

Abstract—The minimization of logic gates is needed to simplify

the hardware design area of programmable logic arrays (PLAs)

and to speed up the circuits. The VLSI designers can use

minimization methods to produce high speed, inexpensive and

energy-efficient integrated circuits with increased complexity.

Quine-McCluskey (Q-M) is an attractive algorithm for

simplifying Boolean expressions because it can handle any

number of variables. This paper describes a new model for the

estimation of circuit complexity, based on Quine-McCluskey

simplification method. The proposed method utilizes data

derived from Monte-Carlo simulations for any Boolean function

with different count of variables and product term complexities.

The model allows design feasibility and performance analysis

prior to the circuit realization.

I. INTRODUCTION

 OGIC level simulation is still one of the most frequently

used operations in digital circuits during both the design

and the test stages [1]. With the rapid increase of the

amount of logic to be integrated in a single chip, there is a

need for greater efforts in optimization of the design process

[2]. One of the key objectives of designing digital logic

circuits including the PLA and Programmable Array Logic

(PAL) [3], is to keep the number of logic gates as minimum

as possible, which will reduce the production cost of these

systems. To simplify the complexity of a circuit, the designer

must find another circuit that computes the same function as

the original but does so with fewer or simpler gates. The

logic design complexity is direct related to the complexity of

the Boolean functions. Therefore designers have to make the

Boolean function the simplest. The basic problem of logic

minimization [4] is that the conversion of logic equations in

the gate level netlists. Boolean function representations also

have direct impact on the computation time and memory

requirements in the design of digital circuits. In all these

cases, the efficiency of any method depends on the

complexity of the Boolean function [5]. Research on the

complexity of Boolean functions in non-uniform

computation models is now part of one of the most

Manuscript received on April 1, 2009.

Dr Chandana Withana is with Study Group, Charles Sturt University, Australia,

Sydney, Australia (phone: +61-2-9291-9356; fax: +61-2-9283-3302;

e-mail: c.withana@sga.edu.au).

Dr Azam Beg is with the College of Information Technology, United

Arab Emirates University, Al-Ain, UAE (phone: +971-3-713-5561; fax:

+971-3-713-767-2018; e-mail: abeg@uaeu.ac.ae).

Dr Ashutosh Kumar Singh is with the Department of Electrical/Communication

Engineering and Computing, Curtin University of Technology

Sarawak Campus, Malaysia. (phone: +60 85 443939; Fax: +60 85 443837

Email: ashutosh.s@curtin.edu.my

interesting and important areas in the theoretical computer

science [6]-[8].

The most known simplification method called the Map

Method, first proposed by Veitch [9} and slightly modified

by Karnaugh [10], provides a simple straightforward

procedure for minimizing Boolean functions. However, the

map method is not convenient as long as the number of

variables exceeds five or six. In order to minimize the

Boolean functions with many variables, the other method

called as Tabulation Method; this is a step-by-step procedure

and was first formulated by Quine [11] and later improved

by McCluskey [4], also known as the Quine-McCluskey

method (Q-M).

Like the K-map, the Q-M method seeks to collect product

terms by looking for entries that differ only in a single bit.

The only difference from a K-map is that we do it by

searching, rather than mapping. The beauty of the Q-M

method is that it takes over where the K-map begins to fail.

The Q-M technique is capable of minimizing logic

relationships for any number of inputs. The main advantage

of this method is that it can be implemented in the software

in an algorithmic fashion. But the disadvantage of this

method is that the computational complexity still remains

high.

Rapid increase in the design complexity and the need to

reduce time-to-market have resulted in a need for computer-

aided design (CAD) tools that can help make important

design decisions early in the design process.

Area complexity is one of the most important criteria that

have to be taken into account while working with

simplification methods. However, to be able make these

decisions early, there is a need for methods to estimate the

area complexity and power consumption from a design

description of the circuit at a high level of abstraction [12].

Nemani, and Najm, [12] proposed an area and power

estimation capability, given only a functional view of the

design, such as when a circuit is described only by Boolean

equations. In this case, no structural information is known—

the lower level (gate-level or lower) description of this

function is not available. Of course, a given Boolean

function can be implemented in many ways, with varying

power dissipation levels. They were interested in predicting

the minimal area and power dissipation of the function that

meets a given delay specification. In this paper [12], they use

“gate-count” as a measure of complexity, mainly due to the

key fact observed by Muller [13], and also because of the

popularity of cell-based (or library based) design.

