
Parse Trees of Arabic Sentences Using the Natural Language Toolkit

Maad Shatnawi and Boumediene Belkhouche
College of IT, UAE University, Al Ain
{shatnawi, b.belkhouche}@uaeu.ac.ae

Abstract

We develop a framework for using the Natural Language Toolkit (NLTK) to parse Quranic Arabic sentences. This
framework supports the construction of a treebank for the Holy Quran. The proposed model succeeds in parsing different
Quranic chapters (Suras) in addition to Modern Standard Arabic (MSA) sentences. The availability of such parser will be
useful in various natural language processing applications such as machine translation, speech synthesis, and
information retrieval.

Keywords: Arabic parser, Quranic sentences parsing, NLTK.

1. Introduction
Parsing has several applications including semantic
disambiguation, machine translation, and speech
synthesis. Traditional Arabic grammar is considered to be
one of the historical origins of modern dependency
grammar [19, 26]. There are several state-of-the-art
Arabic parsers such as Bikel parser [4, 12, 20], Malt
parser [16, 23, 24], Stanford parser [13, 18], and Attia’s
rule-based parser for Modern Standard Arabic [1, 31].
These parsers require the availability of a treebank [14].

Like all Arabic language processing tasks, Arabic parsing
faces many challenges including the unique features of
the language, the exceptional degree of ambiguity in its
writing system, the rich morphology, the highly-complex
word formation process of roots and patterns, the length
of sentences, the free order of words in the sentence, and
the presence of the elliptic personal pronoun “al damiir al
mustatir” [25, 30]. As a result, alternative parses for a
particular sentence can suggest alternative meanings [8].

One of the significant challenges and prerequisite for
parsing and syntactic analysis of a highly inflected
language such as Arabic is the morphological
segmentation [2, 15]. In the Penn English Treebank,
verbal contraction such as “weren’t” are split into separate
segments “were” and “n’t” with a different part-of-speech
tag for each of them [3]. These segments form individual
units in syntactic analysis and separate leaf nodes in a
syntax tree.

Modern Standard Arabic (MSA) is the literary standard
Arabic currently used across the Middle East and North
Africa, and one of the official six languages of the United
Nations. All printed books, newspapers, magazines,
official and educational documents are written in MSA.
Furthermore, MSA is used in news, documentary and
scientific programs across different media and online
portals.

Quranic Arabic is a unique form of Arabic used in the

Quran and it is the direct ancestor language of MSA.
Annotating the Quran faces an extra set of challenges
compared to MSA due to the fact that the text is over
1,400 years old, and the Quranic script is more varied than
modern Arabic in terms of orthography, spelling and
inflection. The same word is spelled in different ways in
different chapters. However, the Quran is fully diacritized
which reduces its ambiguity [8].

With respect to morphological segmentation, 54% of the
Quran’s 77,430 words require segmentation, resulting in
127,806 segments. A typical word in the Quran consists of
multiple segments combined into a single
whitespace-delimited word form. For example, “فاذكروني”,
which means “so remember me” should be segmented to
four segments; “و“ ,”اذكر“ ,”ف”, and “ني”, where each
segment represents an individual syntactic unit as follows:
conjunction prefix, verb, subject pronoun, and object
pronoun, respectively.

The computational analysis of the Quran remains an
intriguing but unexplored field since little and isolated
efforts have been done in this field [6]. For the young
learner, this may be not just a challenging requirement,
but a deterrent.

The rest of this paper is organized as follows. The next
section provides a brief overview of the existing Arabic
treebanks for both MSA and Quranic sentences. Section 3
presents our methodology to parse Arabic sentences
through NLTK. Analysis of our results is discussed in
section 4. Concluding remarks are presented in Section 5.

2. Arabic Treebanks
A treebank is a collection of manually checked syntactic
analyses of sentences. Treebanks constitute important
resources for building and evaluating parsers and are used
in several applications such as tokenization, diacritization,
part-of-speech (POS) tagging, morphological
disambiguation, chunk parsing, and semantic role
labeling [14].

Figure 1: Penn Arabic Treebank

The three well-known Arabic treebanks for MSA are the
Penn Arabic Treebank (PATB) [21, 22], the Prague Arabic
Dependency Treebank (PADT) [17 28, 29], and the
Columbia Arabic Treebank (CATiB) [15, 16].

