
1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16
17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Q1

Available online at www.sciencedirect.com

ESWA 2362 No. of Pages 8, Model 5+

31 October 2007 Disk Used
ARTICLE IN PRESS
www.elsevier.com/locate/eswa

Expert Systems with Applications xxx (2007) xxx–xxx

Expert Systems
with Applications
O
F

Investigating data preprocessing methods for circuit complexity models

P.W. Chandana Prasad a, Azam Beg b,*

a Faculty of Information Systems and Technology, Multimedia University, Malaysia
b College of Information Technology, United Arab Emirates University, United Arab Emirates
T
E
D

P
R

O

Abstract

Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant
effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of
Boolean function complexity (BFC). We compare NNs’ predictive capabilities with (1) no preprocessing (2) scaling the values in different
curves based on every curve’s own peak and then normalizing to [0,1] range (3) applying z-score to values in all curves and then nor-
malizing to [0,1] range, and (4) logarithmically scaling all curves and then normalizing to [0,1] range. The efficiency of these methods
was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic prepro-
cessing method resulted in the best prediction statistics as compared to other techniques.
� 2007 Published by Elsevier Ltd.

Keywords: Machine learning; Feed-forward neural network; Data preprocessing; Pattern recognition; Boolean function complexity; Computer-aided
design
C

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
U
N

C
O

R
R

E1. Introduction

Complexity of Boolean functions is an important topic
in the computation theory. Researchers in the past have
tried to classify Boolean functions on the basis of different
complexity measures, for example, the minimum size to
implement a computing entity (Nemani & Najm, 1996;
Priyank, 1997; Wegener, 1987). The way a Boolean func-
tion is implemented directly affects the computation and
memory resources. Being able to estimate the circuit com-
plexity based on Boolean functions is useful for conducting
design feasibility studies (Assi, Prasad, Mills, & El-Chou-
emi, 2005; Priyank, 1997). Mathematical and NN models
have been used in the past for addressing complexity-
related problems (Beg, Prasad, & Beg, in press; Dunne &
van der Hoeke, 2004; Franco, 2005; Franco & Anthony,
2004; Nemani & Najm, 1996; Prasad, Assi, & Beg, 2006;
52

53

54

55

56

0957-4174/$ - see front matter � 2007 Published by Elsevier Ltd.

doi:10.1016/j.eswa.2007.09.052

* Corresponding author. Tel.: +971 50 583 6872; fax: +971 3 7626309.
E-mail addresses: m2160062@mmu.edu.my (P.W. Chandana Prasad),

abeg@uaeu.ac.ae (A. Beg).

Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
Ramalingam & Bhanja, 2005; Raseen, Prasad, & Assi,
2005).

NNs are based on the principle of biological neurons.
An NN may have one or more input and output neurons
as well as one or more (hidden) layers of neurons intercon-
necting the input and output neurons. In the well-known
feed-forward NNs, the outputs of one layer of neurons send
data (only) to the next layer (Beiu, Peperstraete, Vandewal-
le, & Lauwereins, 1994; Caudill, 1990; Franco, 2006; Par-
berry, 1994; Shawe-Taylor, Anthony, & Kern, 1992).
Back-propagation is a common scheme for creating (train-

ing) the NNs. During the process of NN-creation, internal
weights of the neurons are iteratively adjusted so that the
outputs are produced within desired accuracy (Parberry,
1994).

In order to train the NNs, known examples of input–out-
put datasets are needed. The datasets have to be chosen pru-
dently. Selection and preparation of suitable training data
can take up to 80% of the NN development effort (Yale,
1997). Data preparation can vary from simple scaling or
range-compression to complex schemes such as polynomial
expansion (Tuck, 1993) and Fourier transformation.
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052

mailto:m2160062@mmu.edu.my
mailto:abeg@uaeu.ac.ae

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 P.W. Chandana Prasad, A. Beg / Expert Systems with Applications xxx (2007) xxx–xxx

ESWA 2362 No. of Pages 8, Model 5+

31 October 2007 Disk Used
ARTICLE IN PRESS
The objective of this paper is to present three different
methods of data transformation (preprocessing) for use
in BFC models. The proposed techniques are generic
enough to be used in other NN modeling applications as
well. Section 2 of this paper explains the need for data
transformation for BFC models. Section 3 describes the
transformation techniques. Sections 4 and 5 discuss BFC-
NN model, its predictions for ISCAS benchmark circuits,
and the conclusions, respectively. Appendix A lists the code
for three methods of data transformation.
T