 In an early work, Shannon [14] studied area complexity,

measured in terms of the number of relay elements used in

Effect of Quine-McCluskey Simplification on Boolean Space

Complexity

P. W. Chandana Prasad, Azam Beg, Ashutosh Kumar Singh

L

ACCEPTED: P. W. C. Prasad, A. Beg, and A. K. Singh, "Effect of Quine-McCluskey Simplification on Boolean Space Complexity,"
in IEEE Conference on Innovative Technologies in Intelligent Systems & Industrial Applications (CITISIA 2009), Bandar Sunway, Malaysia, 2009

building a Boolean function (switch-count). In that paper,

Shannon proved that the asymptotic complexity of Boolean

functions was exponential in the number of inputs, and that

for large number of inputs, almost every Boolean function

was exponentially complex. Muller, [13] demonstrated the

same result for Boolean functions implemented using logic

gates (gate-count measure). A key result of his work is that a

measure of complexity based on gate-count is independent of

the nature of the library used for implementing the function.

Several researchers have also reported results on the

relationship between area complexity and entropy of a

Boolean function. These include Kellerman, [15]-[18]

empirically demonstrated the relation between entropy and

area complexity, with area complexity measured as literal

count. They showed that randomly generated Boolean

functions have a complexity exponential, and proposed to

use that model as an area predictor for logic circuits.

However, the circuits tested were very small, typically

having less than ten inputs.

Over the past two decades most of the problems in the

synthesis, design and testing of combinational circuits, have

been solved using various mathematical methods.

Researchers in this area are actively involved in developing

mathematical models that predict the output size of the logic

circuit in order to predict the complexity of the design in

terms of the time needed to optimize it and verify its logic.

During the last two decades, Binary Decision Diagrams have

gained great popularity as successful method for the

representation of Boolean functions [19]. Over the years, the

number of nodes in a BDD has been used to assess the

complexity of the Boolean circuit [20]. Researchers in this

area are actively involved in developing mathematical

models that predict the number of nodes in a BDD in order

to predict the complexity of the design in terms of the time

needed to optimize it and verify its logic.

The main objective of this paper propose a mathematical

model to estimate the Boolean function complexity derived

from randomly generated Boolean functions and simplified

use of Q-M method. The remainder of this paper is divided

as follows: Background information pertaining to Q-M

simplification method is given in Section II. The proposed

mathematical model and the discussions on the experimental

results and comparisons are explained in the Section III.

Finally, we conclude our paper with the advantages of using

our model and our future developments.

II. PRELIMINARIES

Quine-McCluskey Method

Following are the important terms which will be used

throughout the paper, defining again for the reader

convenient and self contained.

Definitions

Literal: It is a variable or its negation)or(
'

xx

Minterm: A product of the literals where each variable

appears exactly once either true or complemented form, i.e.,

a normal product term consisting of n literals for n variable

function.

Maxterm: A sum of the literals where each variable appears

exactly once either true or complemented form i.e a normal

sum term consisting of n literals.

DNF Form (sum-of-product): The disjunctive normal form is

the sum of minterms of the variables.

CNF Form (product-of-sum): Conjunctive normal form is a

product-of-maxterm of the variables.

Prime Implicant: A prime implicant of a function is the

product which can not be combined with another term to

eliminate a variable for further simplification.

Essential Prime Implicant: Prime implicant that is able to

cover an output of the function which is not covered by any

combination of prime implicant called essential prime

implicant.

Quine-McCluskey (Q-M) method [4], [11] minimizes a

logical expression realizing a given Boolean function which

is more efficient for computer algorithm, makes this more

useful now even though it was introduced more than 55 years

ago [21]. The method utilizes the following three basic

simplification laws:

(i) 1
' =+ xx (Complement)

(ii) xxx =+ (Idempotent)

(iii) xzxyzyx +=+)((Distributive)

This method is also known as tabulation method because it

gives deterministic steps to check the minimum form of

function based on selection of essential prime implicants

using a table. Steps can be broadly categorized in three steps:

(a) Find the Prime Implicant

In this step, we replace the literals in form of 0 and 1 and

generate a table. Initially, the number of rows in table is

equal to the total number of minterms of the original un-

simplified function. If two terms are only different in one bit

like 101 and 111 i.e. one variable is appearing in both form

(variable and its negation), then we can use complement law.

Iteratively, we compare all term and generate the prime

implicant.

(b) Find the Essential Prime Implicant

Using prime implicants from above step, we generate the

table to find essential prime implicants. Note that some

prime implicants can be redundant and may be omitted, but

if they appear only once, they cannot be omitted and provide

prime implicant.

