UNITED ARAB EMIRATES UNIVERSITY COLLEGE REQUIREMENT UNIT, ENGINEERING MATH 1110: CALCULUS | FOR ENGINEERS

Spring 2010- Overall Sections

I-Course Description:

A- General Information						
Subject	Calculus I for Engineers MATH1110					
Textbook	Robert T. Smith & Roland B. Minton "Calculus", 3rd Ed, 2007.					
References	Thomas, "Calculus", Pearson Education, 11th ed, 2005					
	Stewart, "Calculus", Thomson, 5th Ed, 2003.					
	Anton-Bivens-Davis, "Calculus", John Wiley, 7th Ed, 2002.					
Prerequisite	MATU 1332, ENGU 1303					
Coordinator	Dr. Fathalla A. Rihan (frihan@uaeu.ac.ae)					
Instructors	Dr. Waleed Emmam (Sec.# 01 & 02); Dr. Adama Diene (Sec.# 03 & 04)					
	Dr. Youssef Al-Khatib (Sec. # 51 & 53); Dr. Fathalla Rihan (Sec.# 52 & 54)					
	B- Professional Information					
Course	I- Differential Calculus of functions of one variable					
Description	Functions of one variable. Concept of limits, Definitions and Techniques of Differentiation. Derivatives of Trigonometric, Exponential, and Logarithmic Functions - Chain Rule - Implicit Differentiation. Maximum and Minimum Values. Increasing, Decreasing and Concave Functions - Inverse Trigonometric Functions - Hyperbolic Functions - Some Engineering Applications.					
	II - Integral Calculus of functions of one variable					
	Definite and Indefinite Integrals. Techniques of Integration: Integration by Substitution - Integration by Trigonometric Substitutions - Integration by Parts - Integration by Partial Fractions. Applications of Definite Integrals in Geometry. Some Engineering Applications.					

Intended	Upon successful completion of this course, the student should I be able to:					
Learning	1. Find limits of functions and determine continuity of functions.					
outcomes	2. Find derivatives of algebraic, logarithmic, and exponential functions, and					
(ILO's):	use derivatives to solve applied problems.					
	3. Understand the conceptual foundations of rate of change, slope of tangent line, and their application to engineering problems.					
	4. Demonstrate ability to think critically in analyzing engineering problems.					
	5. Work effectively with others.					
	6. Find integrals of some algebraic and trigonometric functions, and use integrals to solve applied and engineering problems.					
	7. Able to use the integration to find the areas under or between curves, displacements given the accelerations, work done by a particle or so.					
Relation to	ABET A→ K Criteria					
ABET	CRU Course A b C d e f g h I j k					
Outcomes:	Engineering Thermodynamics V					
Relation to	Math and Basic Science: 1 semester hours, Engineering Topics (Science 2 hour.					
ABET Criterion 5	Design 0 hour), General Education: 0 semester hours, Others: 0 semester hours					
	Function of One Variable, including expensetial and Lagarithmic functions					
	Function of One variable, including exponential and Logarithmic functions					
Covered Topics	Topics in Limits and Continuity					
	Techniques of Differentiation					
	Maximum and Minimum Values					
	Definite and Indefinite Integrals					
	Techniques of Integrations, Areas Between two Curves, Volumes, Applications					
Accordment	Students Four Worksheets % 10					
Assessment	Two Quizzes % 10					
	Two Tests % 20					
	Midterm Exam % 20 (07:00-08:00 pm, 11 th April 2010)					
	Final Exam % 40 <mark>(08:00-10:00 am, 9th June 2010)</mark>					
Attendance:	Attendance is required for all classes. Students who are absent for any reason more					
	than 15% of required classes are prohibited from participating in subsequent					
	exams and received a grade of "F" for the course.					
	•					

II- COURSE SCHEDULE AND CONTENTS:

Week#	Topics	Textbook Sections	Solved Examples	Exercises (H.W)		
	Ch1. LIMITS (In brief)					
1	1.a. The conception of limits	1.2	2 Examples	Odd 1-10		
	1.b.Continuity	1.4	2 Examples	Odd 1-15		
	1.c. Limits Involving Infinity	1.5	2 Examples	Odd 1-17		
	Ch2. DIFFERENTIATION					
2	2.a. The Derivative	2.2	2 Examples			
	2.b. Computation of the Derivative: The power Rule	2.3	3.13.6	1-16 odd, 21,23, 27,29		
	2.c. Product and Quotient Rules	2.4	4.1 4.5	1-27 odd		
3	2.d. The Chain Rule	2.5	5.1 5.4	1-34 odd		
5	2.e. Derivative of Trigonometric Functions	2.6	6.1 — 6.6	3-37 odd		
4	2.f. Derivatives of Exponential and Logarithmic Functions	2.7	7.1 7.6	1-34 odd, 39- 44 odd, 61, 65		
	2.g. Implicit Differentiation and Inverse Trigonometric functions	2.8	8.18.3, 8.5	1-38 odd, 45,47		
	Ch3. APPLICATIONS OF DIFFERENTIATION					
5	3.a. Indeterminate Forms & L'Hopital's Rule	3.2	2 Examples	3-21 odd		
	3.b. Maximum and Minimum Values	3.3	3.1—3.12	5—55 odd		
	TEST 1					
6	3.d. Increasing and Decreasing Functions	3.4	4.1 4.5	5—25 odd, 55		
	3.e. Concavity and second Derivative Test	3.5	5.15.6	9—37 odd		
7	3.f. Optimization	3.7	7.1 7.4	3-15 odd		
	3.g. Related Rates	3.8	8.18.3	1-15 odd		

	Ch4. INTEGRATION				
	4.a. Antiderivatives	4.1	3 Examples	5-30 odd	
8	4.b. The Definite Integral	4.4	Th.4.1,Th.4.2, 4 Examples	39-50 odd	
	4.c. Fundamental Theorem of Calculus	4.5	3 Examples	3,5,11,15, 33,35, 47, 49	
9	4.d. Integration by Substitution	4.6	All Examples	147 odd	
	MIDTERM REVIEW				
	4.f. the Natural Logarithm as an Integral	4.8	8.2	930 odd	
10	Ch6. INTEGRATION TECHNIQUES				
	6.a. Integration by Parts	6.2	All Examples	1-36 odd	
11	6.b.Trigonometric Techniques of Integration	6.3	All Examples	1-30 odd	
12	6.c. Integration of Rational Function (RF)	6.4	All Examples	1-33 odd	
13	6.c. Integration of RF Using Partial Fractions	6.4	All Examples	1-35 odd	
	TEST 2				
14	Ch5. APPLICATIONS OF THE DEFINITE INTEGRAL				
14	5.a. Area between Curves	5.1	1.1—1.6	1—7 odd	
	5.b. Volume: Slicing, Disk	5.2	2.1—2.4	9, 11	
15	5.c. Method of Washers	5.2	2.3—2.6	21, 23, 29	
	5.d. Method of Cylindrical Shells	5.3	3.1—3.3	9,11,13,15	
16	REVISION				

Wish you the best of luck

Coordinator: Fathalla Rihan

Office Hours will be on Wednesdays 2-4 pm for Sections 52 & 54.

E-mail: <u>frihan Quaeu.ac.ae</u>, Tel. Office 037134457, Building # 132 (Maqam) Room # 101