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SUMMARY
In this paper, we present a method for robot navigation
toward a moving object with unknown maneuvers. Our
strategy is based on the integration of the robot and the target
kinematics equations with geometric rules. The tracking
problem is modeled in polar coordinates using a two-
dimensional system of differential equations. The control law
is then derived based on this model. Our approach consists of
a rendezvous course, which means that the robot reaches the
moving goal without following its path. In the presence of
obstacles, two navigation modes are integrated, namely the
tracking and the obstacle-avoidance modes. To confirm our
theoretical results, the navigation strategy is illustrated using
an extensive simulation for different scenarios.

Q2 KEYWORDS:

1. Introduction
The use of autonomous robots in surveillance and security
applications1–3 has undergone important developments in the
last decade. One particular application is tracking a moving
object in a given workspace. In most cases, the moving object
moves with unknown maneuvers. This application combines
different aspects such as tracking, data processing, and navig-
ation toward the target. Methods ranging over visual servoing
to Lyapunov theory are used for this purpose. Many authors
combine the problem of navigation toward a target with a
tracking algorithm. This is the case for most visual servoing
methods. There exist mainly two families of methods used
for navigation toward a moving object: feature-based and
model-based. Feature-based methods track features such
as geometric shapes, region of interest, etc.4 Model-based
methods use a model of the moving object. Visual servoing is
among the most important feature-based methods.4 Tracking
humans using mobile robots based on vision is discussed
by many authors.5–11 The work of Feyrer and Zell6,7 is
based on vision, where they suggest the use of a multimodal
approach combining color, motion, and contour information
to accomplish the task. The work by Davis et al. is also
based on computer vision, where they use a deformable shape
model to track humans from a moving platform. Another
method for humans tracking using mobile robots is suggested
by Shulz et al.,12 where the authors used sample-based joint
probabilistic data association filters. The problem of tracking
humans with robots is a particular case of the general target
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tracking problem. This problem is also widely discussed in
the literature. Asada and Nakamura13 suggest a learning
method for target reaching while detecting and avoiding
collision. Another learning algorithm for target pursuit is
suggested by Gaskett et al.,14 where the system learns to
perform visual servoing based on rewards relative to tracking
performance. Some authors consider the problem of tracking
multiple moving objects instead of a single target.8,15

Positioning and localization of a robot with respect to
the moving object is also discussed in the literature.16,17

Localization of a robot with respect to the target allows one
to design control laws for tracking and navigation toward the
target. Simulation of the pursuit of moving objects using a
mobile robot is considered by Dias et al.,18 where the solution
deals with the interaction of different control systems using
visual feedback. Chung and Yang8 consider the problem
of multiple targets tracking using a mobile robot, where a
real-time visual feedback law using on-board processors is
discussed. Even though vision-based control is widely used,
algorithms based on visual servoing may suffer from the
following drawbacks:

1. Visual servoing requires high computational capabilities.
Most visual perception systems are potentially slow
for real-time implementation, especially for fast-moving
targets.

2. The dynamics and the kinematics constraints of the robot
are not directly taken into account.

3. Camera calibration is necessary, since moving targets must
stay within the camera scope.

4. Unstable motion may occur when the goal is highly
maneuvering.

Different solutions were suggested to solve these
problems. A real-time implementation is addressed by many
authors4,8,19 using different approaches. Reduction of visual
data for the real-time implementation presents another
potential solution.9

Vision sensors are not the only sensors used for tracking.
Many authors use different types of sensors such as accoustic
sensors,20 directional sensors,21 ladar-based sensors,22 and
ultrasonic sensors.23 These sensors may simplify the equip-
ment to accomplish the tracking task; however, vision sensors
allow us to obtain richer data about the target. A comparison
between different approaches for human tracking such as
GPS tracking and laser tracking is discussed in ref. [11],
where the drawbacks and the advantages of the method are
discussed in some detail.
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Maintaining the target in the field of view of the robot’s
sensory system is another widely discussed topic,16,25–30

especially in surveillance applications. Different types of
sensors are used by the robot, mainly the vision sensors.26,27

This problem combines motion planning for the robot, i.e.,
sensor placement, and camera calibration for the vision
sensors.

Tracking and navigation toward a moving goal is a difficult
problem compared to navigation toward a stationary point.
In the case of a moving goal, the navigation problem is a
real-time problem and offline strategies are not effective.