The first Arabic treebank project is PATB which was
started in 2001 at the Linguistic Data Consortium (LDC)
and the University of Pennsylvania. The creation of PATB
is considered a great achievement for Arabic Natural
Language Processing. It has been a great research
resource in morphological analysis, tokenization, POS
tagging, disambiguation, and parsing. In addition to that,
it has been used as a foundation in developing other
treebanks [14].

The parsing tree in PATB for the Sentence ‘Fifty thousand
tourists visited Lebanon and Syria last September’
(خمسون ألف سائح زاروا لبنان وسوریا في أیلول الماضي) is shown
in Figure 1. The parsing trees of the same sentence in
PADT and CATiB are shown in Figures 2 and 3,
respectively.

The Quranic Arabic Dependency Treebank (QADT) [9]
has been developed and implemented in Java at the
University of Leeds, UK, as part of the Quran Corpus
project [7]. It works as a treebank for Quranic sentences
by providing a deep computational linguistic model based
on historical traditional Arabic grammar (ب القران اعرا
The treebank is freely available under an open .(الكریم
source license. QADT provides two levels of analysis:
morphological annotation and syntactic representation.
The morphological segmentation has been applied to all
the 77,430 words in the Quran. The treebank also
represents Quranic syntax through dependency graphs as
shown in Figure 4 [9, 10]. QADT is applied to each

individual Quranic verses (or part of the verse) even if that
verse does not form a complete sentence unless it is joined
with its neighbor verse. In addition to QADT, there are
very few works done in the field of morphological
analysis of Quran such as [6].

Othman et al. [25] developed a rule-based chart parser for
Analyzing MSA sentences with the use of lexical
semantic features to disambiguate the sentence structure
and the integration with a morphological analyzer.

Figure 2: Prague Arabic Dependency Treebank

Figure 3: Columbia Arabic Treebank

3. Methodology

We apply the top-down (Recursive Descent) parsing
algorithm to parse Arabic sentences through the Natural
Language Toolkit (NLTK) [5]. NLTK is an open source
suite of libraries and programs which can be integrated
within the Python environment and then used to perform
different statistical and rule-based natural language
processing tasks such as POS tagging and parsing.
Starting from an initial symbol S, the Recursive Descent
parser applies the grammar rules forward until all the
words of the given sentence are consumed. In this work,
the recursive descent parser is tested and evaluated in
building parse trees of Arabic sentences in general and
Quranic sentences in particular. As morphological
segmentation is a prerequisite for parsing, the
segmentation is now done manually. Work is in under way
to integrate a morphological analyzer with the parser.
Our first example demonstrates how the NLTK recursive
descent parser is used to parse a MSA sentence. We use
the same sentence that was parsed by the three previously
mentioned Arabic parsers. The sentence is ‘Fifty thousand
tourists visited Lebanon and Syria last September’
The .(خمسون ألف سائح زاروا لبنان وسوریا في أیلول الماضي)
sequence of steps to parse a text is as follows:

1. Divide the text into independent sentences.
2. Create a Python file for each sentence.
3. Perform morphological analysis.

4. Build the lexicon entries for each word in the sentence.
Each word is assigned a tag:

lex1 = CFGProduction(NN, ['خمسون'])
lex2 = CFGProduction(NN, ['ألف'])
lex3 = CFGProduction(NN, ['سائح'])
lex4 = CFGProduction(VT, ['زار'])
lex5 = CFGProduction(Prn, ['وا'])
lex6 = CFGProduction(NN, ['لبنان'])
lex7 = CFGProduction(CJ, ['و'])
lex8 = CFGProduction(NN, ['سوریا'])
lex9 = CFGProduction(P, ['في'])
lex10 = CFGProduction(NN, ['أیلول'])
lex11 = CFGProduction(NN, ['الماضي'])

5. Build the he grammar rules:
S_prod3 = CFGProduction(S, [NS])
VS_inv_prod1 = CFGProduction(VS, [VT, NP, CP, PP])
NS_inv_prod1 = CFGProduction(NS, [Starter,
Predicate])
Starter_inv_prod1 = CFGProduction(Starter, [NP])
Predicate_inv_prod5 = CFGProduction(Predicate, [VS])
CP_inv_prod3 = CFGProduction(CP, [NP, CJ, NP])
PP_prod1 = CFGProduction(PP, [P, NP])
NP_prod1 = CFGProduction(NP, [NN])NP_prod5 =
CFGProduction(NP, [Prn])
NP_prod6 = CFGProduction(NP, [NN, NP])

where S: Sentence; NS: Nominal Sentence; VS: Verbal
Sentence; VT: Verb; NN: Noun, P: Preposition; PP:
Prepositional Phrase; NP: Nominal Phrase; Starter:
Subject of Nominal Sentence (مبتدأ); Predicate: خبر ; Prn:
Pronoun; CP: Conjunction Phrase; CJ: Conjunction.

