United Arab Emirates University College Requirement Unit, Engineering MATH 1110 : CALCULUS I FOR Engineers

Spring 2010- Overall Sections

I- Course Description:

	A- General Information
Subject	Calculus I for Engineers MATH1110
Textbook	Robert T. Smith \& Roland B. Minton "Calculus", 3rd Ed, 2007.
References	Thomas, "Calculus", Pearson Education, 11th ed, 2005 Stewart, "Calculus", Thomson, 5th Ed, 2003. Anton- Bivens- Davis, "Calculus", John Wiley, 7th Ed, 2002.
Prerequisite	MATU 1332, ENGU 1303
Coordinator	Dr. Fathalla A. Rihan Instructors Dr. Youssef Al-Khatib (Sec. \# 51 \& 53); Dr. Fathalla Rihan (Sec.\# 52 \& 54)
Bre Professional Information	
Course	I- Differential Calculus of functions of one variable Description Functions of one variable. Concept of limits, Definitions and Techniques of Differentiation. Derivatives of Trigonometric, Exponential, and Logarithmic Functions - Chain Rule - Implicit Differentiation. Maximum and Minimum Values. Increasing, Decreasing and Concave Functions - Inverse Trigonometric Functions - Hyperbolic Functions - Some Engineering Applications. II - Integral Calculus of functions of one variable Definite and Indefinite Integrals. Techniques of Integration: Integration by Substitution - Integration by Trigonometric Substitutions - Integration by Parts - Integration by Partial Fractions. Applications of Definite Integrals in Geometry. Some Engineering Applications.

Intended Learning outcomes (ILO's):	Upon successful completion of this course, the student should I be able to: 1. Find limits of functions and determine continuity of functions. 2. Find derivatives of algebraic, logarithmic, and exponential functions, and use derivatives to solve applied problems. 3. Understand the conceptual foundations of rate of change, slope of tangent line, and their application to engineering problems. 4. Demonstrate ability to think critically in analyzing engineering problems. 5. Work effectively with others. 6. Find integrals of some algebraic and trigonometric functions, and use integrals to solve applied and engineering problems. 7. Able to use the integration to find the areas under or between curves, displacements given the accelerations, work done by a particle or so.
Relation to ABET Outcomes:	ABET A \rightarrow K Criteria CRU Course A b C d e f g h I j k Engineering Thermodynamics \sqrt{c}
Relation to ABET Criterion 5	Math and Basic Science: 1 semester hours, Engineering Topics (Science 2 hour, Design 0 hour), General Education: 0 semester hours, Others: 0 semester hours
Covered Topics	Function of One Variable, including exponential and Logarithmic functions Topics in Limits and Continuity Techniques of Differentiation Maximum and Minimum Values Definite and Indefinite Integrals Techniques of Integrations, Areas Between two Curves, Volumes, Applications
Assessment	
Attendance:	Attendance is required for all classes. Students who are absent for any reason more than 15% of required classes are prohibited from participating in subsequent exams and received a grade of " F " for the course.

II- COURSE SCHEDULE AND CONTENTS:

Week\#	Topics	$\begin{gathered} \text { Textbook } \\ \text { Sections } \end{gathered}$	Solved Examples	Exercises (H.W)
1	Ch1. LIMITS (In brief)			
	1.a. The conception of limits	1.2	2 Examples	Odd 1-10
	1.b.Continuity	1.4	2 Examples	Odd 1-15
	1.c. Limits Involving Infinity	1.5	2 Examples	Odd 1-17
2	Ch2. DIFFERENTIATION			
	2.a. The Derivative	2.2	2 Examples	
	2.b. Computation of the Derivative: The power Rule	2.3	3.1--3.6	$\begin{aligned} & \text { 1-16 odd, } \\ & 21,23,27,29 \end{aligned}$
	2.c. Product and Quotient Rules	2.4	$4.1-4.5$	1-27 odd
3	2.d. The Chain Rule	2.5	5.1 -- 5.4	1-34 odd
	2.e. Derivative of Trigonometric Functions	2.6	6.1-6.6	3-37 odd
4	2.f. Derivatives of Exponential and Logarithmic Functions	2.7	7.1--7.6	1-34 odd, 3944 odd, 61, 65
	2.g. Implicit Differentiation and Inverse Trigonometric functions	2.8	8.1--8.3, 8.5	$\begin{aligned} & 1-38 \text { odd, } \\ & 45,47 \end{aligned}$
5	Ch3. APPLICATIONS OF DIFFERENTIATION			
	3.a. Indeterminate Forms \& L'Hopital's Rule	3.2	2 Examples	3-21 odd
	3.b. Maximum and Minimum Values	3.3	3.1-3.12	5-55 odd
	TEST 1			
6	3.d. Increasing and Decreasing Functions	3.4	4.1 -- 4.5	5-25 odd, 55
	3.e. Concavity and second Derivative Test	3.5	5.1--5.6	9-37 odd
7	3.f. Optimization	3.7	7.1--7.4	3-15 odd
	3.g. Related Rates	3.8	8.1--8.3	1-15 odd

8	Ch4. INTEGRATION			
	4.a. Antiderivatives	4.1	3 Examples	5-30 odd
	4.b. The Definite Integral	4.4	Th.4.1,Th.4.2, 4 Examples	39-50 odd
	4.c. Fundamental Theorem of Calculus	4.5	3 Examples	$\begin{aligned} & \text { 3,5,11,15, } \\ & 33,35,47,49 \end{aligned}$
9	4.d. Integration by Substitution	4.6	All Examples	1-47 odd
	MIDTERM REVIEW			
	4.f. the Natural Logarithm as an Integral	4.8	8.2	9--30 odd
10	Ch6. INTEGRATION TECHNIQUES			
	6.a. Integration by Parts	6.2	All Examples	1-36 odd
11	6.b.Trigonometric Techniques of Integration	6.3	All Examples	1-30 odd
12	6.c. Integration of Rational Function (RF)	6.4	All Examples	1-33 odd
13	6.c. Integration of RF Using Partial Fractions	6.4	All Examples	1-35 odd
	TEST 2			
14	Ch5. APPLICATIONS OF THE DEFINITE INTEGRAL			
	5.a. Area between Curves	5.1	1.1-1.6	1-7 odd
	5.b. Volume: Slicing, Disk	5.2	2.1-2.4	9, 11
15	5.c. Method of Washers	5.2	2.3-2.6	21, 23, 29
	5.d. Method of Cylindrical Shells	5.3	3.1-3.3	9,11,13,15
16	REVISION			

Wish you the best of luck

Coordinator: Fathalla Rikan
Office Hours will be on Wedresdays 2-4 pm for Sections 52 \& 54.
E-mail: frihan@uaeu, ac,ae, Tel. Office 037134457, Building \# 132 (Magam) Room \# 101

