
  

 

 

 

  

Abstract—The minimization of logic gates is needed to simplify 

the hardware design area of programmable logic arrays (PLAs) 

and to speed up the circuits. The VLSI designers can use 

minimization methods to produce high speed, inexpensive and 

energy-efficient integrated circuits with increased complexity. 

Quine-McCluskey (Q-M) is an attractive algorithm for 

simplifying Boolean expressions because it can handle any 

number of variables. This paper describes a new model for the 

estimation of circuit complexity, based on Quine-McCluskey 

simplification method. The proposed method utilizes data 

derived from Monte-Carlo simulations for any Boolean function 

with different count of variables and product term complexities. 

The model allows design feasibility and performance analysis 

prior to the circuit realization. 

I. INTRODUCTION 

 OGIC level simulation is still one of the most frequently 

used operations in digital circuits during both the design 

and the test stages [1]. With the rapid increase of the 

amount of logic to be integrated in a single chip, there is a 

need for greater efforts in optimization of the design process 

[2]. One of the key objectives of designing digital logic 

circuits including the PLA and Programmable Array Logic 

(PAL) [3], is to keep the number of logic gates as minimum 

as possible, which will reduce the production cost of these 

systems. To simplify the complexity of a circuit, the designer 

must find another circuit that computes the same function as 

the original but does so with fewer or simpler gates. The 

logic design complexity is direct related to the complexity of 

the Boolean functions. Therefore designers have to make the 

Boolean function the simplest. The basic problem of logic 

minimization [4] is that the conversion of logic equations in 

the gate level netlists. Boolean function representations also 

have direct impact on the computation time and memory 

requirements in the design of digital circuits. In all these 

cases, the efficiency of any method depends on the 

complexity of the Boolean function [5]. Research on the 

complexity of Boolean functions in non-uniform 

computation models is now part of one of the most 
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interesting and important areas in the theoretical computer 

science [6]-[8]. 

The most known simplification method called the Map 

Method, first proposed by Veitch [9} and slightly modified 

by Karnaugh [10], provides a simple straightforward 

procedure for minimizing Boolean functions. However, the 

map method is not convenient as long as the number of 

variables exceeds five or six. In order to minimize the 

Boolean functions with many variables, the other method 

called as Tabulation Method; this is a step-by-step procedure 

and was first formulated by Quine [11] and later improved 

by McCluskey [4], also known as the Quine-McCluskey 

method (Q-M). 

Like the K-map, the Q-M method seeks to collect product 

terms by looking for entries that differ only in a single bit. 

The only difference from a K-map is that we do it by 

searching, rather than mapping. The beauty of the Q-M 

method is that it takes over where the K-map begins to fail. 

The Q-M technique is capable of minimizing logic 

relationships for any number of inputs. The main advantage 

of this method is that it can be implemented in the software 

in an algorithmic fashion. But the disadvantage of this 

method is that the computational complexity still remains 

high. 

Rapid increase in the design complexity and the need to 

reduce time-to-market have resulted in a need for computer-

aided design (CAD) tools that can help make important 

design decisions early in the design process. 

Area complexity is one of the most important criteria that 

have to be taken into account while working with 

simplification methods. However, to be able make these 

decisions early, there is a need for methods to estimate the 

area complexity and power consumption from a design 

description of the circuit at a high level of abstraction [12].  

Nemani, and Najm, [12] proposed an area and power 

estimation capability, given only a functional view of the 

design, such as when a circuit is described only by Boolean 

equations. In this case, no structural information is known—

the lower level (gate-level or lower) description of this 

function is not available. Of course, a given Boolean 

function can be implemented in many ways, with varying 

power dissipation levels. They were interested in predicting 

the minimal area and power dissipation of the function that 

meets a given delay specification. In this paper [12], they use 

“gate-count” as a measure of complexity, mainly due to the 

key fact observed by Muller [13], and also because of the 

popularity of cell-based (or library based) design. 

 In an early work, Shannon [14] studied area complexity, 

measured in terms of the number of relay elements used in 
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building a Boolean function (switch-count). In that paper, 

Shannon proved that the asymptotic complexity of Boolean 

functions was exponential in the number of inputs, and that 

for large number of inputs, almost every Boolean function 

was exponentially complex. Muller, [13] demonstrated the 

same result for Boolean functions implemented using logic 

gates (gate-count measure). A key result of his work is that a 

measure of complexity based on gate-count is independent of 

the nature of the library used for implementing the function. 