The above rules can also be represented as follows:
جملة جملة اسمیة
جملة فعلیة شبھ جملة جار ومجرورعطفمقطع اسميفعل
جملة اسمیة خبرمبتدأ
مبتدأ مقطع اسمي
خبر جملة فعلیة
عطف مقطع اسميحرف عطفمقطع اسمي
شبھ جملة جار ومجرور  مقطع اسميحرف جر
مقطع اسمي مقطع اسمياسم
مقطع اسمي ضمیر
مقطع اسمي اسم

Figure 4: Parse Tree in the Quranic Treebank

Figure 5: Parse Tree for a Modern Standard Arabic Sentence using NLTK

6. Apply the recursive descent parser (NLTK function).
The generated parse tree of for the sentence is shown
in Figure 5.

We now introduce a simple example to demonstrate how
the NLTK recursive descent parser is used to parse
Quranic sentences. The example is about parsing Verse
(113:1) of the Holy Quran, the first verse of Suratul Falaq
:The lexical entries are as follows .”قل أعوذ برب الفلق“
lex1 = CFGProduction(VT, ['قل'])
lex2 = CFGProduction(VT, ['أعوذ'])
lex3 = CFGProduction(NN, ['رب'])
lex4 = CFGProduction(NN, ['الفلق'])
lex5 = CFGProduction(P, ['ب'])

The grammar rules are as follows:
S_prod = CFGProduction(S, [VS])
VS_inv_prod1 = CFGProduction(VS, [VT, NN, NN, PP])
VS_inv_prod2 = CFGProduction(VS, [VT, PP])
VS_inv_prod3 = CFGProduction(VS, [VT, VS])
PP_prod1 = CFGProduction(PP, [P, NP])
NP_prod1 = CFGProduction(NP, [AdP])
NP_prod2 = CFGProduction(NP, [NN])
AdP_prod = CFGProduction(AdP, [NN, NP])

Where S: Sentence; VS: Verbal Sentence; VT: Verb; NN:
Noun; P: Preposition; PP: Prepositional Phrase; NP:
Nominal Phrase; AdP: Additional Phrase.

The above rules can also be represented as follows:
جملة جملة فعلیة
جملة فعلیة فعل اسم اسم شبھ جملة جار ومجرور
جملة فعلیة فعل شبھ جملة جار ومجرور
جملة فعلیة فعل جملة فعلیة
شبھ جملة جار ومجرور  حرف جر مقطع اسمي
مقطع اسمي اضافة
مقطع اسمي اسم
اضافة اسم مقطع اسمي

The generated parse tree of the verse is shown in Figure 6.
Figure 7 presents the parse tree of Suratul Falaq (Chapter
113 of the Holy Quran) as a whole. The grammar rules of
the last four Suras are presented in Appendix 1.

4. Analysis of the Results
The recursive descent parser has three main limitations
[27]. The first limitation is that left-recursive productions
such as "NPNP PP" cause the parser to go in an infinite
loop. Secondly, the parser blindly tries all words (lexical
entries) and grammar rules that are irrelevant to the input
sentence which considerably increases its time
complexity. Thirdly, the algorithm does not store the
successfully parsed parts which, therefore, need to be
rebuilt again later in the backtracking process.

Figure 6: Parse Tree of Verse 113:1 of the Holy Quran
using NLTK

Figure 7: Parse Tree for Sura 113

For example, if the NP part in “VS  V NP” is
successfully parsed, the backtracking to “VS  V NP
PP” requires reparsing NP part again. As a result, the
parsing processor repeats much of its work.

As the coverage of the grammar increases and the length
of the input sentences grows, the number of parse trees
dramatically grows. In the worst case, the recursive
descent parser has an exponential time complexity as well
as an exponential memory space for ambiguous
context-free grammar [11]. However, for small texts like
Suras 115, 114 and 115, the statistical relationship
between the number of words (lexical tokens) in the
sentence and the total number of nodes in the parse tree is
linear. From parse tree data we collected, it is expressed
as:

n = 3.36 w + 0.2

where n is the total number of nodes in the parse tree and
w is the number of words in the sentence. This expression
indicates that, at least, for the examples, the complexity of
the parse trees grows linearly.

