
A RISC Virtual Machine for Internet Programming

Boumediene Belkhouchea, Monisha Pulimoodb, Mark McKenneyc

aFaculty of Information Technology, UAE University, Al Ain, UA

b.belkhouche@uaeu.ac.ae
bDepartment of Computer Science,The College of New Jersey

pulimood@tcnj.edu
cDepartment of Computer Science, Texas State University-San Marcos

mckenney@txstate.edu

Abstract

We discuss the design, implementation, and evaluation of a RISC virtual ma-
chine (RVM) supporting mobile computations. Our Mobile Computational
Model defines the necessary structures to support the Internet programming
paradigm. Mobility in a heterogeneous environment and efficient execution
of mobile computations are assured through the RVM. A prototype imple-
mentation of the model, particularly the RVM, provides a proof-of-concept.
Preliminary testing shows encouraging results leading us to conclude that
our RVM is a viable approach for handling the heterogeneity of the Inter-
net, while providing an efficient, fast and secure environment for mobile
computations.

Keywords: mobile computation, closure, RISC virtual machine, Internet
programming

1. Introduction

The focus of this research is the formal design, efficient implementation,
and analysis of a computational model for mobile compuations to support
Internet Programming.This new programming and architecture paradigm
impacts the semantics, implementation, and run-time structures of program-
ming languages for the Internet.

The general trend is for the resources available on the Internet to become
seamlessly accessible to users as if they resided on an individual desktop,
thus making the Internet look like a personal computing platform. To realize
such a vision, a framework to support mobile computations is required. A
mobile computation may be a simple command, a query, or a sophisticated
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program that roams through the Internet to efficiently accomplish its task.
Traditional languages and environments being adapted to this new task do
not seem to effectively the requirements for Internet programming. That is,
there is a need for an Internet Computational Model.

Heterogeneity of computer systems and architectures has been challeng-
ing the research community since the late 1950’s. Attempts at providing a
homogeneous computational model were initiated by the UNCOL (UNiver-
sal COmputer Language) proposal [1]. Unfortunately, a universal language
unifying various languages and architectures proved overly complex. Subse-
quent developments (e.g., Pascal P-code) restricted the scope to one single
language [2]. The topic went dormant for a while until the advent of “inter-
net programming” which engendered a fundamental issue, i.e., the issue of
mobility of computations.

Mobility is probably the most important and critical concept introduced
by Internet programming. It impacts the semantics of the naming structures,
the typing system, and the run-time structures. Mobility can be defined as
the ability of an entity to move from one execution site to another. Whether
it is data or computation, a mobile entity must always be consistently in-
terpreted at each site it visits. There are several forms of mobility: data
mobility, code mobility, agent mobility, and computation mobility, with this
last form being the most general. Mobility of a computation involves a
context-switch and transfer from the current execution site to another site
for resumption. This implies a change in the execution environment, the
representation, and the bindings (e.g., variables, parameters, I/O files, win-
dows). To support this transfer, the entire “closure” of the computation is
moved. A closure consists of the code and the run-time structures. The run-
time structures typically include the data area (symbol table and values),
the general registers, the special registers, and the heap. For example, in
a stack-based implementation, the run-time structures consist of the stack
of activation records, the display vector, the heap, and the registers. The
ability to interpret closures uniformly (i.e., interoperability) between differ-
ent implementations can be supported by at least two approaches (there
are variations that fall in-between). The first approach provides a universal
”virtual machine” that resides at every site over the Internet. The Internet
is thus conceptually reduced to a single uniform machine. That is, the rep-
resentation and interpretation of closures are made uniform throughout the
Internet. The second approach requires the translation of the closure of a
mobile computation from one machine representation to another while main-
taining the intended semantics. This translation process is highly complex,
for it involves dynamically mapping from one encoding to another several
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diverse structures, such as instruction sets, run-time structures, heap lay-
out, and registers. In both approaches, the ”name space”’ associated with
a computation cannot be determined statically. Instead, it has to be recon-
structed dynamically upon every move to recover the environment and the
bindings. The name space of a computation consists of all the names that
the computation can reference. These include variables, types, functions,
labels, files, and library resources.

In Figure 1, we present a classification of some existing languages and
systems based on the kind of support they provide for mobility. Languages
that provide support for on-the-fly compilation and mobility produce code
that is ‘on-line portable’ or ‘mobile’. Such languages can further be char-
acterized by the extent of support they provide for mobility. They may
support varying degrees of mobility through either code mobility, agent mo-
bility, or closure mobility. Code mobility requires the transfer of the source
code for execution from one site to another. Agent mobility allows au-
tonomous agents and their closure to migrate from site to site. Closure
mobility supports the migration of an executing code and its closure, thus
allowing partial execution at a given site [3]. The complexity of the compu-
tational model increases as we move from code, to agent, to closure mobility.
Several languages / systems to support mobility over the Internet have been
proposed and are being used. Among the many variations are Java [4, 5],
Telescript, Safe-Tcl, Emerald [6, 7], Distributed Oz [8, 9], Inferno [10, 11],
Obliq [12, 13], Ambients[14, 15], Omniware [16], Mobile UNITY [17], NO-
MADS [18, 19], ARA, TACOMA [20, 21], µCode [22], D’Agents [23, 24],
MobileML [25], FACILE, and many extensions of the Java Virtual Machine
(e.g., Aglets [26], Odyssey, Voyager [27, 28]). Attempts at modeling mobil-
ity fall into three categories: (1) code mobility (Java, Tcl) where program
code, either source text or bytecode, is moved; (2) agent mobility (Tele-
script, D’Agents) where a self-contained object is moved; and (3) closure
mobility (Obliq) where an active computation and its context are moved.
Cases 1 and 2 are classified as weak mobility, and case 3 is classified as strong
mobility.

Our main goal then is to develop a computational model to support
mobile computations by addressing design and implementation issues asso-
ciated with closure mobility. The key contributions of this research are:

• Design of a mobile computational model specifically for Mobile Com-
putations, that provides efficient support for mobility and manages
the heterogeneity of the Internet.
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Figure 1: Classification of Languages and Systems Based on Mobility Support

• Design and prototype implementation of a mobile computation sys-
tem comprising of a mobile computation language for writing mobile
computations, a mobile computation manager that manages the ad-
ministrative aspects of mobile computations, including security, com-
munication and state of execution, and a RISC-based virtual machine
that executes mobile computations, starting from the point where they
left off execution at the previous host.

• Optimization to improve efficiency.

• Development of an abstract specification of the RVM to enable us to
support formal analysis of the behavior of the RVM.