The potential field method is also used for robot navigation
toward a moving goal,31 where a new potential function is
defined. The problem of local minima is also discussed. An
integration of the artificial potential field method with the
Lyapunov theory for high-speed target pursuit is considered
by Adams.32 A strategy based on the Lyapunov theory33

in order to design a stable target tracking law for a unicycle
mobile robot is suggested by Lee et al. Potential field methods
may suffer from the local minima problem. This problem may
appear more frequently in the case of a moving goal.

Different fuzzy logic approaches are combined with
various control strategies such as visual control. Various
strategies such as tracking by the Grey prediction theory
integrated with look-ahead fuzzy logic controller,34 tracking
using hierarchical Grey fuzzy motion decision-making
method,35 and fuzzy sliding mode control,36 were suggested.
The fuzzy logic controller is also used for tracking multiple
targets.37 Fuzzy logic may simplify the sensory system
because it does not require precise information on the target.

In many situations, the target performs evasive maneuvers.
In this case, most authors38–41 suggest the use of methods
from the game theory. Pursuit–evasion problems are
considered in different environments such as planar,38

polygonal,39 and curved.40 This is due to the fact that the
action of the robot depends on the environment. To simplify
the problem, many authors consider it in the absence of
obstacles. There exist two approaches for the representation
of the pursuit–evasion problem: continuous representation
and discrete representation. In the discrete representation,
the problem is represented in a grid. Both probabilistic
and deterministic methods are used. Hunting behavior of
a moving target using a mobile robot or a group of mobile
robots is a related problem. This problem is considered by
Yamaguchi,42,43 where a smooth time-varying control law is
used. Most tracking algorithms are designed for wheeled
mobile robots. However, target tracking by underwater
robots44 or air vehicles45 is also discussed.

In this paper, we address the problem of robot navigation
toward a goal moving with unknown maneuvers, and suggest
a solution to it. The navigation problem is considered in
both the absence and the presence of obstacles. Clearly, the
problem is more difficult in the presence of obstacles. Two
navigation modes are integrated as follows:

1. Navigation toward the target: The aim is to design a
control strategy for the robot in order to reach the moving
target. In this mode, path planning has a global aspect.

2. Obstacle-avoidance mode: The objective is to avoid local
obstacles and put the robot in a position where the tracking

mode can be activated again. Here, path planning has a
local aspect where different techniques can be used.

T1

In the navigation toward the goal mode, we use a strategy
based on the integration of the robot and the target kinematics
equations with geometric rules. The aim of the guidance
strategy is to put the robot in a rendezvous course with the
target. This paper is organized as follows: In Section 2, we
formulate the problem. In Section 3, we give the geometric
representation of the navigation problem. In Section 4, we
derive the kinematics models of the robot and the goal in polar
coordinates. In Section 5, we derive a relative kinematics
model, which models the navigation problem in polar
coordinates. In Section 6, we introduce our control strategy,
and prove the main result. In Section 7, we generalize the
navigation problem to the case where obstacles are present.
Finally in Section 9, we give an extensive simulation study
with various scenarios.

2. Problem Formulation
The workspace W consists of a subset of IR2. Let point O

be the origin of the world coordinates system. The moving
goal (or target) moves in the workspace with maneuvers
unknown to the robot. The path of the goal is denoted by
PT(t) = [xT(t), yT(t)], where (xT, yT) are the goal Cartesian
coordinates in the world coordinates system. In a similar way,
the path of the robot is denoted by PR(t) = [xR(t), yR(t)],
where (xR, yR) are the robot Cartesian coordinates in the
world coordinates system. The aim is to design a closed-loop
control law for the robot steering angle that would guarantee
reaching the moving goal. This can be expressed as PR(tf ) �
PT(tf ), where tf is the interception time. We assume that the
following conditions are satisfied.

• H1: The path of the moving object is smooth, and thus,
does not present sharp jumps.

• H2: The robot is faster than the moving goal. Here, it is
assumed that the robot is a unicycle one.

• H3: The minimum turning radius of the robot is smaller
than the minimum turning radius of the moving object.

• H4: The robot has a sensory system that allows the
detection of the obstacles and provides the necessary
information to the robot about the moving goal and the
obstacles. The influence of the sensory system on the
tracking problem is beyond the scope of this paper.

In this paper, we model the wheeled mobile robot by the
kinematics equations of a unicycle robot. It is important to
note that the method is not restricted to unicycle robots,
but it works for other types of mobile robots as well. We
chose the unicycle model for its simplicity. Since the target’s
maneuvers are not a priori known to the robot, the path-
planning strategy must be elaborated in real-time.