5. Conclusion
We presented an approach to generate parse trees of
Arabic sentences in general and Quranic sentences in
particular, using the Natural Language Toolkit (NLTK).
The process we defined consists of building a lexicon, a
context-free grammar and invoking the NLTK
recursive-descent parser. The generated parse trees can be
viewed as components of a tree bank, similar to the tree
banks mentioned earlier.

Our work can be extended in several directions. The
integration of the parser with a morphological analyzer
would further automate the process. Using diacratized

sentences can dramatically decrease the semantic
ambiguity and reduce the complexity of the grammar
rules. Other types of parsers such as bottom-up can be
also examined on Arabic sentences in a future work.

References
[1]Attia M., “An Ambiguity-Controlled Morphological

Analyzer for Modern Standard Arabic Modelling
Finite State Networks,” The Challenge of Arabic for
NLP/MT Conference, London, The British Computer
Society, 2006.

[2]Bies A. and Maamouri M., “Penn Arabic Treebank
Guidelines,” 2003. http://www.ircs.upenn.edu/arabic.

[3]Bies A., Ferguson M., Katz K., and MacIntyre R.,
“Bracketing Guidelines for Treebank II Style, Penn
Treebank Project”. University of Pennsylvania,
Philadelphia, 1995.

[4]Bikel D., “Design of a Multi-lingual,
Parallel-processing Statistical Parsing Engine,”
International Conference on Human Language
Technology Research (HLT), pp. 24–27, 2002. DOI:
10.3115/1289189.1289191.

[5]Bird, Steven, Loper E., and Klein E., “Natural
Language Processing with Python,” O'Reilly Media
Inc., 2009. http://www.nltk.org.

[6]Dror J., Shaharabani D., Rafi Talmon R., and Wintner
S., “Morphological Analysis of the Qur'an,” Literary
and Linguistic Computing, vol. 19, no. 4, pp. 431-452,
2004.

[7]Dukes, K., “Quranic Arabic Corpus,” School of
Computing, University of Leeds, UK, 2011.
http://corpus.quran.com.

[8]Dukes K., Atwell E., Habash N., “Supervised
Collaboration for Syntactic Annotation of Quranic
Arabic,” The Language Resources and Evaluation

Conference (LREC), Valletta, Malta, March, 2011.
[9]Dukes K. and Buckwalter T., “A Dependency

Treebank of the Quran using Traditional Arabic
Grammar,” The 7th international conference on
Informatics and Systems (INFOS 2010), Cairo, Egypt,
2010.

[10] Dukes K. and Habash N., “Morphological
Annotation of Quranic Arabic,” The Language
Resources and Evaluation Conference (LREC), Malta,
2010.

[11] Frost R. A., and Hafiz, R., “A New Top-Down
Parsing Algorithm to Accommodate Ambiguity and
Left Recursion in Polynomial Time,” SIGPLAN
Notices, vol. 42, no. 5, pp. 46-54, 2006.

[12] Gabbard R. and Kulick S., “Construct State
Modification in the Arabic Treebank,” Association for
Computational Linguistics (ACL-08): HLT, Short
Papers, pages 209–212, Columbus, Ohio, June 2008.
DOI: 10.3115/1557690.1557750.

[13] Green S., Sathi C., and Manning C. D., “NP Subject
Detection in Verb Initial Arabic Clauses,” The Third
Workshop on Computational Approaches to Arabic
Script-based Languages (CAASL3), 2009.

[14] Habash N., “Introduction to Arabic Natural
Language Processing,” Morgan & Claypool Publishers,
2010.

[15] Habash N., Faraj R., and Roth R., “Syntactic
Annotation in the Columbia Arabic Treebank,”
MEDAR International Conference on Arabic
Language Resources and Tools, Cairo, Egypt, 2009.

[16] Habash N. and Roth R., “CATiB: The Columbia
Arabic Treebank”. The Association for Computational
Linguistics (ACL-IJCNLP) 2009 Conference Short
Papers, pp. 221–224, Suntec, Singapore, August 2009.
DOI: 10.3115/1667583.1667651.

[17] Hajic J., Hladká B., and Pajas P., “The Prague
Dependency Treebank: Annotation Structure and
Support,” The IRCS Workshop on Linguistic
Databases, pp. 105–114, Philadelphia, University of
Pennsylvania, 2001.