Several researchers have also reported results on the 

relationship between area complexity and entropy of a 

Boolean function. These include Kellerman, [15]-[18] 

empirically demonstrated the relation between entropy and 

area complexity, with area complexity measured as literal 

count. They showed that randomly generated Boolean 

functions have a complexity exponential, and proposed to 

use that model as an area predictor for logic circuits. 

However, the circuits tested were very small, typically 

having less than ten inputs. 

Over the past two decades most of the problems in the 

synthesis, design and testing of combinational circuits, have 

been solved using various mathematical methods. 

Researchers in this area are actively involved in developing 

mathematical models that predict the output size of the logic 

circuit in order to predict the complexity of the design in 

terms of the time needed to optimize it and verify its logic. 

During the last two decades, Binary Decision Diagrams have 

gained great popularity as successful method for the 

representation of Boolean functions [19]. Over the years, the 

number of nodes in a BDD has been used to assess the 

complexity of the Boolean circuit [20]. Researchers in this 

area are actively involved in developing mathematical 

models that predict the number of nodes in a BDD in order 

to predict the complexity of the design in terms of the time 

needed to optimize it and verify its logic. 

The main objective of this paper propose a mathematical 

model to estimate the Boolean function complexity derived 

from randomly generated Boolean functions and simplified 

use of Q-M method. The remainder of this paper is divided 

as follows: Background information pertaining to Q-M 

simplification method is given in Section II. The proposed 

mathematical model and the discussions on the experimental 

results and comparisons are explained in the Section III. 

Finally, we conclude our paper with the advantages of using 

our model and our future developments. 

 

II. PRELIMINARIES 

Quine-McCluskey Method 

Following are the important terms which will be used 

throughout the paper, defining again for the reader 

convenient and self contained. 

 

Definitions 

Literal: It is a variable or its negation )or(
'

xx  

Minterm: A product of the literals where each variable 

appears exactly once either true or complemented form, i.e., 

a normal product term consisting of n literals for n variable 

function. 

Maxterm: A sum of the literals where each variable appears 

exactly once either true or complemented form i.e a normal 

sum term consisting of n literals. 

DNF Form (sum-of-product): The disjunctive normal form is 

the sum of minterms of the variables. 

CNF Form (product-of-sum): Conjunctive normal form is a 

product-of-maxterm of the variables. 

Prime Implicant: A prime implicant of a function is the 

product which can not be combined with another term to 

eliminate a variable for further simplification. 

Essential Prime Implicant: Prime implicant that is able to 

cover an output of the function which is not covered by any 

combination of prime implicant called essential prime 

implicant. 

 

Quine-McCluskey (Q-M) method [4], [11] minimizes a 

logical expression realizing a given Boolean function which 

is more efficient for computer algorithm, makes this more 

useful now even though it was introduced more than 55 years 

ago [21]. The method utilizes the following three basic 

simplification laws: 

(i) 1
' =+ xx  (Complement) 

(ii) xxx =+  (Idempotent) 

(iii) xzxyzyx +=+ )(  (Distributive) 

 

This method is also known as tabulation method because it 

gives deterministic steps to check the minimum form of 

function based on selection of essential prime implicants 

using a table. Steps can be broadly categorized in three steps: 

 

(a) Find the Prime Implicant  

In this step, we replace the literals in form of 0 and 1 and 

generate a table. Initially, the number of rows in table is 

equal to the total number of minterms of the original un-

simplified function. If two terms are only different in one bit 

like 101 and 111 i.e. one variable is appearing in both form 

(variable and its negation), then we can use complement law. 

Iteratively, we compare all term and generate the prime 

implicant. 

 

(b) Find the Essential Prime Implicant  

Using prime implicants from above step, we generate the 

table to find essential prime implicants. Note that some 

prime implicants can be redundant and may be omitted, but 

if they appear only once, they cannot be omitted and provide 

prime implicant. 

 

(c) Find Other Prime Implicant 

It is not necessary that essential prime implicants cover all 

the minterms. In that case, we consider other prime implicant 

to make sure that all minterms has been covered. Instead of 
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using trial and error to consider these prime implicants we 

can use Petrick Method [22]. 