There exist two types of motions that can be accomplished
by the moving goal: accelerating and non-accelerating. An
accelerating goal moves with a time-varying speed or a time-
varying orientation angle. A non-accelerating goal moves
with a constant speed and a constant orientation angle.
Clearly, navigation toward an accelerating goal is a more
difficult and challenging problem.
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Fig. 1. An illustration of the geometry of the navigation problem.

3. Geometric Representation of the Navigation Problem
Our aim in this section is to introduce the geometric
representation of the navigation problem. The robot and its
moving target are shown in Fig. 1 (the robot is denoted by R

and the moving goal or target by T ). We define the following
quantities:

1. The robot’s line of sight LR is the imaginary straight
line starting from the origin of the reference frame and
directed toward the robot’s reference point. The target’s
line of sight LT is the imaginary straight line starting from
the origin of the reference frame and directed toward the
target.

2. σR and σT are the line of sight angles of the robot and the
target, respectively. They represent the angles from the
reference line (parallel to the x-axis) to the lines of sight
of LR and LT, respectively.

3. The line of sight of robot–target is the imaginary straight
line that starts at the robot’s reference point and is directed
toward the target. This line is denoted by LTR.

4. The line-of-sight angle is the angle between the reference
line (parallel to the x-axis) and the line of sight LTR. This
angle is denoted by σTR.

5. The relative distance of robot–target is denoted by rTR,
and is given by

rTR =
√

(xT − xR)2 + (yT − yR)2.

The robot reaches its moving target when rTR(tf ) ≈ 0, with
tf < +∞, where tf is the interception time. The line-of-sight
angle σTR is expressed in terms of the robot and the target
coordinates as follows:

tan σTR = yT − yR

xT − xR
.

Note that σTR and σ̇TR are not defined when the positions of
the robot and the target match. In the next section, we discuss
the kinematics models for the robot and the moving goal.

4. Modeling the Robot and the Goal
The robot is a simple wheeled mobile robot of the unicycle
type. The kinematics equations of this type of robots is given
by

ẋR = vR cos θR

ẏR = vR sin θR

θ̇R = ωR

(1)

where (xR, yR) denote the robot coordinates in the Cartesian
frame of reference, θR is the robot orientation angle with
respect to the reference line that is parallel to the x-axis, vR

and ωR are the robot control inputs representing the linear
and angular velocities of the robot. The target is moving in
the Cartesian frame of reference according to the following
kinematics equations:

ẋT = vT cos θT

ẏT = vT sin θT
(2)

where (xT, yT) denote the target’s coordinates in the Cartesian
frame of reference, θT is the orientation angle of the target
with respect to the positive x-axis, and vT is the target
linear velocity. In this paper, we use polar coordinates
representation of the kinematics equations to model the
tracking problem. Polar coordinates were used by many
authors for controlling mobile robots of the unicycle
type.24,33 In order to derive the equivalent kinematics models
in polar coordinates, we use the following change of variable:

x = r cos σ

y = r sin σ
(3)

where r is the radial variable and σ is the angular variable.
By taking the time derivative of r and σ , we get, respectively

ṙ = ẋx + ẏy

r
(4)

and

σ̇ = ẏx − ẋy

r2
. (5)

The derivation of these equations can be done as follows.
We already know that

r2 = x2 + y2 (6)

and

tan σ = y

x
. (7)

By taking the derivative with respect to time in Eq. (6), we
obtain

2rṙ = 2xẋ + 2yẏ. (8)
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Similarly by taking the derivative of Eq. (7) with respect to
time, we get

σ̇ (1 + tan2 σTR) = xẏ − ẋy

x2
(9)

σ̇

[
1 +

(
y

x

)2]
= xẏ − ẋy

x2
(10)

σ̇ r2 = xẏ − ẋy (11)

which gives

ṙ = xẋ + yẏ

r
(12)

and

σ̇ = xẏ − ẋy

r2
. (13)

Using the robot kinematics equations given in Eq. (1) and
the change of variable given in Eq. (3), we obtain the robot
kinematics equations in polar coordinates

vR‖ = ṙR = vR cos (θR − σR)

vR⊥ = rRσ̇R = vR sin (θR − σR)
(14)

where vR‖ and vR⊥ are the radial and tangential velocities
of the robot, respectively. They represent the robot velocity
components along and across the line of sight LR. Similarly,
we get the following for the moving goal:

vT‖ = ṙT = vT cos(θT − σT)

vT⊥ = rTσ̇T = vT sin(θT − σT)
(15)

where vT‖ and vT⊥ are the radial and tangential velocities of
the target, respectively. They represent the target velocity
components along and across the line of sight LT. By
introducing the change of variable given in Eq. (3), the control
input becomes (vR, θR) instead of (vR, ωR). Our control
strategy is based on the use of the kinematics equations in
polar coordinates. In the next section, we derive a relative
kinematics model that integrates the motion of the robot and
the target, and allows to model the tracking problem.