We overview the design of our mobile computational model in section 2.
In section 3, we describe the major components of the RVM and its run-
time structures. A comparison of the RVM and the Java Virtual Machine
is elaborated in section 4. In section 5, we use transition rules to capture
the behavior of the computational model. Our results are summarized in
section 7.
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2. A Mobile Computation Model

Our model for Internet Programming, the Mobile Computational Model,
is based on closure mobility and has been specially designed to support
the Internet Programming paradigm. Our proposed RISC virtual machine
(RVM) is at the core of our model and provides the conceptual homogeneity
required for Internet Programming. We consider a mobile computation to be
a computational unit that starts execution at one site and may subsequently
move to another site to continue execution. Such a transfer may be initiated
at any point of execution. The current state of execution is transferred along
with the mobile computation so that execution can be safely resumed at the
point where it left off. Closure mobility supports the migration of an exe-
cuting code and its closure, thus allowing partial execution at a given site.
A host may deny resources to a computation for security or other reasons,
in which case the computation is rejected and sent to another host. Com-
putations that merely hop from site to site tying up network resources are
terminated. We make no assumptions about the architecture of the accept-
ing host, or whether it is stationary or mobile. Figure 2 gives an abstract
view of the possible states and transitions of the mobile computation.

In our mobile computational model, a programmer can write an appli-
cation in the Mobile Computation Language - a high level object-oriented
language. The application is compiled to a mobile computation after rig-
orous type-checking. The Mobile Computation Manager (MCM) sends the
computation to the destination host. The MCM at the destination receives
the computation and verifies its credentials. If the computation has the re-
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quired permissions, it is executed by the RVM. On encountering a ‘move’
command the mobile computation suspends execution. The MCM captures
the closure and sends the mobile computation and its closure to the specified
host. When the computation completes execution, the MCM sends it back
to the originating host. Figure 3 shows a schematic of the process flow.

Compiler Mobile Computation Computation Results
Originator

Typechecker

Mobile ComputationHigh Level 

Manager

code and 
execution

current state

execution

previous state
code and 

of execution of execution

Execution
Environment

Application
Programmer

Figure 3: Mobile Computation Process Flow

We conceptualize the Internet as a collection of hosts each set of which
belongs to a computational subnet based on certain properties, such as ac-
cess rights and resources. A mobile computation is given permission to
execute on specific hosts. The hosts within the computational subnet of
a mobile computation are said to be its ‘domain’. Hosts in a computa-
tional subnet may have varying architectures. The Mobile Computation
Manager present on every host in the computational subnet creates a ho-
mogeneous substratum and facilitates execution of a mobile computation.
Figure 4 shows the structure of the computational subnets. The Internet
(big blob) consists of several subnets (nested blobs). Within each subnet,
mobile computations (MCx ) roam. A meta-database to keep track of mobile
computations is maintained within each subnet.

2.1. Mobile Computation

A mobile computation consists of the code to be executed, its closure
including the point of resumption of execution, and the headers contain-
ing information about the locations to be visited, the type of computation,
and user identification. These headers provide the necessary information to
the Mobile Computation Manager to enable it to initiate the appropriate
actions. Figure 5 shows the anatomy of a mobile computation.

A ‘live’ mobile computation . is one that has been created, and has not yet
been terminated. It may be in the process of being transmitted from one

6



XMC

DMC

EMCFMC

Computational Subnet

CMC

BMC

AMC

of Mobile Computation E

− Mobile Computation X

MC Host 5Host 1A
MC Host 9Host 6B

Host 7Host 4G

Current LocationOwnerCID

Meta−databaseServer

Internet

MC

GMC

Figure 4: Computational Subnets

Headers (including communication

destination, path etc.,
identifying information about
type of computation, etc.)

Closure of the state of execution

Computation Code (methods, classes etc)

information like source,

Figure 5: Anatomy of a Mobile Computation

7



host to another, currently being executed at some host, or waiting at a host
for the some ‘action’ by a Mobile Computation Manager (MCM).

An ‘action’ . It may be to transmit a computation to another host; to
assign some resource at a host to a computation; to obtain information
from a mobile computation; to send information to a mobile computation;
or to terminate a computation. Resources may include memory, processors,
software applications, and hardware devices.

A ‘terminated’ mobile computation . It is one that has been been halted by
the MCM due to some error condition. If the Mobile Computation Manager
is unable to resolve the exception, the terminated computation is sent back
to the originator for appropriate handling of the situation.

A ‘completed’ mobile computation . It is one that has successfully completed
execution. Such a computation can be sent back to the originator with the
results.

2.2. The Mobile Computation Manager

Figure 6 shows the architecture of a host component of the mobile com-
putational model. It consists of a high-level language (HLL) translator, a
Mobile Computation Manager (MCM), and a RISC virtual machine (RVM).

The Mobile Computation Manager (MCM) resident on a host is respon-
sible for managing the mobile computations that wish to execute at that
host. It is also responsible for safeguarding the host from malicious or inse-
cure mobile computations. It ensures that only valid mobile computations
with appropriate access rights are allowed to execute. Some of the com-
ponents of the Mobile Computation Manager and the interactions between
them are shown in Figure 7.

The MCM may be viewed as a daemon process that lies dormant within
the operating system until it is informed by the Event Monitor that there is
a change in the current state of the mobile computation environment. The
Activity Manager initiates and oversees the various tasks performed by the
MCM (refer to Figure 8). It determines what the mobile computation is
required to do next and places it in the appropriate queue.

A meta-database, stored on a server in the system, maintains overall
information about each host in the system to facilitate the process of locating
a mobile computation. Depending on the size of the system, the meta-
database may be replicated on several servers at strategic points in the
system.
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2.2.1. Local Management

Each host in the mobile computational model maintains information
about the mobile computations initiated by it, i.e. the computations it
‘owns’. When a mobile computation is created, the MCM gives it a unique
computation identifier (CID). This CID is based on the id of the user who
created the computation, the id of the location where it was created, and the
time it was created at. An entry is then made in the host’s database, for that
computation. A closure ‘map’ is also created for the mobile computation
and stored in the database. At this point it will be empty. The programmer
may specify a ‘maximum number of hops’ for the computation. This will
limit the maximum number of hosts it is allowed to visit without execution,
that is without a change in closure, and will prevent aimless wandering of
the mobile computation. When the computation is sent to another host,
the computation’s entry is updated with all this information and that about
the destination. The Queue Administrator manages the various queues like
the Execution Queue, Load Queue, Unload Queue, and Move Queue. The
structures required for execution of the mobile computation, including the
current state of execution (activation records and program counters), are
generated and loaded by the Loader component, in preparation for execu-
tion. When a ‘move’ operation is encountered, the current state and closure
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of the execution is captured by the Unloader in preparation for the transfer
of the computation to another host.

