minima, and finding the global minimum is not guaranteed (see Fig. 4). To
decrease the effect of nonlinearity, the choice of cost function should be made
with certain practical issues in mind. For more details about the nonlinearity
effects in parameter estimations, we may refer to [2,25].

Thus we may conclude that our estimate of the initial state will not be exactly
the same as the true state. This bias depends on the degree of the nonlinearity
of the structural model. This also adds another challenge in numerical weather
prediction.

15 Bias is defined by the difference between the analysis state and the true state.
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Fig. 4. Iterative solution for quadratic and nonlinear cost function.

7 Conclusion

The aim of this report was to investigate the progress of data assimilation,
using 3D-Var and 4D-Var approaches, for numerical weather prediction. The
essential difference between 3D-Var and 4D-Var is that 4D-Var includes the
dynamic evolution of the model in the assimilation window, while 3D-Var
assimilates at a particular point within the window. One limitation of using
3D-Var is that it can only be used with a short assimilation window, as the as-
similation occurs at a specific point. However, 4D-Var has a considerable extra
computational cost, compared to 3D-Var. We may reduce this cost by using
the incremental method with low resolution. Numerical aspects concerning
the estimation of the cost function and its gradient have been discussed. Some
related problems, associated with data assimilation, such as nonlinearity and
sensitivity of the forecast to possible small errors in initial conditions, random
observation errors, and the background states have also been discussed.

In this study, a special emphasis has been given to assimilating Doppler radar
winds into a NWP model. Variational methods were reviewed for their ap-
plicability to the data of Doppler radar winds. It has been shown that the
variational methods offer a flexible methodology of using Doppler radar wind
data, as well as the use of various constrains through the definition of the cost
function. In addition, these methods combine interpolation and analysis into a
single step. The analysis is performed more naturally and directly in a Carte-
sian coordinate system, and only interpolation from regular Cartesian grids
to irregular radar observation points is needed. It has also been shown that
using radar data directly at observation locations avoids an interpolation from
an irregular radar coordinate system to a regular Cartesian system, which is
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often a source of error, especially in the presence of data voids.

A particular challenge in the forecasting of the time evolution of atmospheric
system is the nonlinearity of the system and the corresponding sensitivity of
the initial conditions.
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[11] J.C. Gilbert and C. Lemaréchal, Some numerical experiments with variable
storage quasi-Newton algorithms, Math. Prog. B25 (1989) 407–435.

26



[12] N. Gustafsson, L. Berre, S. Hrnquist, X.-Y. Huang, M. Lindskog, B. Navascus,
K. S. Mogensen and S. Thorsteinsson, Three-dimensional variational data
assimilation for a limited area model. Part I: General formulation and the
background error constraint, Tellus A, 53 (2001) 425-446.

[13] P. Courtier, Variational methods. In: Ghil et al. (Eds.), Data Assimilation in

Meteorology and Oceanography: Theory and Practice. Special issue, J. Met.

Soc. Japan, 75. Distributed by Universal Academic Press, (1997) 101–108.

[14] K. Ide, P. Courtier, M. Ghil, and A. C. Lorenc, Unified notation for data
assimilation: Operational, sequential and variational,J. Met. Soc. Japan, 75

(1997) 181-189.

[15] I.N. James, Introduction to circulating atmospheres, (Cambidge University
press, Cambridge, 1994).

[16] E. Kalnay, Atmospheric modeling, data assimilation and prectipility,
(Cambrige Press, 2003).

[17] F. Le Dimet and O. Talagrand, Variational algorithms for analysis and
assimilation of meteorological observations: theoreical aspects, Tellus 38A

(1986) 97–110.

[18] M. Lindskog, M. Gustafsson, B. Navascus, K. S. Mogensen, X.-Y. Huang,
X. Yang, U. Andrae, L. Berre, Thorsteinsson and J. Rantakokko, Three-
dimensional variational data assimilation for a limited area model. Part II:
Observation handling and assimilation experiments, Tellus A, 53 (2001) 447-
468.

[19] M. Lindskog, H. Jrvinen, D. B. Michelson, Development of Doppler radar wind
data assimilation for the HIRLAM 3D-Var, COST-717 working document at:

http://www.smhi.se/cost717/ (2002).

[20] A.C. Lorenc, Development of an operational variational scheme, J. Meteorol.

Soc. Japan 75 (1997) 339–346.

[21] A.C. Lorenc, Analysis methods for numerical weather prediction, Q.J.R.

Meteorol. Soc 112 (1986) 1177–1194.

[22] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963) 130–
141.

[23] D.F. Parrish and R. J. Purser, Anisotropic covariances in 3dvar: Application
to hurricane Doppler radar observations, HIRLAM Workshop report. (HIRLAM
4 Workshop on Variational Analysis in Limited Area Models, Meteo-France,
Toulouse, 23-25 February, (1998).

[24] F. Rabier, E. Klinker, P. Courtier and A. Hollingsworth, Sensitivity of forecast
errors to initial conditions, J. R. Meteorol. soc., 122 (1996) 121–150.

[25] D.A. Ratkowsky, Nonlinear Regression Modeling, A Unified Practical

Approach (New York: Marcel Dekker 1983).

[26] F.A. Rihan, Sensitivity analysis of dynamic systems with time lags, J. Comput.

Appl. Math. 151 (2003) 445–462.

27



[27] K. Salonen, Observation operator for Doppler radar radial winds in HIRLAM
3D-Var, Proceedings of ERAD (2002) 405-408.

[28] R. Sneider, The role of nonlinearity in inverse problems, Inverse Problems, 14

(1998) 387-404.

[29] J. Sun and N. A. Crook, Real-time low-level wind and temperature analysis
using single WSR-88D data, Wea. Forecasting, 16 (2001a) 117-132.

[30] J. Sun and N. A. Crook, Assimilation and forecasting experiments on
supercell storms. Part I: experiments with simulated data. 14th Conference
on Numerical Weather Prediction. Ft. Lauderdale, Florida, Amer. Meteor.

Soc. (2001b) 142–146.

[31] J. Sun, and N. A. Crook, Dynamical and microphysical retrieval from Doppler
radar observations using a cloud model and its adjoint. Part II: retrieval
experiments of an observed Florida convective storm, J. Atmos. Sci. 55 (1998)
835–852.

[32] J. Sun, and N. A. Crook, Dynamical and microphysical retrieval from Doppler
radar observations using a cloud model and its adjoint. Part I: Model
development and simulated data experiments, J.Atmos. Sci., 54 (1997) 1642–
1661.

[33] J. Sun, and N. A. Crook, Wind and thermodynamic retrieval from single-
Doppler measurements of a gust front observed during Phoenix II, Mon. Wea.

Rev., 122 (1994) 1075–1091.

[34] O. Talagrand, Assimilation of observations. An introduction. In: Ghil et al.
(Eds.), Data Assimilation in Meteorology and Oceanography: Theory and

Practice. Special issue, J. Met. Soc. Japan, 75. Distributed by Universal
Academic Press, (1997) 81–99.

[35] A. Tarantola, Inverse Problem Theory. (Elsevier Science, 1987).

[36] Q. Xu and J. Gong, Background error covariance functions for Doppler radial
wind analysis, Q.J. R. Meteorol. Soc., 129 (2003) 1703–1720.

TR1 DataAssim.tex

28