5. Relative Kinematics Model for
the Navigation Problem
Let us consider the following relative velocity:

ṙTR= ṙT − ṙR (16)

which represents the velocity of the moving target as seen
by the robot. This relative velocity can be broken down into
two components, along and across the line of sight LTR. By
replacing ṙR and ṙT by their values along and across the line
of sight LTR, we get

v‖ = ṙTR = vT cos(θT − σTR) − vR cos(θR − σTR)

v⊥ = rTRσ̇TR = vT sin(θT − σTR) − vR sin(θR − σTR).
(17)

This system gives the velocity of the goal seen by the robot,
along and across the line of sight LTR. v‖ gives the rate of
change of the relative range between the robot and the goal,
and v⊥ gives the rate of turn of the goal with respect to the
robot. The kinematics model given by Eq. (17) takes into
account the velocities and the orientation angles of the robot
and the target, and also the line of sight angle, which is a
geometric quantity. An equivalent model in the Cartesian
coordinates can be written as follows:

ẋd = vT cos θT − vR cos θR

ẏd = vT sin θT − vR sin θR
(18)

where xd = xT − xR and yd = yT − yR. This system gives
the relative velocity of the goal seen by the robot in the
Cartesian coordinates.

6. Navigation in the Absence of Obstacles: Parallel
Navigation Guidance Strategy
Navigation toward a moving goal can be established in the
following two different ways:

1. Pursuit: In this case, the robot follows the path of the
target, where the velocity vector of the robot is always
directed toward the goal.

2. Rendezvous course: In this case, the robot does not track
the path of the goal, but it computes a point ahead of the
goal, where both the robot and the target will arrive at the
same time.

Our strategy is based on the parallel navigation guidance
law, which uses a rendezvous course. This guidance strategy
integrates the kinematics equations of the robot and the target
with geometric rules.49,50 The aim of the parallel navigation
is to put the robot in a rendezvous course with the goal.
Thus, the robot reaches the goal without following the path
traveled by the goal. This can be achieved by controlling the
motion of the robot such that the angle of the line of sight of
robot–target is constant, i.e.,

σTR = constant. (19)

Thus, the robot moves in lines that are parallel to the initial
line of sight. Since the line-of-sight angle is constant, we
have the following for the line-of-sight angle rate

σ̇TR = 0. (20)

From the second expression in Eq. (17), we get

vR sin(θR − σTR) = vT sin(θT − σTR). (21)

This equation gives the relationship between (vR, θR) and
(vT, θT) so that the robot is in a rendezvous course with its
moving goal. Let us put k = vR/vT, where k is the velocity
ratio. Under assumption H2, we have k > 1. From Eq. (21) ,

we obtain the following for the robot steering angle

θR = σTR + sin−1

[
1

k
sin(θT − σTR)

]
. (22)
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Fig. 2. An illustration of parallel navigation.

From Eq. (22), the robot steering angle is a function of
the goal’s maneuvers (vT, θT), the robot linear velocity, and
the line-of-sight angle between the robot and the goal. An
illustration of the parallel navigation is shown in Fig. 2.
The initial line-of-sight angle is LTR(t0), and the initial line-Q3
of-sight angle is σTR(t0) = 90◦. The robot moves in lines
LTR (t1) , LTR (t2), etc. that are parallel to LTR(t0) by keeping
σTR constant and equal to σTR(t0), as illustrated in Fig. 2. The
relative kinematics equations under parallel navigation are
given by

ṙTR = vT‖ − vR‖
ṙTR = vT cos(θT − σTR) − vR cos

[
sin−1

(
1
k

sin(θT − σTR)
)]

σ̇TR = 0.
(23)

The kinematics equations of the robot under parallel
navigation are given by

ẋR = vR cos
[
σTR + sin−1

(
1
k

sin(θT − σTR)
)]

ẏR = vR sin θR

[
σTR + sin−1

(
1
k

sin(θT − σTR)
)]

θ̇R = ωR.