2.2.2. Security

A computation is allowed to execute only on the hosts in its domain.
On arrival of a mobile computation, the Security Administrator decrypts it
and verifies its credentials by checking header information associated with
the mobile computation. The MCM first checks if the host is in the domain
of that computation. If it is not, the computation is rejected and queued
to be sent to the next host in its domain. If it is, the computation is
verified for authencity. Insecure or illegal computations are queued to be
sent to the originating host. If for some reason, the origin is unknown,
the computation is assumed to be malicious and is ‘terminated’. Once the
identity of the computation has been verified, the MCM checks to see if
this is the computation’s first visit to the site. If it is, the MCM creates a
new entry for it. If not, the closure map for the previous entry is checked
against that of the computation. The MCM also checks if the computation
has been assigned a ‘maximum number of hops’. If the maps are identical
there is a high chance that the computation is merely hopping from one
host to another. This could be because it was genuinely unable to find the
resources it needs, or it could be a virus that is attempting to tie up network
resources. In either of these cases, or if the ‘maximum number of hops’ has
been exceeded, the mobile computation is rejected and queued to be sent to
the originating host for remedial action. If all the necessary conditions have
been satisfactorily fulfilled, the mobile computation is queued for execution
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Figure 8: The Activity Manager handling the arrival of a new mobile computation

by the Activity Manager. Otherwise, it is rejected and added to the MOVE
Queue. The Activity Manager updates the database with information about
the new computation. During execution the computation is also monitored
to ensure that it does not exceed the resource usage limits. If there is a
resource overrun, the execution is halted. Before a mobile computation is
transferred to another host, it is re-encrypted by the Security Administrator.
The Activity Manager makes the necessary updates in the database and
sends the computation to the MOVE Queue.

2.2.3. Communication

A computation may communicate with other live mobile computations
by exchanging ‘parcels’ under closely controlled circumstances. This is to
avoid unsafe data being passed to a verified computation in an attempt to
subvert it or its host. During execution, a mobile computation may en-
counter an instruction to communicate the values of some variables (give
information) to another mobile computation. This information is packaged
into a parcel and addressed to the recipient computation. Since the compu-
tation has been verified to be trustworthy, it is assumed that the parcel is
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safe. The Communication Administrator then sends out a message to the
recipient informing it that the parcel is waiting for it. A computation, MCA,
may encounter a requirement to obtain information from another computa-
tion, MCB . The MCM checks if there is a parcel from MCB addressed to
MCA on the same host. If the parcel is not at the current host, the MCM
checks for any messages indicating that MCA has a parcel waiting for it. If
such a message is found, the parcel is tracked and transferred to the cur-
rent site. Once the parcel is found and received at the site, its contents are
verified for security purposes and then handed over to MCA for its use. If
the parcel is not found, the computation is informed so that it can either
wait for the parcel or continue execution without it. If the computation
decides to wait for the parcel, the MCM frees up all resources being used by
it and moves it into a wait state, so that it does not tie up any resources. A
parcel within this model can only be accessed by the mobile computation it
is explicitly addressed to. This prevents unauthorized accesses to data. The
Communication Administrator also monitors the network to ensure that the
route specified in the mobile computation is still valid. Any changes to the
network, e.g. the next host on the route is currently unavailable, may require
modifications to the route.

At periodic intervals the MCM sends an update about the mobile com-
putations in its database to the other hosts in the model. Terminated and
completed computations that are no longer physically present at the host
are removed from its database. Any unclaimed parcels addressed to such
computations are also destroyed.

3. The RISC Virtual Machine (RVM)

The virtual machine in the Mobile Computation System is modeled after
the RISC computer architectures. We postulated that RISC-based virtual
machines proffer several advantages over CISC-based machines. The Java
Virtual Machine (JVM) is a fairly ubiquitous CISC-based virtual machine.
Therefore, we analyzed the JVM instruction set ([4], [29]) in order to elim-
inate specialized instructions and to replace them with simpler more gen-
eral RVM instructions. The obtained instruction set is small resulting in a
lightweight virtual machine. The size of the RVM instruction set is about
one-fifth the size of the JVM instruction set.

As shown in Table 1, each RVM instruction is a fixed simple pattern of
the form:

<index> <opcode> <operand>
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where index is the index of the instruction in the code for this method and
opcode is the instruction’s opcode.

3.1. The Run-time Structures

At an abstract level we view capture the behavior of the RVM by the
state transtion diagram shown in Figure 9. The necessary run-time struc-
tures of the RVM (see Figure 10) to support this behavior are described
below.

Program Counter Stack. The program counter stack (PC Stack) keeps track
of the current instruction being executed. It also maintains information
about the return point for each calling function.

Object List. The object list maintains information about each object instan-
tiated during execution.

Permanent Activation Record (PermAR). The permanent activation record
(PermAR) maintains information about the attributes of each object instan-
tiated. References to the start and end points of an object’s attributes are
maintained by the object in the object list.
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Table 1: RVM Instruction Set

Opcode Operand Description

add / sub / mul / div type arithmetic operations

and / or type logical operations

cmpeq / cmpne / cm-
ple / cmplt / cmpge /
cmpgt

type comparison operators

endmove location indicates end of code segment to be executed
at the current location

get / put type user input / output

goto index jumps to instruction at index

ifcmp index jumps to instruction at index depending on
the value at the top of the execution stack

invoke object name locates the object referred to by object name

jsr method name starts execution of function referred to by
method name of the object object name

load variable name/
constant

pushes reference to variable name or value of
constant onto stack

move location initiates migration of mobile computation to
location

neg type negates value

ret type returns value to calling function

stop method name indicates end of code for the method

store type stores value of top element on stack into the
variable
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Temporary Activation Record (TempAR). The temporary activation record
(TempAR) maintains information about the local variables and parameters
for a method. References to the start and end points of the variables of a
method are maintained by the program counter item for that method in the
program counter stack.

Execution Stack. Each instruction in the code is implemented as a sequence
of ‘push’ and ‘pop’ operations on the execution stack. An item in the exe-
cution stack stores either the value of a constant or a reference to a variable
/ attribute in one of the ARs.

represents the run-time structures of the RVM.

3.2. Code Execution

Before execution can commence, the code for the mobile computation
is loaded into the data structures shown in Figure 11. At the very start
of execution, the program counter stack, the object list, and the activation
records are empty. The first object instantiated is ‘Me’ for the main object
being executed. The attributes of this object are loaded into the PermAR.
The first method executed is ‘main( )’ which belongs to the ‘Me’ object. Any
variables required for this method are loaded into the TempAR. Entries are
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Figure 11: Mobile Computation Data Structures

created in the relevant ARs for any attributes or variables that may be
objects with a reference to the parent class. However an object is actually
instantiated only when it is used for the first time. This design decision was
made with a view to reducing closure overheads.

A program counter item is created with information about the current
object being operated on (in the first instance this is ‘Me’), the current
method being executed (in the first instance this is ‘main’), the current
instruction being executed, and references to the start (head) and end (tail)
of the variables and parameters for the method in the TempAR.

Scope verification is done at the time of compilation of the high-level
source code. During the execution of the instructions in a method, there
may be a call to another method. If the method belongs to the same object,
the method can be referenced directly. If the method belongs to a different
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object, the object list is first checked to see if it has already been instantiated.
If this is the first use of the object, it is instantiated and added to the
object list. The method is then referenced for that object. The top item
on the program counter stack stores information about the next instruction
to be executed when the control returns to the calling method. A new
program counter item is created with information about the called method
and pushed onto the program counter stack. The TempAR is updated and
values of any parameters are updated as required. The top item of the
execution stack contains a reference to the variable or attribute where the
return value is to be stored.