99

101101

102

103

104

105

106

107

108

109

110

112112

113
2. Need for transforming the data

Yale (1997) identifies data transformation as a multi-
step process for developing well-designed NNs. Processing
of input data has to be done in such a manner that all input
variables are given an equally distributed significance. Sta-
ted alternately, the inputs with larger absolute values
should be given the same importance as the inputs that
have smaller magnitudes (Masters, 1994).

We can see the need for data transformation in Table 1
that shows variation of BFC (in terms of nodes) for 2–14
variables. It can also be observed that for 2–6 variables,
in their original form, could be hard for a NN to learn.
The maximum values for the minterms and nodes vary
widely and non-linearly. So the smaller variables could be
ignored altogether during the NN-training process; data
preprocessing alleviates this issue by transforming the
curves that have somewhat similar set of minimum and
maximum ranges.
114

116116

117

118
R
E
C

3. Data transformation techniques

In this section, we analyze three arbitrarily chosen meth-
ods of data transformation that will be useful in creating
efficient BFC-NN models: min–max, z-score, and
logarithmic.
U
N

C
O

R 119

120

121

122

123

124

125

126

127

128

129

131131

132

133

134

135

Table 1
Minimum and maximum values for Boolean function complexity curves
for 2–14 variables

Variable Minterm min Minterm max Node min Node max

2 1 7 1 2.53
3 1 16 1 3.68
4 1 36 1 5.27
5 1 54 1 7.96
6 1 93 1 13.11
7 1 156 1 23.77
8 2 248 1 40.25
9 2 392 1 72.2

10 2 650 1 130.38
11 1 969 1.11 243.6
12 1 1597 1 439.73
13 1 2530 1 805.34
14 1 3806 1 1503.24

The minimum and maximum values range widely making it difficult for a
NN to model the BFC behavior accurately.

Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
E
D

P
R

O
O

F

3.1. Min–max transformation

In Table 1, we have seen how widely the minimum and
maximum values of lower variable curves vary from the
higher variable curves. Using min–max transformation,
we first change all curves to one scale, in this case to the
14-variable curve’s ranges. Then, we normalize the min-
term, node and variable values to the [0,1] range. No
min–max transformation was applied to variable values
due to their existing linearity and their limited range of
2–14.

x0i ¼ xi � xmin; i ¼ 0; . . . ; n� 1 ð1Þ

x00i ¼ x0i=x0max; i ¼ 0; . . . ; n� 1 ð2Þ

Implementation details of min–max transformation and
[0,1] normalization of minterm, node and variable values is
given by the code in Appendix A.1.

3.2. Z-score transformation

z-score transformation is a statistical technique of spec-
ifying the degree of deviation of a data value from the
mean. In other words, z-score places different types of data
on a common scale. Z-score is calculated by the following
formula (Jeff, 2007):

Z ¼ ðx� �xÞ
r

ð3Þ

where �x is the sample mean, r and is the sample standard
deviation defined as (Triola, 1994):

r ¼

ffiP
ðx� �xÞ2

n� 1

s
ð4Þ

where n is the sample size.
For data transformation of minterms and nodes, we first

apply the z-score transformation and then the [0,1]-nor-
malization. (As explained in Section 3.1, the variable values
were not z-score-transformed.) The code for the two data
processing steps is given in Appendix A.2.

3.3. Logarithmic transformation

The logarithmic transformation is algorithmically sim-
pler than the two techniques explained in Sections 3.1
and 3.2. Unlike previous procedures, we simply apply a
base-10 logarithm to both the minterm and node values.
(As discussed in Section 3.1, no log-transformation was
applied to variable values.)

x0i ¼ log10ðxiÞ; i ¼ 0; . . . ; n� 1 ð5Þ

The [0,1] normalization of minterms, nodes and vari-
ables is done in the same manner as before. The transfor-
mation-normalization can be performed by the code
given in Appendix A.3.
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052

T
E
D

P
R

O
O

F

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

Hidden neurons

A
cc

ur
ac

y
(%

)

Training

Testing

Fig. 2. Training and validation statistics for log transformation.