(24)

The parallel navigation can be also expressed in the Cartesian
coordinates. Noting that the line-of-sight angle is constant
under parallel navigation, it is possible to write

yd

xd

= tan σTR = constant. (25)

If we put N = tan σTR = tan σTR(t0), we can write

yd = Nxd. (26)

This means that the projection of the relative distance rTR

on the y-axis is proportional to its projection on the x-axis.
The proportionality factor is simply the tangent function of
the initial value of the robot–target line-of-sight angle. The
relative range of robot–target can be written as

rTR = xd

√
1 + N2 = yd

√
1 + 1

N2
(27)

and the relative range rate varies as follows:

ṙTR = ẋd

√
1 + N2 (28)

= ẏd

√
1 + 1

N2
. (29)

The following result states that the robot navigating under the
parallel navigation law reaches the goal when the previous
assumptions are satisfied.

Proposition Under the control law (22) for the robot steering
angle, and the assumptions stated earlier, the robot reaches
the moving goal successfully.

Proof. In order to prove that the robot reaches the goal,
we proceed by proving that ṙTR < 0, and thus, the relative
range is a decreasing function of time. The proof is based on
the following remarks:

1. Under assumption H2, we have k > 1. The inverse function
of the sine function maps the domain [−1, 1] into [−π

2 , π
2 ],

and since k > 1, we have

sin−1

(
1

k
sin(θT − σd )

)
∈

(
−π

2
,
π

2

)
. (30)

Note that under the parallel navigation, the robot’s radial
velocity along the line of sight of robot–target is given by

vR‖ = vR cos

[
sin−1

(
1

k
sin(θT − σTR)

)]
. (31)

2. The cosine function of x when x ∈ (−π
2 , π

2 ) is always
positive.

From the above two remarks, we have

cos

[
sin−1

(
1

k
sin(θT − σd )

)]
> 0. (32)

Thus, under parallel navigation, the robot’s radial velocity
along the line of sight of robot–target satisfies vR‖ > 0, and it
is possible to write

vR cos

[
sin−1

(
1

k
sin(θT − σd )

)]

= vR

√
1 − 1

k2
sin2(θT − σTR). (33)

Now, we consider the motion of the moving goal.

Case 1: vT‖ < 0

The relative range ṙTR varies as follows

ṙTR = vT‖ − vR‖

ṙTR = −vT

√
1− sin2(θT − σTR) − vR

√
1 − 1

k2 sin2(θT − σTR)

(34)
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Since vT‖ is negative and vR‖ is positive, we have ṙTR < 0;
thus, the relative range is decreasing and the robot reaches
its moving goal.

Case 2: vT‖ > 0

The relative range ṙTR varies as follows

ṙTR = vT

√
1 − sin2 (θT − σTR) − vR

√
1 − 1

k2
sin2 (θT−σTR)

(35)

Both vT‖ and vR‖ are positive. Note that, since k > 1, we have

√
1 − sin2(θT − σTR) <

√
1 − 1

k2
sin2(θT − σTR) (36)

and since assumption (H2) states that vR > vT, we have

vT‖ < vR‖ (37)

from which we get ṙTR < 0, which means that the relative
range between the robot and the goal is decreasing, and the
robot reaches its moving goal. �

The following result deals with the particular problem
when the target moves in a straight line.

Proposition If the moving goal is not accelerating, then
the robot navigating under parallel navigation is also not
accelerating.

Proof. When the goal moves in a straight line with
constant linear velocity, the robot under parallel navigation
also moves in a straight line. The proof is simple, when
the target moves in a straight line, we have θT = constant.
Recall that according to parallel navigation the line-of-sight
angle is constant, i.e., σTR = constant. By considering the
control input for the robot steering angle [Eq. (22)], we
obtain θR = constant. Thus, the robot also moves in a straight
line. �

It is worth noting that the radial velocities of the robot and
the target along the line of sight of robot–target (vR‖ and vT‖,
respectively) are constant when the target moves in a straight
line with k = constant. This can be seen easily from Eq. (23),
where a constant value of θT results in constant values for
vR‖ and vT‖ (recall that σTR is constant under the navigation
law). This result allows us to derive the following result on
the interception time.

Proposition When the goal moves in a straight line with
constant linear velocity, the robot reaches the moving goal
at time

tf = rTR(t0)

vR‖ − vT‖
(38)

with

vR‖ = vR cos(θR − σTR)

vT‖ = vT cos(θT − σTR)
(39)

where rTR (t0) is the initial value of the relative distance of
robot–target.