A method completes execution when it encounters the ‘stop method’
instruction. The value to be returned is pushed onto the execution stack,
the references to the TempAR are deleted and all entries in the TempAR
for this method are removed. If an object in the object list was local to the
method, it is also removed from the object list along with references to its
attributes, and the corresponding entries in the PermAR. The top item in
the program counter stack is popped and the control returns to the new ‘top
of stack’, i.e. the calling function.

If a ‘move’ operation is encountered before execution is completed, the
Unloader captures the state of each of these structures and includes them
as part of the mobile computation. On receipt by the new host, the closure
is loaded back into the data and run-time structures in the execution area
by the Loader component of that host’s MCM.

A computation completes execution when the program counter stack is
empty. At this time all the other run-time structures are checked to ensure
that they are empty.

Memory binding for simple variable / attributes occurs at load time,
while that for complex (user-defined) data types occurs at run-time. This
implies that if a declared object is never used, it is never instantiated.

During the execution of the instructions in a method, there may be a call
to another method. If the method belongs to the same object, the method
can be referenced directly. If the method belongs to a different object, the
object list is first checked to see if it has already been instantiated. If this
is the first reference to the object, then the object is instantiated and added
to the object list. The top item on the program counter stack will store
information about the next instruction to be executed when the control
returns to the calling method. A new program counter item is created with
information about the called method and pushed onto the program counter
stack. The Temp AR is updated and values of any parameters are updated
as required. The top item of the execution stack contains a reference to the

17



variable or attribute where the return value is to be stored.
To maintain portability of the mobile computations, hardware-specific

memory usage, like use of registers, is avoided.

4. Analysis of the RVM

As a proof-of-concept, we implemented a prototype of this Mobile Com-
putational Model as the Mobile Computation System. In order to be able
to test generation and execution of mobile computations in the prototype,
the system includes an object-oriented programming language, the Mobile
Computation Language. The system also includes an implementation of the
MCM and a RISC-based virtual machine. The rest of the implementation
was written in the C programming language. The implementation is not
specialized or optimized for any architecture, so it can be compiled onto any
architecture that supports a standard C compiler.

4.1. Performance Evaluation Environment

Mobility of the computations among the Sun SPARC workstations (run-
ning the Solaris operating system) and PCs (running the ‘cygwin’ environ-
ment) in our department was tested. A number of small programs were
written in MCL and compiled to mobile computations. Identical programs
were written in Java and compiled to Java bytecodes. The programs each
showcased a specific aspect of computation, like simple arithmetic, if-then-
else statements (branch), while loops (iteration) and function calls. The
Unix program ‘Ptime’ was used to measure the user and system execution
times for programs with precision to a millisecond. To minimize the effect
of fluctuations in the system load, each program was run 60 times and the
average execution time was taken. Scripts written in Perl were used to per-
form the actual runs and compute the averages. We utilized the ‘javap’
disassembler available with the JVM to obtain human-readable code from
the Java bytecode for analysis purposes. Since the JVM does not support
migration, we could not compare this feature.

4.2. Contrasting the Instruction Sets

The JVM instruction size is variable due to the varying number of
operands. An instruction encodes in one step what can be encoded with
simpler instructions in several steps. Some of the information required for
the execution of the instruction is implicitly specified in the opcode itself.
Other information is gained by popping the current stack. Each Java in-
struction is of the form:
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<index > <opcode> [<operand1> [<operand2> ...]] [<comment>]

where <index> is the index of the opcode of the instruction in the array
that contains the bytes of JVM code for this method and <opcode> is the
instruction’s opcode. There may be 0 or more operands for the instruction.
The optional <comment> is in Java-style end-of-line comment syntax. Since
the number of operands can vary and the comment is optional, the size of
the instruction can vary.

By carefully evaluating each instruction in the JVM instruction set, we
eliminated several specialized instructions and replaced them with simpler,
more general RVM instructions. For example, opcodes 21 - 53 in the JVM
instruction set are all variations of the load instruction. Replacing all JVM
instructions of the form:

<t> load <n> and <t> load index

(where t indicates the data type, e.g i for integer, n indicates the constant
in the constant pool, and index specifies the offset of the location of the
variable)

uniformly by an RVM instruction of the form:
load operand

where operand is a constant value or a reference to a variable) results in a
drastic reduction of instructions. As mentioned earlier, the size of our RVM
instruction set is thus about one-fifth the size of the JVM instruction set.

4.3. Computation Size

We measured the physical size of the code generated in terms of the
number of bytes. This aspect is important since network transfer traffic and
speeds will be affected by the physical size of data being transmitted. Figure
12 shows the graph comparing the sizes of the code in bytes. MC refers to
Mobile Computation and BC refers to JVM bytecode.

From the results it is apparent that the size of the JVM bytecode is a
little smaller than that of the corresponding mobile computation, for most
of the programs evaluated. For programs with function calls however the
reverse is true. The reasons for these differences are possibly the following:

• The mobile computation always includes the header information (route
and closure), while the JVM bytecode does not contain such informa-
tion. This would add some overhead to the size of the mobile com-
putation. However as the size of the program increases, the ratio of
header to code will decrease in the mobile computation.
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Figure 12: Size Comparison

• A task that requires one complex JVM instruction may require more
than one simple RVM instruction. However, for applications that have
several operations not directly supported by the JVM, the number of
instructions required will be more than that required by the RVM.

• Function calls in Java require considerable more information regard-
ing the stacks and parameters to be maintained, thus increasing the
overheads for the bytecode.

• The compression technique used for the bytecode is more efficient than
that used for the mobile computation, resulting in a smaller size of
code.

Improvements to the compression technique used in our system will help to
reduce the size of the mobile computation. Hence we do not consider the
physical size of the code to be a negative factor for the mobile computation.

We also compared the number of instructions in the JVM bytecode
against that for the mobile computation. We display our findings in Figure
13.

The data types we used for these programs were either ‘integer’ or ‘real’.
Since the JVM has specialized support for these data type for most of the
basic operations, we expected the bytecode to have fewer instructions than
the mobile computation for most of the programs. In actuality this difference
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Figure 13: Comparing the number of instructions in JVM Bytecode and Mobile Compu-
tation

was marginal. For programs with operations on float values we found that
both the bytecodes and the corresponding mobile computations had the
same number of instructions.