(c) Find Other Prime Implicant

It is not necessary that essential prime implicants cover all

the minterms. In that case, we consider other prime implicant

to make sure that all minterms has been covered. Instead of

ACCEPTED: P. W. C. Prasad, A. Beg, and A. K. Singh, "Effect of Quine-McCluskey Simplification on Boolean Space Complexity,"
in IEEE Conference on Innovative Technologies in Intelligent Systems & Industrial Applications (CITISIA 2009), Bandar Sunway, Malaysia, 2009

using trial and error to consider these prime implicants we

can use Petrick Method [22].

In general, Q-M method provides better method for the

function simplification than K-map, but still is an NP-hard

problem, and it becomes impractical for large input sizes due

to exponential complexity.

III. PROPOSED METHOD

The complexity of a digital circuit mainly depends on the

number of literals represented by the Boolean function. It

can be easily observed that if the number of product terms in

a Boolean function increases, the complexity of the Boolean

function increases, and hence the complexity of its logic

circuit increases. If the number of product terms in the

Boolean function increases beyond a particular limit, the

product terms simplify among themselves and the complexity

of the function starts to decrease. Consequently, the circuit

complexity decreases [23].

We carried out a large set of experiments on Boolean

functions derived from the Monte Carlo data of randomly

generated Boolean functions to analyze the exact Boolean

function complexity variation, i.e., the relation between the

number of product terms and the number of nodes for any

number of variables. For each variable count n between 1

and 15 inclusive and for each term count between 1 and 2n-1

(non-repeating product terms), 100 SOP terms were

randomly generated and the average number of literals in the

output function were determined after Q-M simplification

process. This process was repeated until the average size of
the Boolean function complexities (i.e. number of literals)

became 1. Then the graphs for Boolean function

complexities (Fig. 1) were plotted against the product term

(min-term) count for number of variables 1 to 15.

0

20

40

60

80

100

120

140

1 71 141 211 281 351 421 491 561 631

Number of Product Terms

N
u
m
b
er
 o
f
L
it
er
al
s

Fig. 1. Complexity distribution for 10 variables

Fig. 1 illustrates the Boolean function complexity

relationship, i.e., the relation between the average number of

literals and the number of product terms for randomly

generated Boolean functions with 10 variables. The graph

indicates that the Boolean function complexity (i.e. number

of literals) increases as the number of product terms

increases. This is clear from the rising edge of the curve

shown in Fig.1. At the end of the rising edge, the number of

literals reaches a maximum (~130 in this case). This peak

indicates the maximum number of literals that any randomly

generated Boolean function with 10 variables can produce

independently of the number of product terms. The peak also

specifies the number of product terms (critical limit) of a

Boolean function that leads to the maximum number of

literals. For 10 variables, the Boolean function having ~60

product terms leads to a maximum number of literals (130).

If the number of product terms increases above the critical

limit, as expected, the product terms starts to simplify and

the complexity of the Boolean function decreases. The graph

shown in Fig. 1 indicates that, as the number of product

terms increases further, the complexity of the Boolean

function decreases at a slower rate while it ultimately reaches

1. With 10 variables, the Boolean function complexity

reduces to 1 when the number of product terms reaches

nearly 560.

Mathematical Model

Analysis of the graph shown in Fig. 1 reveals that the

Boolean function complexity can be modeled mathematically

by the following equation:

 1)(+⋅⋅= ⋅− γβα tetN (1)

where,

N is the number of literals,

t is the number of non-repeating product terms in the

Boolean function,

α, β and γ are three constants depend on the number of

variables.

 It can be inferred that the following equation follows the

Weibull function pattern [24]. For 10 variables the values of

the constants are α = 7.7, β =0.904 and γ = 0.0145. Fig. 2
depicts the experimental results obtained by Q-M

simplification of randomly generated Boolean functions and

the theoretical results obtained using equation (1).

0

20

40

60

80

100

120

140

1 71 141 211 281 351 421 491 561 631

Number of Product Temrs

N
u
m
b
er
 o
f
L
it
er
al
s

Based on QM Simplification

Mathematical Model

Fig. 2. Results comparison for Boolean space complexity of

10 variable functions

Fig. 2 indicates that the proposed model represented by

equation (1) provides a very good approximation of the

Boolean space complexity in terms of literals. The same

work has been repeated for Boolean functions with 2 to 15

variables. The results for 10 variables are shown in Fig. 2.