Proof. The first expression in Eq. (17) can be rewritten as

ṙTR(t) = vT‖ − vR‖. (40)

Since vR‖ and vT‖ are constant, it is possible to write the
solution of the relative range of robot–target as follows:

rTR(t) = [vT‖ − vR‖]t + rTR (t0) (41)

and the interception time corresponds to

rTR(tf ) = 0. (42)

From Eqs. (41) and (42), we get

tf = rTR(t0)

vR‖ − vT‖
. (43)

�

6.1. Heading regulation
In most cases, a heading regulation is necessary in order
to put the robot in a configuration where the application
of parallel navigation is possible. The initial value of the
robot orientation is θR(t0), which may be different from the
orientation angle required by the control law. The heading
regulation is accomplsihed by putting

θ̇R = −K
(
θR − θdes

R

)
(44)

where θdes
R is given by the control law. K is a real positive

number. This approach allows to derive θR(t) to its desired
value from its initial value given by θR(t0). An example is
shown in Fig. 3.

6.2. A comparison with the pursuit
The pursuit is the most classical navigation law used to reach
a moving goal. It is implemented using different types of
sensors. In pursuit, the robot localizes the target and moves
toward it. Here, we present a simple comparison between
pursuit and parallel navigation, where the target moves in a
straight line. The comparison is shown in Fig. 4, from which
we have the following remarks: Parallel navigation leads to

Fig. 3. Parallel navigation after heading regulation.
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Fig. 4. A comparison with pure pursuit.

reaching the goal faster than pursuit. The path of pursuit is
more curved than the path of parallel navigation. This means
that pursuit results in a higher acceleration.

7. In the Presence of Obstacles
The problem of navigation toward a moving goal becomes
more difficult in the presence of obstacles. In this case,
the integration of the local and the global path-planning
algorithms is necessary. The sensory system provides the
robot with the necessary information on the obstacles and
the goal. We suggest to use the parallel navigation guidance
law in combination with an obstacle-avoidance algorithm.
Thus, the robot moves in two modes, the navigation mode
and the obstacle-avoidance mode. We choose an approximate
cell decomposition approach. This approach is simple, and
can be easily integrated with the parallel navigation law.
Initially, the robot navigates using the parallel navigation,
and when an obstacle is detected, the obstacle-avoidance
mode is activated. After the obstacle is avoided, the robot
navigates using the parallel navigation law.

7.1. Obstacle-avoidance mode
The robot and the moving goal move in the workspace
W ⊂ IR2, where W is cluttered with K obstacles Bj ,
j = 1, . . . , K . The region in the workspace formed by the
sum of the obstacles is denoted by Or (Or = ∪K

j=1Bj ), and
Cfree = W − Or is the free space. The robot path must lie in
Cfree. In a cell decomposition algorithm, the workspace W is
broken down into nonoverlapping cells. The size of the cells
can be locally adapted to the geometry of the obstacles. A
cell decomposition of W is defined as a finite collection of
cells εi , i = 1, . . . , M, such that

1. W = ∪M
i=1εi

2. ∀i, ∀j , i = 1, . . . , M, j = 1, . . . M , for i �= j, int(εi) ∩
int (εj ) = φ.

This means that first, the sum of all cells is the workspace,
and second, the cells do not overlap. A cell εi can be classified
as follows:

1. Empty: if the interior of the cell does not intersect with
Or, i.e., int (εi) ∩ Or = φ.

2. Full: if εi is entirely contained in Or, i.e. εi ⊆ Or.

3. Mixed: if it is neither empty nor full.

In order to adapt the parallel navigation to the obstacle-
avoidance mode, we discretize the robot kinematics
equations. Using Euler algorithm, we get

xR(n + 1) = hvR cos[θR(n)] + xR(n)

yR(n + 1) = hvR sin[θR(n)] + yR(n)

θR(n) = σTR + sin−1

[
1
k

sin(θT(n) − σTR)

] (45)

where h is the step size. Recall that σTR is constant and equal
to its initial value in the case of our control law. The integrated
algorithm, which is activated after an obstacle is detected in
the robot active region is the following:

1. Compute [x(n + 1), y (n + 1)] using Eq. (45) .

2. Does [x (n + 1) , y (n + 1)] fall in an empty cell?
yes: move to [x (n + 1) , y (n + 1)], put n ← n + 1 and
go to 1.
no: move to the nearest empty cell to [x(n + 1),
y(n + 1)], put n ← n + 1 and go to 1.

3. Stop when goal is reached.

8. In the Presence of Uncertainties
Our goal here is to present a brief study on the influence
of uncertainties. The study of the navigation problem in
the presence of uncertainty is another difficult and complex
problem that will be considered in our future research.