4.4. Execution Time

An instruction with a fixed length can be loaded into the processor in
one cycle. For an instruction with a variable length, on the other hand,
the processor will first have to decode the instruction to find out whether
there are any operands, and if so how many. The loading can therefore take
several cycles depending on the length of the instruction and the number of
operands. A JVM instruction has variable length, so the time taken to load
it into the processor can vary. We denote this time by ‘x’ where x > 1. The
time taken to decode and locate a JVM instruction in the instruction set is
denoted by ‘y’. The time taken for constant pool resolution is denoted by
‘w’ where w ≫ 1. The time taken to decode and locate a RVM instruction
in the instruction set is denoted by ‘z’, where z ∼= y ∼= 1, x > y, and x > z.
Table 2 provides a theoretical comparison of the execution times for some
JVM operations and the corresponding RVM operations. From the above
examples we find that an operation on an integer - which is a ‘privileged’
data type - may be more efficient in the JVM than in the RVM. Operations
on less ‘privileged’ data types degrade performance of the JVM. Memory
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Table 2: Comparing Execution Times for the JVM and RVM

Operation JVM OC RVM OC # JVM cycles # RVM Compare JVM
cycles and RVM

load integer onto iload load data 3 + x + y 4 + z JVM ∼= RVM
stack ∼= 4 + x ∼= 5

load character iload load data 3 + w + x + y 4 + z JVM > RVM
data onto stack ∼= 4 + w + x ∼= 5
add integers iadd add int 4 + x + y 5 + z JVM ∼= RVM

∼= 5 + x ∼= 6
add floats fadd add float 4 + x + y 5 + z JVM ∼=RVM

∼= 5 + x ∼= 6
integer comparison if icmplt cmplt 5 + x + y 8 + 2z JVM < RVM

if cmp ∼= 6 + x ∼= 10
double comparison dcmpl cmplt 7 + 2x + 2y 8 + 2z JVM ∼= RVM

iflt if cmp ∼= 9 + 2x ∼= 10
char comparison internal op cmplt 9 + 2w + x + y 8 + 2z JVM > RVM

if icmplt if cmp ∼= 10 + 2w + x ∼= 10

usage and performance in the RVM are consistent regardless of the data
type being operated on.

We measured the actual time taken in seconds to execute the programs
we evaluated in the previous sections. Figure 14 shows the comparison chart
for our observations. We find a marked difference in performance of mobile
computations and the corresponding bytecode. The mobile computations
consistently executed faster than the bytecodes. This was in spite of the fact
that neither the mobile computation nor the RVM have been optimized. In
contrast, the JVM implementation has gone through several iterations and
improvements. The bytecode does make use of the constant pool to speed
up execution. Therefore, we would expect the JVM’s performance to have
been superior to that of the RVM in most cases. These results appear to
validate our assertion that a RISC-based machine will perform better than
a CISC-based machine.

4.5. Support for closure mobility

The JVM was not originally intended for mobile applications and does
not support capture of the closure of a computation. A Java applet must be
executed in its entirety at any host, although it is considered to be ‘online
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Figure 14: Comparison of execution speeds

portable’ or ‘mobile’. Therefore while the JVM supports ‘weak’ mobility, it
does not support ‘strong’ mobility. On the other hand, the RVM has been
designed specifically for mobile computations. Direct support for mobility
and communication are provided in the RVM instruction set. Capturing the
closure of a computation at any point is inherent in the system. Movement
of the mobile computation is initiated by the ‘move’ construct.

5. Specification of the Abstract Mobile Computation Model

By providing a formal specification we can abstract away from the details
of the implementation of the Mobile Computational Model and focus on its
behavior. In this section we develop a formal specification. The notation,
definitions, and a partial list of rules are summarized in the following tables.
Table 3 describes the abstract syntax of the machine. Table 4 describes the
various run-time structures, the major ones being the closure (configuration)
Γ and associated components, such as stacks. Sample rules in tables 5
through 7 describe the various transition rules that affect the closure of a
mobile computation.

5.1. Operations on the Execution Stack Σ

The executing environment Γ is composed of the program counter stack
Π, the execution stack Σ, the list of objects that have been instantiated
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Table 3: Syntactic Definition of the Abstract Machine

Syntactic Definition Description

ins ::= i opc opr A RVM instruction consists of the in-
dex, the opcode and the operand

opc ::= aop | cop | bop | neg | get | put opcode encodes an operation that
| invoke | jsr | ret | stop can be performed by the RVM
| move | endmove | goto | ifcmp
| getparcel | makeparcel | load | store

opr ::= τ | ρ | θ | φ | δ | ω | const | ι | µ | χ an operand is argument to operation.

aop ::= plus | minus | division | multiplication arithmetic operator

cop ::= less than | less than or equal to comparison operator
| greater than | greater than or equal to
| equal to | not equal to

bop ::= and | or boolean operator

and accessed so far Ω, the permanent activation record Φ, the temporary
activation record ∆ and the location of the mobile computation ρ.

Rule 1: remove top element σ from the Execution Stack

Γ=<Π,σ.Σ,Ω,Φ,∆,ρ>, pop(σ.Σ)
Γ′=<Π,Σ,Ω,Φ,∆,ρ>

σ represents the top item on the execution stack. On applying the pop
operation on the execution stack, σ is discarded. The resulting environment
Γ′ differs from Γ in the content of the execution stack, i.e. σ.Σ is changed
to Σ.

Rule 2: retrieve top element σ from the execution stack into x

Γ=<Π,σ.Σ,Ω,Φ,∆,ρ>, top(σ.Σ)
Γ=<Π,σ.Σ,Ω,Φ,∆,ρ>, x=σ

σ represents the top item on the execution stack. On applying the top
operation on the execution stack, the value stored at the top of the execution
stack, σ, is accessed and copied into a temporary variable ‘x’. The resulting
environment is no different from the original environment since no changes
have been made to any of the components.

Rule 3: add element, σ, onto the top of the execution stack

Γ=<Π,Σ,Ω,Φ,∆,ρ>, push(σ,Σ)
Γ′=<Π,σ.Σ,Ω,Φ,∆,ρ>

On applying the push operation on the execution stack, the new item σ is
added to the top of the stack. The resulting environment Γ′ differs from Γ
in the content of the execution stack, i.e. Σ is changed to σ.Σ.
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Table 4: Definition of Notation Used
Notation Definition

Γ = < Π,Σ,Ω,Φ,∆, ρ > current state of execution

Π = π1.π2.π3...πi current program counter stack

π < ω,χ, µ, δ, ι > item on program counter stack

Σ = σ1.σ2.σ3...σj current execution stack

σ′ item on the execution stack

Ω = ω1, ω2, ω3, ..., ωk list of instantiated objects

ω′ an instantiated object

Φ = φ1, φ2, φ3, ..., φk permanent activation record

φ′ item in the permanent activation record

∆ = δ1, δ2, δ3, ..., δi temporary activation record

δ′′ item in the temporary activation record

I= ι1.ι2.ι3.ι4....ιl code for the method being executed

ι one instruction in the code

P = ρ1, ρ2, ..., ρm computational subnet of mobile computation

ρ current location of the mobile computation

Θ = θ1, θ2, θ3, ...θn list of currently active mobile computations

θ one mobile computation

Mχ = µ1, µ2, ...µp list of methods for the class χ

µ a method of the class.