ACCEPTED: P. W. C. Prasad, A. Beg, and A. K. Singh, "Effect of Quine-McCluskey Simplification on Boolean Space Complexity,"
in IEEE Conference on Innovative Technologies in Intelligent Systems & Industrial Applications (CITISIA 2009), Bandar Sunway, Malaysia, 2009

Fig. 3 and Fig. 4 illustrate experimental and mathematical

model results for 13 and 15 respectively.

0

200

400

600

800

1000

1 301 601 901 1201 1501 1801 2101 2401

Number of Product Terms

N
u
m
b
er
 o
f
L
it
er
al
s

Based on QM Simplification

Mathematical Model

Fig. 2. Complexity graph for 13 variables

0

500

1000

1500

2000

2500

3000

1 701 1401 2101 2801 3501 4201 4901 5601

Number of Product Terms

N
u
m
b
e
r
o
f
L
it
e
ra
ls

Based on QM Simplification

Mathematical model

Fig. 4. Complexity graph for 15 variables

Variations of Constants αααα, ββββ and γγγγ
The values of α, β and γ that were obtained

experimentally, for Boolean functions with 2 to 15 variables.

Using curve fitting techniques, the variations of α, β and γ
were mathematically modeled and are represented by the

following equations (2), (3) and (4).

()
328.05.0

v

e⋅+=α , (2)

)3.1(
2.671

v
e

⋅−⋅+=β , and (3)

)(
18

v
e
−⋅=γ , (4)

where, v is the number of variables.

Maximum Complexity

The maximum number of literals (Nmax) for a given

number of variables can be determined by applying first and

second order maxima and minima theorems to equation (2).

The value of t when N is max (N = Nmax) can be calculated

by solving the maxima theorem equations

0
)(

)(
=

td

Nd

 and

0
)(

)(
2

2

〈
td

Nd

From (2) we have,

)(

]1[

)(

)(
)(

td

etd

td

Nd
t +⋅⋅⋅

=
⋅− γβαµ

 (6)

)(

][

)(

)()(

td

etd

td

Nd t γβ

µα
⋅−⋅

⋅=

})({
)(

)()1()()(−⋅−⋅− ⋅⋅+−⋅⋅⋅⋅= βγγβ βγµα teet
td

Nd tt

 (7)

Solving ⇒= 0
)(

)(

td

Nd

0}{)1()()(=⋅⋅+⋅⋅−⋅⋅ −⋅−⋅− βγγβ βγµα teet tt

 (8)

0}{

)1()(=⋅−⋅⋅⋅⋅ −⋅−
tte

t γβµα βγ
 (9)

Since 0≠α and 0≠µ

 0)(=⋅− γte or 0)1(=−βt or
0=⋅− tγβ

 ∞=⇒ t or 0=t or
γ

β=t
 (10)

So the critical points (maxima and minima) are ∞, 0 and β/γ.

To be a maxima, these critical points must

satisfy 0)()(
22 〈tdNd .

 From (7) we can write,

)(

][

)(

][

)(

)()()1()(

2

2

td

etd

td

ted

td

Nd tt γββγ

γµαβµα
⋅−−⋅− ⋅

⋅⋅⋅−
⋅

⋅⋅⋅=

 (11)

)}()1({
)(

)()1()2(

2

2

γββµα γββγ ⋅−−−⋅− ⋅+⋅−⋅⋅⋅⋅= tt ette
td

Nd

}{
)1(−⋅−⋅− ⋅⋅+⋅⋅−⋅⋅⋅− βγγβ βγγµα teet

tt

 (12)

})1{(
)(

)()2(

2

2

tte
td

Nd t ⋅−−⋅⋅⋅⋅= −⋅− γββµα βγ

}{
2)2(

ttte
t ⋅+⋅−⋅⋅⋅⋅− −⋅− βγγµα βγ (13)

tte
td

Nd t ⋅⋅−−⋅⋅⋅= −⋅− γβββµα βγ 2)2(

2

2

{
)(

)(

}22 tt ⋅⋅−⋅+ γβγ (14)

}2{
)(

)(222)2(

2

2

ttte
td

Nd t ⋅+⋅⋅−−⋅⋅⋅= −⋅− γγβββµα βγ

 (15)

 For γβ=t we have

)2()(

)(

2

2

)(
)(

)(−⋅−

=

⋅⋅⋅= βγγβ

γβ

γβµα e
td

Nd

t

})()(2{
222 γβγγβγβββ ⋅+⋅⋅−−

ACCEPTED: P. W. C. Prasad, A. Beg, and A. K. Singh, "Effect of Quine-McCluskey Simplification on Boolean Space Complexity,"
in IEEE Conference on Innovative Technologies in Intelligent Systems & Industrial Applications (CITISIA 2009), Bandar Sunway, Malaysia, 2009