In general, Q-M method provides better method for the 

function simplification than K-map, but still is an NP-hard 

problem, and it becomes impractical for large input sizes due 

to exponential complexity. 

III. PROPOSED METHOD 

The complexity of a digital circuit mainly depends on the 

number of literals represented by the Boolean function. It 

can be easily observed that if the number of product terms in 

a Boolean function increases, the complexity of the Boolean 

function increases, and hence the complexity of its logic 

circuit increases. If the number of product terms in the 

Boolean function increases beyond a particular limit, the 

product terms simplify among themselves and the complexity 

of the function starts to decrease. Consequently, the circuit 

complexity decreases [23]. 

We carried out a large set of experiments on Boolean 

functions derived from the Monte Carlo data of randomly 

generated Boolean functions to analyze the exact Boolean 

function complexity variation, i.e., the relation between the 

number of product terms and the number of nodes for any 

number of variables. For each variable count n between 1 

and 15 inclusive and for each term count between 1 and 2n-1 

(non-repeating product terms), 100 SOP terms were 

randomly generated and the average number of literals in the 

output function were determined after Q-M simplification 

process. This process was repeated until the average size of 
the Boolean function complexities (i.e. number of literals) 

became 1. Then the graphs for Boolean function 

complexities (Fig. 1) were plotted against the product term 

(min-term) count for number of variables 1 to 15.  
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Fig. 1. Complexity distribution for 10 variables 

 

Fig. 1 illustrates the Boolean function complexity 

relationship, i.e., the relation between the average number of 

literals and the number of product terms for randomly 

generated Boolean functions with 10 variables. The graph 

indicates that the Boolean function complexity (i.e. number 

of literals) increases as the number of product terms 

increases. This is clear from the rising edge of the curve 

shown in Fig.1. At the end of the rising edge, the number of 

literals reaches a maximum (~130 in this case). This peak 

indicates the maximum number of literals that any randomly 

generated Boolean function with 10 variables can produce 

independently of the number of product terms. The peak also 

specifies the number of product terms (critical limit) of a 

Boolean function that leads to the maximum number of 

literals. For 10 variables, the Boolean function having ~60 

product terms leads to a maximum number of literals (130). 

If the number of product terms increases above the critical 

limit, as expected, the product terms starts to simplify and 

the complexity of the Boolean function decreases. The graph 

shown in Fig. 1 indicates that, as the number of product 

terms increases further, the complexity of the Boolean 

function decreases at a slower rate while it ultimately reaches 

1. With 10 variables, the Boolean function complexity 

reduces to 1 when the number of product terms reaches 

nearly 560.  

Mathematical Model 

Analysis of the graph shown in Fig. 1 reveals that the 

Boolean function complexity can be modeled mathematically 

by the following equation: 

 1)( +⋅⋅= ⋅− γβα tetN  (1) 

where,  

N is the number of literals, 

t is the number of non-repeating product terms in the 

Boolean function,  

α, β and γ are three constants depend on the number of 

variables. 

 It can be inferred that the following equation follows the 

Weibull function pattern [24]. For 10 variables the values of 

the constants are α = 7.7, β =0.904 and γ = 0.0145. Fig. 2 
depicts the experimental results obtained by Q-M 

simplification of randomly generated Boolean functions and 

the theoretical results obtained using equation (1). 
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Fig. 2. Results comparison for Boolean space complexity of 

10 variable functions 

 

Fig. 2 indicates that the proposed model represented by 

equation (1) provides a very good approximation of the 

Boolean space complexity in terms of literals. The same 

work has been repeated for Boolean functions with 2 to 15 

variables. The results for 10 variables are shown in Fig. 2. 
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Fig. 3 and Fig. 4 illustrate experimental and mathematical 

model results for 13 and 15 respectively. 
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Fig. 2. Complexity graph for 13 variables 
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Fig. 4. Complexity graph for 15 variables 

 

Variations of Constants αααα, ββββ and γγγγ 
The values of α, β and γ that were obtained 

experimentally, for Boolean functions with 2 to 15 variables. 

Using curve fitting techniques, the variations of α, β and γ 
were mathematically modeled and are represented by the 

following equations (2), (3) and (4). 