B = βρ1 , βρ2 , ...βρm resources required by mobile computation

βρm resources required at location ρm
X = χ1, χ2, ...χq list of classes defined

χ a class / abstract data type

A = {Aθ1 , Aθ2 , ..., Aθn−1
, Aθn} parcels available in the system

Aθx = {αθxθ1 , αθxθ2 , ..., αθxθy} parcels waiting for θx
αθxθy parcel sent by θy waiting for θx
τ ∈ {Int, R, C, B, χ} data type

ηmax maximum number of hops allowed without
a change in closure

ηcurr number of hops so far without a change in closure
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Table 5: Operations on Execution Stack Σ

Rule 1:
Γ=<Π,σ.Σ,Ω,Φ,∆,ρ>, pop(σ.Σ)

Γ′=<Π,Σ,Ω,Φ,∆,ρ>
remove σ from top of Execution Stack

Rule 2:
Γ=<Π,σ.Σ,Ω,Φ,∆,ρ>, top(σ.Σ)
Γ=<Π,σ.Σ,Ω,Φ,∆,ρ>, x=σ

retrieve top element from execution stack into x

Rule 3:
Γ=<Π,Σ,Ω,Φ,∆,ρ>, push(σ,Σ)

Γ′=<Π,σ.Σ,Ω,Φ,∆,ρ>
add element onto top of execution stack

Table 6: Operations on Program Counter Stack Π

Rule 4:
Γ=<π.Π,Σ,Ω,Φ,∆,ρ>, pop(π.Π)

Γ′=<Π,Σ,Ω,Φ,∆,ρ>
remove top π from the

program counter stack

Rule 5:
Γ=<π.Π,Σ,Ω,Φ,∆,ρ>, top(π.Π)
Γ=<π.Π,Σ,Ω,Φ,∆,ρ>, x=π

retrieve top π from the

program counter stack into x

Rule 6:
Γ=<Π,Σ,Ω,Φ,∆,ρ>, π=<ω,χ,µ,δ,ι>, push(π,Π)

Γ′=<π.Π,Σ,Ω,Φ,∆,ρ>
add πonto the top of the

program counter stack

Rule 7:
Γ=<π.Π,Σ,Ω,Φ,∆,ρ>, π=<ω,χ,µ,δ,ιi>, next(ι)
Γ′=<π′.Π,Σ,Ω,Φ,∆,ρ>, π′=<ω,χ,µ,δ,ιi+1>

move to the next instruction

to be executed
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Table 7: Mobility Operations (move ρ
′)

Rule 27:
Γρ=<Π,Σ,Ω,Φ,∆,ρ>,∃βρ, status(βρ)=waiting,move (ρ′), ρ′∈P

Γ⇒Halt

Γρi
=<π.Π,Σ,Ω,Φ,∆,ρi>,π=<ω,χ,µ,δ,ιj>,∀βρi

, status(βρi
)6=waiting, next (ι)

Γρi
=<π′.Π,Σ,Ω,Φ,∆,ρi>,π′=<ω,χ,µ,δ,ιj+1>

Γρi−1
=<Πi−1,Σi−1,Ωi−1,Φi−1,∆i−1,ρi−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
6=Γρi,move (ρ′), ρ′∈P

Γ′=<Π,Σ,Ω,Φ,∆,ρ′>

Γρi−1
=<Π,Σ,Ω,Φ,∆,ρi−1i−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
=Γρi,move (ρ′), ηcurr<ηmax, ρ′∈P

Γ′=<Π,Σ,Ω,Φ,∆,ρ′>

Γρi−1
=<Π,Σ,Ω,Φ,∆,ρi−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
=Γρi, move (ρ′), ηcurr≥ηmax, ρ′∈P

Γ′⇒Halt

Γρi−1
=<Π,Σ,Ω,Φ,∆,ρi−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
6=Γρi, move (ρ′), ρ′ /∈P

Γ′=<Π,Σ,Ω,Φ,∆,ρi+1>

Γρi−1
=<Π,Σ,Ω,Φ,∆,ρi−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
=Γρi, move (ρ′), ηcurr<ηmax, ρ′ /∈P

Γ′=<Π,Σ,Ω,Φ,∆,ρi+1>

5.2. Operations on the Program Counter Stack Π

The executing environment Γ is composed of the program counter stack
Π, the execution stack Σ, the list of objects that have been instantiated and
accessed so far Ω, the permanent activation record Φ, the temporary acti-
vation record ∆ and the location of the mobile computation ρ. π represents
an item on the program counter stack. It keeps track of the instruction to
be executed, the current method being executed, the object being operated
on, the class the object is an instance of, the list of local variables, for the
method, in the temporary activation record, and the list of attributes, of
the object, in the permanent activation record.

Rule 4: remove top element π from the program counter stack

Γ=<π.Π,Σ,Ω,Φ,∆,ρ>, pop(π.Π)
Γ′=<Π,Σ,Ω,Φ,∆,ρ>

On applying the pop operation on the program counter stack, π is discarded.
The resulting environment Γ′ differs from Γ in the content of the program
counter stack, i.e. π.Π is changed to Π.

Rule 5: retrieve top element π from the program counter stack into x
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Γ=<π.Π,Σ,Ω,Φ,∆,ρ>, top(π.Π)
Γ=<π.Π,Σ,Ω,Φ,∆,ρ>, x=π

π represents the top item on the program counter stack. On applying the
top operation on the program counter stack, π is accessed and copied into
a temporary variable ‘x’. The resulting environment is no different from
the original environment since no changes have been made to any of the
components.

Rule 6: add element, π, onto the top of the program counter stack

Γ=<Π,Σ,Ω,Φ,∆,ρ>, π=<ω,χ,µ,δ,ι>, push(π,Π)
Γ′=<π.Π,Σ,Ω,Φ,∆,ρ>

π represents a new program counter item. This is usually created when a
call to a method is encountered. On applying the push operation on the
program counter stack, π is added to the top of the program counter stack.
The resulting environment Γ′ differs from Γ in the content of the program
counter stack, i.e. Π is changed to π.Π.

Rule 7: move to the next instruction to be executed
This operation is performed at the end of execution of most operations.

Γ=<π.Π,Σ,Ω,Φ,∆,ρ>, π=<ω,χ,µ,δ,ιi>, next(ι)
Γ′=<π′.Π,Σ,Ω,Φ,∆,ρ>, π′=<ω,χ,µ,δ,ιi+1>

π represents the top item on the program counter stack, where the current
instruction is denoted by ιi. On applying the next() operation, the program
counter is advanced to the next instruction, i.e. to ιi+1. π′ is merely π

modified so that it now refers to the next instruction to be executed. This
results in a change in the executing environment Γ.

5.3. Mobility Operations

Rule 27: move ρ′

This instruction initiates the process for the mobile computation to mi-
grate to a different host.