8.1. Uncertainty in the target position
and orientation angle
Uncertainty in the goal’s position and orientation angle is the
most important part of uncertainty in the navigation problem.
An approach based on odometry is used here. Odometry
is widely used to provide real-time position estimation of
the target. The pose of the target is defined in the form of
estimated values for position and orientation as follows:

XT = [xT, yT, θT]T . (46)

The uncertainty in pose is represented by a covariance matrix
as follows:

CT =

⎡
⎢⎣

σ 2
xT

σxTyT σxTθT

σyTxT σ 2
yT

σyTθT

σθTxT σθTyT σ 2
θT

⎤
⎥⎦ . (47)

The odometric position estimation process is activated at
a regular interval �t . Let �sT and �αT be the change in the
translation and rotation, respectively. We can write

�yT =
[

�sT

�αT

]
. (48)

The accumulated translation and rotation are calculated as

snew
T = sold

T + �sT (49)
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θnew
T = θold

T + �αT. (50)

The change in pose of the target is given by

�XT =

⎡
⎢⎣

�xT

�yT

�θT

⎤
⎥⎦ =

⎡
⎢⎣

�s cos
(
θT + �αT

2

)
�s sin

(
θT + �αT

2

)
�αT

⎤
⎥⎦ . (51)

The target position is estimated as follows and then updated

Xnew
T = Xold

T + �XT. (52)

The estimated position of the target is accompanied by an
estimate of the uncertainty expressed by the covariance
matrix CT. The sensitivity of XT to the observed value is
characterized by the Jacobian matrix J , which is given by

J = ∂XT

∂�YT
(53)

from which we get

J =

∂

⎡
⎢⎣

xT

yT

θT

⎤
⎥⎦

∂�yT
=

∂

⎡
⎢⎣

�s cos (θT)

�s sin (θT)

�αT

⎤
⎥⎦

∂�yT
(54)

which gives

J =

⎡
⎢⎣

cos (θT) 0

sin (θT) 0

0 1

⎤
⎥⎦ . (55)

The Jacobian matrix allows us to write the estimate of the
position as follows:

Xnew
T = Xold

T + J�Y.

Thus, the covariance matrix is updated as follows:

Cnew
T = Cold

T + J TCold
T J.

It is important to note that uncertainty in orientation strongly
contributes to the Cartesian position.

8.2. Uncertainty in the line-of-sight angle
Recall that the line-of-sight angle is given by

tan σTR = yT − yR

xT − xR
. (56)

We put

z = tan σTR = f (xT, yT, xR, yR). (57)

The uncertainty in the input is represented by a covariance
matrix as follows:

CI =

⎡
⎢⎢⎢⎢⎣

σ 2
xT

σxTyT σxTxR σxTyR

σyTxT σ 2
yT

σyTxR σyTyR

σxRxT σxRyT σ 2
xR

σxRyT

σyRxT σyRyT σyTxR σ 2
yR

⎤
⎥⎥⎥⎥⎦ . (58)

The uncertainty in z is then given by

Cz = ∇f CI [∇f ]T (59)

with

∇f =
[

∂f

∂xT
,

∂f

∂yT
,

∂f

∂xR
,

∂f

∂yR

]
(60)

and [·]T stands for the transpose matrix. Simulation examples
under uncertainties in the line-of-sight angle are shown in
Section 9.

9. Simulation
In this section, we use extensive simulation to illustrate
our approach, where different scenarios are considered.
Obstacle-free workspace is considered first. Both acceler-
ating and nonaccelerating targets are considered.

9.1. The case of a nonaccelerating goal
In this case, the moving goal moves with a constant speed and
a constant orientation angle. For this scenario, we consider
a goal moving in a straight line parallel to the y-axis. We
consider two different cases. In the first case, the goal is
approaching the robot (vT‖ < 0), and in the second case,
the goal is moving away from the robot (vT‖ > 0). We have
for the robot vR = 3 m/s, and for the goal, vT = 2 m/s. The
robot and the goal paths for these scenarios are shown in
Figs. 5 and 6. In both cases, the robot navigates in a straight
line and reaches the moving goal successfully.

Fig. 5. Robot’s navigation toward a goal moving in a straight line
(the goal is approaching).
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Fig. 6. Robot’s navigation toward a goal moving in a straight line
(goal moving away).

Fig. 7. Robot’s navigation toward a target moving in a circle
(clockwise motion).

Fig. 8. Robot’s navigation toward a goal moving in a circle
(counterclockwise motion).