   

 
( )
328.05.0

v

e⋅+=α , (2) 

   

 )3.1(
2.671

v
e

⋅−⋅+=β , and  (3) 

   

 )(
18

v
e
−⋅=γ ,  (4) 

where, v is the number of variables.  
 

Maximum Complexity 

The maximum number of literals (Nmax) for a given 

number of variables can be determined by applying first and 

second order maxima and minima theorems to equation (2). 

The value of t when N is max (N = Nmax) can be calculated 

by solving the maxima theorem equations 
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)(

)(

td

Nd
  

 
0}{ )1()()( =⋅⋅+⋅⋅−⋅⋅ −⋅−⋅− βγγβ βγµα teet tt

 (8) 

   

 
0}{

)1()( =⋅−⋅⋅⋅⋅ −⋅−
tte

t γβµα βγ
 (9) 

Since 0≠α and 0≠µ  
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 ∞=⇒ t  or 0=t  or 
γ

β=t
   (10)  

 

So the critical points (maxima and minima) are ∞, 0 and β/γ. 

To be a maxima, these critical points must 

satisfy 0)()(
22 〈tdNd . 
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 For γβ=t  we have 
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Since βµα ,,  and γ are positive 
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βµα e is negative, hence the critical 

point γβ=t  is a maxima. Thus the number of nodes will 

be maximum when the number of product terms is γβ=t , 

as given in equation (10). 

 

The maximum number of nodes (Nmax) can be found by 

substituting γβ for Number of Product Terms (NPT) in (2). 

The maximum number of literals (NNmax ) is given by: 
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 Thus, the variation of Boolean space complexity is 

defined by the equation (2), number of product terms for 

maximum complexity by the equation (10) and the maximum 

complexity by the equation (17). The values of constants α, 

β and γ can be obtained from equations (3), (4) and (5). 

 

 From equation (10), for 10 variables with symmetric sift 

reordering method, the maximum number of literlas (Nmax 

)will occur when the number of product terms  

(t( N=NNmax)) is:  

 
6234.62
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)( max

≅===
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From equation (17), for 10 variables, the number of literlas 

will be maximum when t = 62. The maximum number of 

literlas ( maxN ) will be  

 

 1
7182.20145.0

904.0
)7.71(

904.0

max +







⋅

⋅⋅=N  

 13272.131 ≅= nodes 

 

The calculated values of t(when N=Nmax) and Nmax (62 and 132 

respectively for 10 variables) match with the experimental 

values in Fig. 2 (62 and 132). This demonstrates the 

accuracy of our developed model. 

 

 Advantages 

Using the mathematical fitting approximation represented 

by equation (1), we can accurately predict the followings:  

a) The complexity of the Boolean space (i.e., number 

of literals) given the number of product terms 

b) The number of product terms of a Boolean function 

for which Boolean space complexity will be 

maximum (i.e,, maximum number of literals). (eg: 

V=10, t =62 gives Nmax)  

c) The maximum Boolean space complexity for given 

number of variables in a Boolean function. (e.g., 

V=10, Nmax=132) 

d) Boolean functions that will have equal complexity, 

even though their corresponding Boolean functions 

have different number of literals, different number 

of product terms. (e.g.., equal complexity (V, t) = 

(10,29) = (11,21) = (11,295) 

 

Most of the current VLSI CAD tools use techniques such 

as BDDs to find the circuit complexity; they use of number 

of nodes and other parameters. Building a complete BDD 

and counting its nodes can require a lot more time than 

predicting it using the proposed model. Estimating the 

Boolean space complexity using the proposed mathematical 

model is expected to reduce the time complexity required to 

develop and execute those applications. 

IV. CONCLUSION 

In this work, we address the problem of predicting the area 

complexity of any Boolean function knowing the number of 

product terms and the number of variables. We analyzed the 

behavior of Q-M simplification for different number of 

product terms and introduced a mathematical model to 

predict the Boolean space complexity. 

Our experimental results show good correlation between 

the theoretical results and the results predicted by the 

mathematical model. The proposed model can greatly reduce 

the time complexity for applications that use Boolean 

functions as the input function. Our future work will be 

mainly concentrated on having wider range of variables to 

check that the fitting is correct, to verify the the proposed 

method with benchmark circuits, to do a comparison with 

other applications that perform the circuit complexity 

calculations. 
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