Γρ=<Π,Σ,Ω,Φ,∆,ρ>,∃βρ, status(βρ)=waiting,move (ρ′), ρ′∈P
Γ⇒Halt

If the mobile computation is still waiting to access any resource at the current
location, then the move operation cannot be completed at this time. The
computation is halted and the Mobile Computation Manager will queue the
computation for the required resource. When the resource has been accessed
and is no longer required, the move instruction is processed again.
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Γρi
=<π.Π,Σ,Ω,Φ,∆,ρi>,π=<ω,χ,µ,δ,ιj>,∀βρi

, status(βρi
)6=waiting, next (ι)

Γρi
=<π′.Π,Σ,Ω,Φ,∆,ρi>,π′=<ω,χ,µ,δ,ιj+1>

If all the resources required at the current location have been accessed, the
program counter is incremented so that it now refers to the next instruction
to be executed. At the new location execution will continue from instruction
ιj+1.

Γρi−1
=<Πi−1,Σi−1,Ωi−1,Φi−1,∆i−1,ρi−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
6=Γρi,move (ρ′), ρ′∈P

Γ′=<Π,Σ,Ω,Φ,∆,ρ′>

If the location specified by the operand is on the list of locations the mobile
computation is allowed to visit then the value of ρ is set to the new loca-
tion. The Mobile Computation Manager then performs the tasks of closure
capture and garbage collection. The current closure (at location ρi) is com-
pared against the closure of the mobile computation when it arrived at the
current site (this is the closure that was captured at the previous location
ρi−1). If the two are different then the mobile computation is sent to the
specified host.

Γρi−1
=<Π,Σ,Ω,Φ,∆,ρi−1i−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
=Γρi,move (ρ′), ηcurr<ηmax, ρ′∈P

Γ′=<Π,Σ,Ω,Φ,∆,ρ′>

If the two closures are the same, then the MCM checks if the maximum
number of hops the mobile computation is allowed without a change in
closure is still greater than the number of hops the mobile computation has
made so far without a change in closure. If ηmax is greater than ηcurr then
the mobile computation is sent to the specified host.

Γρi−1
=<Π,Σ,Ω,Φ,∆,ρi−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
=Γρi,move (ρ′), ηcurr≥ηmax, ρ′∈P

Γ′⇒Halt

If ηmax is less than or equal to ηcurr then the operation fails. An exception
is generated and the virtual machine halts execution of the mobile computa-
tion. The Mobile Computation Manager is required to take the appropriate
action.

Γρi−1
=<Π,Σ,Ω,Φ,∆,ρi−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
6=Γρi,move (ρ′), ρ′ /∈P

Γ′=<Π,Σ,Ω,Φ,∆,ρi+1>
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If the location specified by the operand is not on the list of locations the
mobile computation is allowed to visit, then the value of ρ is set to the
next location on the list where the required resources are available. The
Mobile Computation Manager then performs the tasks of closure capture
and garbage collection. The closure (at location ρi) is compared against
the closure of the mobile computation when it first started executing at the
current site (this is the closure that was captured at location ρi−1). If the
two are different then the mobile computation is sent to the next host.

Γρi−1
=<Π,Σ,Ω,Φ,∆,ρi−1>,Γρi

=<Π,Σ,Ω,Φ,∆,ρi>,Γρi−1
=Γρi,move (ρ′), ηcurr<ηmax, ρ′ /∈P

Γ′=<Π,Σ,Ω,Φ,∆,ρi+1>

If the two closures are the same, then the MCM checks if the maximum
number of hops the mobile computation is allowed without a change in
closure is still greater than the number of hops the mobile computation has
made so far without a change in closure. If ηmax is greater than ηcurr then
the mobile computation is sent to the next host.

5.4. Communication Operations

Rule 28: makeparcel αθiθj for θi

This instruction initiates the process for the mobile computation θj to pack-
age information into a parcel αθiθj for θi to access.

Γ=<Π,Σ,Ω,Φ.φ,∆.δ,ρ>, parcel (φ, δ)
Γ=<Π,Σ,Ω,Φ.φ,∆.δ,ρ>, αθiθj

The data to be made available is packaged and addressed to mobile compu-
tation θj.

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
, Aθi

∈A

Γ=<Π,Σ,Ω,Φ,∆,ρ>, Aθi
=Aθi

⋃
αθiθj

If there is already a set of parcels waiting for θi then αθiθj is added to that
set.

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
, Aθi

/∈A

Γ=<Π,Σ,Ω,Φ,∆,ρ>, Aθi
=αθiθj

If this is the first parcel for θi then a new set Aθi is created with αθiθj .

Γ=<Π,Σ,Ω,Φ,∆,ρ>, Aθi
=αθiθj

, Aθi
/∈A

Γ=<Π,Σ,Ω,Φ,∆,ρ>, A=A
⋃

Aθi

30



Aθi is then added to the set of all parcels in the system.

Rule 29: getparcel αθiθj from θj

This instruction initiates the process for the mobile computation θi to obtain
information (parcel) αθiθj from θj.

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
∈Aθi

, θ=θi

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
, Aθi

=Aθi
−αθiθj

If the requested parcel, αθiθj , is available, the identity the computation θ is
verified. If the request is for a parcel addressed to it, the parcel, αθiθj , is given
to θ and removed from the set of parcels, Aθi , waiting for the computation.

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
∈Aθi

, θ 6=θi

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
∈Aθi

If the request is not for a parcel addressed to it, the parcel, αθiθj , is not
given to θ. There is no change in the entities involved.

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
, unparcel (αθiθj

)

Γ=<Π,Σ,Ω,Φ.φ,∆.δ,ρ>

If the parcel has been obtained successfully, it is opened and the data con-
tained therein is updated in the temporary and permanent activation records
as required.

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
/∈Aθi

Γ⇒Wait

If the requested parcel, αθiθj , is not yet available in the set of parcels, Aθi ,
waiting for it, then θi may decide to wait until it is made available.

Γ=<Π,Σ,Ω,Φ,∆,ρ>, αθiθj
/∈Aθi

Γ=<Π,Σ,Ω,Φ,∆,ρ>

Alternatively, the computation may decide to continue execution without
the updated information.
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header
route
juno.eecs.tulane.edu all (burn cd cd writer 50;

read display 50;) 50;
endroute
id pegasus.eecs.tulane.edu; Monisha; endid
endheader

class intComp {

public void main () {
new int a;
new int b;
a=4+7;

}

}

Figure 15: Program in MCL used to illustrate the Abstract Machine

6. Demonstration of the Abstract Machine

We use a simple example to demonstrate the working of the abstract
machine just described. Figure 15 displays a program in MCL that adds
two integers. Figure 16 shows the mobile computation generated from this
program. When the computation is received by the MCM and all the se-
curity verification has been successfully completed, the closure is loaded.
The program counter has one item. The only instantiated object is ‘Me’
which belongs to class intComp. We assume that the current location is
‘juno.eecs.tulane.edu’ (for brevity we refer to it as ‘juno’). All the other
stacks and lists are empty.