}2{)(22)2(ββββγβµα ββ +−−⋅⋅⋅= −−e

)2(−
−









⋅⋅⋅⋅−=

β
β

γ
β

βµα e

 (16)

Since βµα ,, and γ are positive

)2(−
−









⋅⋅⋅⋅−=

β
β

γ
β

βµα e is negative, hence the critical

point γβ=t is a maxima. Thus the number of nodes will

be maximum when the number of product terms is γβ=t ,

as given in equation (10).

The maximum number of nodes (Nmax) can be found by

substituting γβ for Number of Product Terms (NPT) in (2).

The maximum number of literals (NNmax) is given by:

1max +⋅







⋅⋅=






 ⋅− γγ
ββ

γ
β

αµ eN

1max +
⋅⋅⋅

=
−

β

ββ

γ

βαµ e
N

1)(max +








⋅
⋅⋅=

β

γ
β

αµ
e

N

 (17)

 Thus, the variation of Boolean space complexity is

defined by the equation (2), number of product terms for

maximum complexity by the equation (10) and the maximum

complexity by the equation (17). The values of constants α,

β and γ can be obtained from equations (3), (4) and (5).

 From equation (10), for 10 variables with symmetric sift

reordering method, the maximum number of literlas (Nmax

)will occur when the number of product terms

(t(N=NNmax)) is:

6234.62

0145.0
904.0

)(max

≅===
= γ

β
NN

t

From equation (17), for 10 variables, the number of literlas

will be maximum when t = 62. The maximum number of

literlas (maxN) will be

 1
7182.20145.0

904.0
)7.71(

904.0

max +







⋅

⋅⋅=N

 13272.131 ≅= nodes

The calculated values of t(when N=Nmax) and Nmax (62 and 132

respectively for 10 variables) match with the experimental

values in Fig. 2 (62 and 132). This demonstrates the

accuracy of our developed model.

 Advantages

Using the mathematical fitting approximation represented

by equation (1), we can accurately predict the followings:

a) The complexity of the Boolean space (i.e., number

of literals) given the number of product terms

b) The number of product terms of a Boolean function

for which Boolean space complexity will be

maximum (i.e,, maximum number of literals). (eg:

V=10, t =62 gives Nmax)

c) The maximum Boolean space complexity for given

number of variables in a Boolean function. (e.g.,

V=10, Nmax=132)

d) Boolean functions that will have equal complexity,

even though their corresponding Boolean functions

have different number of literals, different number

of product terms. (e.g.., equal complexity (V, t) =

(10,29) = (11,21) = (11,295)

Most of the current VLSI CAD tools use techniques such

as BDDs to find the circuit complexity; they use of number

of nodes and other parameters. Building a complete BDD

and counting its nodes can require a lot more time than

predicting it using the proposed model. Estimating the

Boolean space complexity using the proposed mathematical

model is expected to reduce the time complexity required to

develop and execute those applications.

IV. CONCLUSION

In this work, we address the problem of predicting the area

complexity of any Boolean function knowing the number of

product terms and the number of variables. We analyzed the

behavior of Q-M simplification for different number of

product terms and introduced a mathematical model to

predict the Boolean space complexity.

Our experimental results show good correlation between

the theoretical results and the results predicted by the

mathematical model. The proposed model can greatly reduce

the time complexity for applications that use Boolean

functions as the input function. Our future work will be

mainly concentrated on having wider range of variables to

check that the fitting is correct, to verify the the proposed

method with benchmark circuits, to do a comparison with

other applications that perform the circuit complexity

calculations.

REFERENCES

[1] M. Alexander, “Digital Logic Testing and Simulation,”

Chapter 2: Combinational Logic Test. Harper and Row, New

York, 1996.

[2] M. Thornton, and V.S.S. Nair, “Iterative Combinational

Logic Synthesis Techniques using Spectral Data,” Technical

report, Southern Methodist University, 1992.

[3] R. Czrewin, D. Kania, and J. Kulisz, “FSMs state encoding

targeting at logic level minimization,” Bulletin of the Polish

Academy of Sciences, Vol. 54 (4), pp 479- 487, 2006.

[4] E. J. McCluskey, “Minimization of Boolean Functions,” Bell

System Technical Journal, vol. 35, no. 5, pp. 1417-1444,

1956.