[18] Klein D. and Manning C. D., “Accurate
Unlexicalized Parsing,” The 41st Meeting of the
Association for Computational Linguistics (ACL’03),
2003. DOI: 10.3115/1075096.1075150.

[19] Kruijff G., “Dependency Grammar,” The
Encyclopedia of Language and Linguistics, Second
edition, Elsevier Publishers, 2006.

[20] Kulick S., Gabbard R., and Marcus M., “Parsing the
Arabic Treebank: Analysis and Improvements,” The
Treebanks and Linguistic Theories Conference, pp.
31–42, Prague, Czech Republic, 2006.

[21] Maamouri M., Bies A., Buckwalter T., and Mekki
W., “The Penn Arabic Treebank: Building a
Large-Scale Annotated Arabic Corpus,” NEMLAR
International Conference on Arabic Language
Resources and Tools, pp. 102–109, 2004.

[22] Maamouri M., Bies A., Krouna S., Gaddeche F., and
Bouziri B., “Penn Arabic Treebank Guidelines,”
Linguistic Data Consortium, 2009.

[23] Marton Y., Habash N., and Rambow O., “Improving
Arabic Dependency Parsing with Lexical and
Inflectional Morphological Features,” The NAACL
HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pp. 13–21, Los
Angeles, CA, USA, Association for Computational

Linguistics, June 2010.
[24] Nivre J., Hall J., Nilsson J., Chanev A., Eryigit G.,

Kubler S., Marinov S., and Marsi E., “MaltParser: A
Language-independent System for Data-driven
Dependency Parsing. Natural Language Engineering,”
vol. 13, no. 2, pp. 95–135, 2007. DOI:
10.1017/S1351324906004505.

[25] Othman E., Shaalan K., and Rafea A., “A Chart
Parser for Analyzing Modern Standard Arabic
Sentence,” The MT Summit IX Workshop on Machine
Translation for Semitic Languages: Issues and
Approaches, pp. 37–44, 2003.

[26] Owens J., “The Foundations of Grammar: An
Introduction to Medieval Arabic Grammatical Theory,”
John Benjamins Publishers, 2008

[27] Qian S., “Lecture Notes in Natural Language
Processing Applications,” Calligramme, LORIA &
INRIA Nancy Grand-Est Research Centre, France,
2010.

[28] Smrž O., Bielický V., Kouˇrilová I., Kráˇcmar J.,
Hajic J., and Zemánek P., “Prague Arabic Dependency
Treebank: A Word on the Million Words,” The
Workshop on Arabic and Local Languages (LREC
2008), pp. 16–23, Marrakech, Morocco, 2008.

[29] Smrž O. and Hajic J., “The Other Arabic Treebank:
Prague Dependencies and Functions,” Ali Farghaly,
editor, Arabic Computational Linguistics: Current
Implementations, CSLI Publications, 2006.

[30] Soudi A., Bosch A., and Neumann G., “Introductory
Chapter, Arabic Computational Morphology:
Knowledge-based and Empirical Methods,” Springer
(Text, Speech, and Language Technology series, edited
by Nancy Ide and Jean V´eronis, volume 38), 2007,
ISBN 978-1-4020-6045-8, 2007.

[31] Tounsi L., Attia M., and Genabith J., “Automatic
Treebank-Based Acquisition of Arabic LFG
Dependency Structures,” The EACL 2009 Workshop
on Computational Approaches to Semitic Languages,
pp. 45–52, Athens, Greece, 2009. DOI:
10.3115/1621774.1621783.

Appendix A

Each of the tables shows the grammar rules for a given
Sura. The combined grammar results from putting
together the three grammars.