Γ =< Π,Σ,Ω,Φ,∆, ρ >where
Π = π

Σ = ∅, i.e., the execution stack is empty
Ω = Me

Φ = ∅, i.e., the permanent activation record is empty
∆ = ∅, i.e., the temporary activation record is empty
ρ = juno.eecs.tulane.edu
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header
route
juno.eecs.tulane.edu all (burn cd cd writer 50;

read display 50;) 50;
endroute
id pegasus.eecs.tulane.edu Monisha endid
endheader

closure
pc

intComp Me 0 main 0 0 10
endpc
tempar
endar
permar
endar
object
endobject
stack
endstack

endclosure

class intComp 0
method 0 public void main 0
var int a
var int b
code
10 load a
20 load 4
30 load 7
40 add int
50 store int
60 stop main
endcode
endclass

Figure 16: Mobile Computation used to illustrate the Abstract Machine
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π =< ω,χ, µ, δ, ι >, where
ω = Me

χ = intComp

µ = main

δ = empty

ι = 10

The program counter stack is checked using Rule 5, top (π.Π). Since
there is an item on the stack, it is used to start execution. The method to
be executed is the ‘main’ method of the class ‘intComp’. Execution is to start
with instruction at index 10. The local variables for the ‘main’ method are
added to the temporary activation record ∆, using Rule 8 add(δ,∆), where
δ = a, b.

Γ=<π,∅,Me,∅,∅,juno>, π=<Me,intComp,main,∅,10}, add (δ,∆)
Γ′=<π,∅,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,10}

Now execution commences with the RVM executing the instruction ‘load a’,
using Rule 23.

Γ=<π,∅,Me,∅,a.b,juno>, σ=a, σ∈∆, push (σ,Σ)
Γ′=<π,a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,10}

The program counter is then incremented using Rule 7.

Γ=<π,a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,10}, next (ι)
Γ′=<π,a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,20}

The instruction at index 20 is now executed, i.e., ‘load 4’, using Rule 23.

Γ=<π,a,Me,∅,a.b,juno>, σ=4, σ∈Const, push (σ,Σ)
Γ′=<π,4.a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,20}

The program counter is then incremented using Rule 7.

Γ=<π,4.a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,20}, next (ι)
Γ′=<π,4.a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,30}

The instruction at index 30 is now executed, i.e., ‘load 7’, using Rule 23.

Γ=<π,4.a,Me,∅,a.b,juno>, σ=7, σ∈Const, push (σ,Σ)
Γ′=<π,7.4.a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,30}

The program counter is then incremented using Rule 7.

Γ=<π,7.4.a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,30}, next (ι)
Γ′=<π,7.4.a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,40}
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The instruction at index 40 is now executed, i.e., ‘add int’ using Rule 14.
The top element in the execution stack, 7, is obtained using Rule 1 and
stored in a temporary location x.

Γ=<π,7.4.a,Me,∅,a.b,juno>, top(Σ)
Γ=<π,7.4.a,Me,∅,a.b,juno>, x=7

The top element is then popped using Rule 2.

Γ=<π,7.4.a,Me,∅,a.b,juno>, x=7, pop(Σ)
Γ′=<π,4.a,Me,∅,a.b,juno>, x=7

.

The new top element in the execution stack, 4, is obtained using Rule 1 and
stored in a temporary location y.

Γ=<π,4.a,Me,∅,a.b,juno>, top(Σ)
Γ=<π,4.a,Me,∅,a.b,juno>, y=4

This top element is then popped using Rule 2.

Γ=<π,4.a,Me,∅,a.b,juno>, y=4, pop(Σ)
Γ′=<π,a,Me,∅,a.b,juno>, y=4

The arithmetic ‘add’ operation is now applied on x and y to obtain a value z.
Since both x and y are of data type ‘integer’, z is also of data type ‘integer’.

Γ=<π,a,Me,∅,a.b,juno>, x,y:Int, x=7, y=4, z=x aop y
Γ=<π,a,Me,∅,a.b,juno>, z=11, z:Int

The result z is now pushed onto the execution stack using Rule 3.

Γ=<π,a,Me,∅,a.b,juno>, z=11, push(σ,Σ)
Γ′=<π,11.a,Me,∅,a.b,juno>, z=11

The program counter is then incremented using Rule 7.

Γ=<π,a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,40}, next (ι)
Γ′=<π,a,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,50}

The next instruction at index 50 is executed, i.e. ‘store int’, using Rule 24.
The top element in the execution stack, 11, is obtained using Rule 1 and
stored in a temporary location x.

Γ=<π,11.a,Me,∅,a.b,juno>, top(Σ)
Γ=<π,11.a,Me,∅,a.b,juno>, x=11

The top element is then popped using Rule 2.
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Γ=<π,11.a,Me,∅,a.b,juno>, x=11, pop(Σ)
Γ′=<π,a,Me,∅,a.b,juno>, x=11

.

The new top element in the execution stack, a, is obtained using Rule 1.

Γ=<π,a,Me,∅,a.b,juno>, top(Σ)
Γ=<π,a,Me,∅,a.b,juno>, a

This top element is then popped using Rule 2.

Γ=<π,a,Me,∅,a.b,juno>, a, pop(Σ)
Γ′=<π,∅,Me,∅,a.b,juno>, a

The ‘store’ operation is now applied and 11 is stored in a. Since a is of data
type ‘integer’ and the operand specifies ‘integer’, the operation succeeds.

Γ=<π,∅,Me,∅,a.b,juno>, a:Int, x=11, a=sto(x)
Γ=<π,∅,Me,∅,a.b,juno>, a=11

The program counter is then incremented using Rule 7.

Γ=<π,∅,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,50}, next (ι)
Γ′=<π,∅,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,60}

The instruction at index 60 is executed using Rule 22. The local variables
for the method are removed from the temporary activation record, and then
the top item is popped from the program activation stack.

Γ=<π,∅,Me,∅,a.b,juno>, π=<Me,intComp,main,a.b,60}, stop(µ)
Γ′=<∅,∅,Me,∅,∅,juno>

The program counter stack is checked for the next method to be executed.
Since there are no more items in the stack, the program has completed
execution. Garbage collection is performed, removing all the instantiated
objects and other references that remain.

Γ=<∅,∅,Me,∅,∅,juno>
Γ′=<∅,∅,∅,∅,∅,juno>

The computation is now terminated and can now be sent back to the origi-
nator if required or else just removed from the mobile computation database.
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7. Conclusions

We described the development of a Mobile Computational Model to to
support the efficient execution of mobile computations. Our goal was to be
able to suspend execution of a mobile computation at any arbitrary point,
migrate to another host and seamlessly continue execution from where it
left off. This entails capture of the current state of execution at the origin
and restoration of the closure at the destination. Our Mobile Computa-
tional Model provides the framework for managing such mobile computa-
tions. Through the RVM, the model provides an efficient homogeneous en-
vironment for computations to execute within, while supporting capture of
state of execution. Our comparison of the JVM and RVM demonstrates the
suitability of our approach. The abstract decription of the RVM provides a
basis for formally analyzing the properties of the RVM.
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