ACCEPTED: P. W. C. Prasad, A. Beg, and A. K. Singh, "Effect of Quine-McCluskey Simplification on Boolean Space Complexity,"
in IEEE Conference on Innovative Technologies in Intelligent Systems & Industrial Applications (CITISIA 2009), Bandar Sunway, Malaysia, 2009

[5] K. Priyank, “VLSI Logic Test, Validation and Verification,

Properties & Applications of Binary Decision Diagrams,”

Lecture Notes, Department of Electrical and Computer

Engineering University of Utah, Salt Lake City, 1997..

[6] I. Wegener, “The Complexity of Boolean Functions,” Wiley

and Sons. Inc, 1987.

[7] C. Meinel, and A. Slobodova, “On the Complexity of

Constructing Optimal Ordered Binary Decision Diagrams,”

Proceedings of the 19th International Symposium on

Mathematical Foundation of Computer Science, pp.515-524,

1994.

[8] S. Tani, K. Hamaguchi, and S. Yajima, “The Complexity of

the Optimal Variable Ordering Problems of a Shared Binary

Decision Diagram,” IEICE Transaction on Information and

Systems, Vol. 4, pp. 271-281, 1996.

[9] E.W. Veith, ‘A Chart Method for Simplifiying Truth

Functions.’ , Proc. of the ACM, pp. 127-133, 1952.

[10] M. Karnaugh, ‘A Map Method for Synthesis of

Combinational Logic Circuits’, Trans. AIEE, Comm. And

Electronics, Vol.72(1), pp. 593-99, 1953.

[11] W.V. Quine,’ The Problem of Simplifiying Truth Functions’,

Am. Math. Montly, Vol.59(8), pp.521-31,1952.

[12] M.,Nemani, and F. N. Najm, “High-Level Area and Power

Estimation for VLSI Circuits,”.IEEE Transaction on

Computer Aided Design of Integrated Circuits and Systems,

18 (6), pp. 697-713, 1999.

[13] D. E.Muller, “Complexity in Electronic Switching

Circuits,”.IRE Trans. on Electronic Computers, Vol. 5, pp.

15-19, 1956.

[14] C. E.Shannon, “The Synthesis of Two-Terminal Switching

Circuits,”. Bell System Technical Journal, 28 (1),. Pp. 59-98,

1949.

[15] E. Kellerman, “A Formula for Logical Network Cost,” IEEE

Transaction on Computers, 17(9), pp. 881-884, 1968.

[16] N. Pippenger, “Information Theory and the Complexity of

Boolean Functions,” Mathematical Systems Theory, Vol. 10,

pp. 129-167, 1977.

[17] R. W.Cook, and M. J.Flynn, “Logical network cost and

entropy,” IEEE Trans. on Computers, Vol. 22(9), pp.823-

826, 1973.

[18] K. T.Cheng, and V.Agrawal, “An Entropy Measure for the

Complexity of Multi-output Boolean Functions,

“.Proceedings of the Design Automation Conference, pp.

302-305, 1990.

[19] R. E. Bryant, “On the Complexity of VLSI Implementations

and Graph Representations of Boolean Functions with

Application to Integer Multiplication,” IEEE Transaction on

Computers, Vol. 40, 203−213, 1991.
[20] S. B. Akers, ”Binary Decision Diagram,” IEEE Transaction

on Computers, Vol. 27, pp. 509-516, 1978.

[21] Milos Seda, “Heuristic Set-Covering-Based Postprocessing

for Improving the Quine-McClusky Method,” Proceeding of

World Academy of Science, Engineering and Technology,

vol. 23, pp. 256-260, Aug. 2007.

[22] S.K. Petrick, “On the Minimization of Boolean Functions,” in

Proceedings of the International Conference Information

Processing, pp. 422-423, 1959.

[23] L. Franco, and M. Anthony, “On a Generalization

Complexity Measure for Boolean Functions,” Proceedings of

the 2004 IEEE International Joint Conference on Neural

Networks, pp.973-978, 2004.

[24] http://www.weibull.com/LifeDataWeb/characteristics_of_the

_weibull_distribution.htm

ACCEPTED: P. W. C. Prasad, A. Beg, and A. K. Singh, "Effect of Quine-McCluskey Simplification on Boolean Space Complexity,"
in IEEE Conference on Innovative Technologies in Intelligent Systems & Industrial Applications (CITISIA 2009), Bandar Sunway, Malaysia, 2009