9.2. Goal moving in a circle
In this example, we illustrate the robot navigation toward
a goal moving in a circle. The paths of the robot and the
target are shown in Figs. 7 and 8. In Figs. 7, the robot moves

Fig. 9. Robot’s navigation toward a goal moving in a sinusoidal
motion.

clockwise, and in Fig. 6, it moves counterclockwise. In both
cases, the robot reaches the moving goal successfully.

9.3. Goal moving in a sinusoidal motion
Goal moving in a sinusoidal motion is among the most
difficult maneuvers. This case is considered for simulation,
and is illustrated in Fig. 9. It turns out that the robot path under
our navigation law is also sinusoidal, as shown in Fig. 9.
The robot reaches the moving goal successfully even for this
difficult type of motion.

9.4. Navigation for different velocity ratios
As shown in Eq. (22), the robot steering angle is a function
of the velocity ratio. Our aim is to compare different velocity
ratios, namely k = 1.25, 1.5, and 2. The navigation toward a
moving goal using these values of k is illustrated in Fig. 10.
Curve 1 represents the path for k = 2, curve 2 for k = 1.5,
and curve 3 for k = 1.25. Points P1, P2, and P3 correspond to
the interception points for k = 2, 1.5, and 1.25, respectively.
The path traveled by the robot is different for different values
of the velocity ratio. The robot reaches its moving goal faster
for higher values of k.

Fig. 10. Comparison of the robot’s path for different velocity ratios,
Curve 1: k = 2; Curve 2: k = 1.5; Curve 3: k = 1.25. P1, P2, and
P3 are the interception points for k = 2, 1.5, and 1.25, respectively.
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Fig. 11. Robot’s is navigation toward a goal moving in a straight
line in the presence of obstacles (first scenario).

Fig. 12. Robot’s navigation toward a goal moving in a straight line
in the presence of obstacles (second scenario).

Fig. 13. Robot’s navigation toward a goal moving in a sinusoidal
motion in the presence of obstacles (first scenario).

9.5. In the presence of obstacles
The robot aims to reach the moving goal with the constraint
that PR(t) lies in Cfree. Both navigation and obstacle-
avoidance modes are used. Five scenarios are considered
here. In the scenario of Figs. 11 and 12, the goal moves
in a straight line. More difficult scenarios are shown in
Figs. 13–15, where the target performs a sinusoidal motion.

Fig. 14. Robot’s navigation toward a goal moving in a sinusoidal
motion in the presence of obstacles (second scenario).

Fig. 15. Robot’s navigation toward a goal moving in a sinusoidal
motion in the presence of obstacles (third scenario).

Fig. 16. Robot’s navigation toward a goal moving in a straight line
in the absence of uncertainties.

The robot performs both tasks, navigation toward the goal
and obstacle-avoidance, successfully.

9.6. In the presence of uncertainties
We also consider one simulation example where the robot
moves in a straight line. We also consider uncertainties in
velocity ratio and in the line-of-sight angle. The scenario in
the absence of uncertainties is shown in Fig. 16. Figure 17
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Fig. 17. Robot’s navigation toward a goal moving in a straight line
in the presence of uncertainties in the line-of-sight angle.

Fig. 18. Robot’s navigation toward a goal moving in a straight line
in the presence of uncertainties in the velocity ratio.

shows the robot’s path in the presence of uncertainty in the
line-of-sight angle. Note that the path becomes a straight
line after a certain time. This is due to improvement in
the estimation of the line of sight when the robot gets
closer to the target. Figure 18 shows the robot’s path in
the presence of uncertainty in the velocity ratio. Clearly,
even under uncertainties, the robot reaches the goal. Also
filtering techniques can be used to significantly improve the
navigation in the presence of uncertainties.

10. Conclusion
In this paper, a method for robot navigation toward moving
objects with unknown maneuvers is presented. This is a real-
time problem, since the goal maneuvers are not a priori

known to the robot. Our strategy is based on parallel
navigation. We first derive a navigation model representing
the motion of the target as seen by the robot. The aim of the
control strategy is to keep the line-of-sight angle constant
between the robot and the target. Thus, the robot moves in
lines that are parallel to the initial line of sight. We considered
uncertainties in the target’s position and the line-of-sight
angle. It is shown that uncertainty affects the path, but it
does not affect interception. This problem will investigated

in more detail in our future research. In the presence of
obstacles, two navigation modes are used, namely, parallel
navigation and obstacle-avoidance mode. It is proven that the
robot navigating using parallel navigation reaches the moving
target successfully under some conditions. The navigation
strategy is illustrated using an extensive simulation, where
various scenarios are considered.
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