Combined Grammar Rules

S_prod1 = CFGProduction(S, [VS, CJ, VS])
S_prod2 = CFGProduction(S, [VS]) #VS:
Verbal Sentence
VS_inv_prod = CFGProduction(VS, [VT]) # VT: Verb
VS_inv_prod1 = CFGProduction(VS, [VT, NN, NN, PP])
VS_inv_prod2 = CFGProduction(VS, [VT, PP])
VS_inv_prod3 = CFGProduction(VS, [VT, PP, PP])
VS_inv_prod4 = CFGProduction(VS, [VT, PP, CP]) # CP:
Conjunctional Phrase عطف
VS_inv_prod5 = CFGProduction(VS, [VT, VS])
VS_inv_prod6 = CFGProduction(VS, [VT, PP, CP])
VS_inv_prod7 = CFGProduction(VS, [VT, NP])
VS_inv_prod8 = CFGProduction(VS, [CP])
VS_inv_prod9 = CFGProduction(VS, [VT, PP, PP])
VS_inv_prod10 = CFGProduction(VS, [NG, VS]) #
NG: Negation Particle أداة نفي
VS_inv_prod11 = CFGProduction(VS, [VT, PP, NP])
VS_inv_prod12 = CFGProduction(VS, [TS, VS]) #TS:
Tasweef Particle أداة تسویف
VS_inv_prod13 = CFGProduction(VS, [VT, NS]) #NS:
Nominal Sentence
VS_inv_prod14 = CFGProduction(VS, [VI, NS]) #VI:
Incomplete Verb فعل ناقص
NS_inv_prod1 = CFGProduction(NS, [Starter, Predicate])
Starter: :Predicate ,مبتدأ خبر
NS_inv_prod2 = CFGProduction(NS, [Starter, Predicate,
Comma, Predicate])
NS_inv_prod3 = CFGProduction(NS,
[Advanced_Predicate, Starter]) #Advanced_Predicate:
خبر مقدم
NS_inv_prod4 = CFGProduction(NS, [Starter, Predicate,
Comma, Predicate, Comma, Predicate])
Starter_inv_prod1 = CFGProduction(Starter, [NP])
Predicate_inv_prod1 = CFGProduction(Predicate, [NP])
Predicate_inv_prod2 = CFGProduction(Predicate, [NS])
Predicate_inv_prod5 = CFGProduction(Predicate, [VS])
Predicate_inv_prod6 = CFGProduction(Predicate, [VS,
CJ, VS, CJ, VS])
Advanced_Predicate_inv_prod =
CFGProduction(Advanced_Predicate, [PP, NP])
CP_inv_prod2 = CFGProduction(CP, [PP, CJ, CP]) # CJ:
Conjunction حرف عطف
CP_inv_prod1 = CFGProduction(CP, [PP, CJ, PP])
CP_inv_prod3 = CFGProduction(CP, [NP, CJ, NP])
PP_prod1 = CFGProduction(PP, [P, NP]) # P: Preposition
حرف جر , NP: Nominal Phrase
NP_prod1 = CFGProduction(NP, [NN]) # AdP:
Additional Phrase شبھ جملة اضافة
NP_prod2 = CFGProduction(NP, [NN, CnP]) # CnP:
Conditional Phrase شرط
NP_prod3 = CFGProduction(NP, [AdP])
NP_prod4 = CFGProduction(NP, [NN, PP])
NP_prod5 = CFGProduction(NP, [Prn]) # Prn:
Pronoun ضمیر
NP_prod6 = CFGProduction(NP, [RelP])
NP_prod7 = CFGProduction(NP, [AdP, Comma, AdP,
Comma, AdP])

NP_prod8 = CFGProduction(NP, [CP])
CnP_prod1 = CFGProduction(CnP, [CN, VS]) #CN:
Conditional Article اداة شرط
AdP_prod1 = CFGProduction(AdP, [NN, NP])
AdP_prod2 = CFGProduction(AdP, [NN, AdP])
AdP_prod3 = CFGProduction(AdP, [NN, RelP]) # RelP:
Relative Phrase صلة
RelP_prod = CFGProduction(RelP, [Rel, VS]) #Rel:
Relative Noun اسم موصول

G1 (Al Nas)
S  VS
VS  VT, VS
VS  VT, PP, PP
PP  P, NP
NP  AdP, Comma,
AdP, Comma, AdP
NP  AdP
NP  NN
AdP NN, NP
AdP  NN, RelP
RelP  Rel, VS
10 rules

G2 (Al Falaq)
S  VS
VS  VT, VS
VS  VT, PP, CP
VS  VT
PP  P, NP
NP  AdP
NP  NN
NP  NN, CnP
NP  NN, PP
AdP NN, NP
AdP  NN, RelP
RelP  Rel, VS
CnP  CN, VS
CP  PP, CJ, CP
CP  PP, CJ, PP
15 rules

G3 (Al Ikhlas)
S  VS
VS  VT
VS  VT, NS
VS  NG, VS
VS  VI, NS
NS Starter, Predicate
NS Starter, Predicate,
Comma, Predicate,
Comma, Predicate
NS 
Advanced_Predicate,
Starter
Starter NP
Predicate NP
Predicate NS
Advanced_Predicate 

PP, NP
NP  Prn
NP NN
14 rules