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

Hidden neurons

A
cc

ur
ac

y
(%

)

Training

Testing

Fig. 3. Training and validation statistics for min–max transformation.

P.W. Chandana Prasad, A. Beg / Expert Systems with Applications xxx (2007) xxx–xxx 3

ESWA 2362 No. of Pages 8, Model 5+

31 October 2007 Disk Used
ARTICLE IN PRESS
R
R

E
C

4. NN modeling, results and discussion

We used an NN software package called BrainMaker
(version 3.75 for MS-Windows) to model the BFC behav-
ior (BrainMaker, 1998). The software uses fully-connected
feed-forward back-propagation NNs, meaning all inputs are
connected to all hidden neurons, and all hidden neurons
are connected to the outputs.

In our NN models (NNMs), the input neuron count is
fixed at 2 (one for minterms and the other for variables)
and output neuron count at one (for node (BFC) predic-
tion); the NNs comprise of different number of hidden
neurons.

We acquired 1186 data sets (also called facts) by running
Boolean function simulations (Assi, Prasad, & Beg, 2006).
The simulation results were transformed and normalized
before being utilized for NN-training. We use 10% of the
data sets as the NN training set and the remaining 10%
as the validation set. During NN-training, only the training
set was shown to the NN, and not the validation set. Ran-
dom initial weights were used at the beginning of each
training session. Each NN-configuration was trained sev-
eral times to find the best training and validation perfor-
mance and to reduce the chances of ending up in the
local minima.

Application of min–max transformation and [0, 1] nor-
malization on the original data yields the curves shown in
Fig. 1. The general shape of the curves stays close to the
original. Due to shifted and scaled positions of 2–6 variable
curves, we are able to attain better NN-training results.
Comparative training and validation statistics for a few
NN models are shown in Figs. 2–4 for log, min–max and
z-score transformation, respectively. Training accuracy
refers to the percentage of training data sets that were
learnt by the NN with the desired accuracy (i.e., error of
15% or less). Similarly, validation accuracy refers to the
percentage of validation data sets tested within the required
accuracy limit (i.e., error of 15% or less).

The proximity of training and validation accuracies with
log and z-score transformations shows that the training
process was effective in avoiding over-training (Figs. 2
U
N

C
O

187

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Minterms

A
re

a
co

m
pl

ex
ity

14 - variables

2 - variables

Fig. 1. Effect of min–max transformation and normalization on the
original data. The general shape of the original curves is retained.

Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
and 4). In contrast, min–max transformation seems to suf-
fer from over-fitting for hidden neuron of count other than
4 (Fig. 3). Use of z-score transformation and normalization
gives us the curves that we see in Fig. 5. The shapes of these
curves are again somewhat similar to the originals while
making their scales also the same. NN-training using the
preprocessed data improves NN’s predictive accuracy
(Fig. 4).

Unlike the first two schemes, the logarithmic transfor-
mation changes the shapes of the original curves, while still
achieving the goal of bringing their minimums and maxi-
mums to much smaller ranges. Fig. 6 shows the effect of
0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

Hidden neurons

A
cc

ur
ac

y
(%

)

Training

Testing

Fig. 4. Training and validation statistics for z-score transformation.

., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052

E
C

T
E
D

P
R

O
O

F

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Minterms

A
re

a
co

m
pl

ex
ity

2-variables

14-variables

Fig. 5. Effect of z-score transformation and normalization on the original
data. The overall shape of the original curves stays somewhat closer to the
original. Notice the difference in positions of curves between this and
Fig. 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

Minterms

A
re

a
co

m
pl

ex
ity

14 - variables

2 - variables

Fig. 6. Effect of logarithmic transformation on minterm and node curves
(pre-[0,1]-normalization). Curves have changed shape while bringing them
all closer and making them ‘training-visible’.

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

1400

1600

Minterms

A
re

a
co

m
pl

ex
ity

simulation

z-score

min-max

log

Fig. 8. Comparison of simulations and NN predictions with different data
transformation techniques for 14 variables.

Table 2
NNM training and validation accuracies with different data transforma-
tion techniques

Preprocessing/
transformation technique

Maximum training
accuracy (%)

Maximum validation
accuracy (%)

None 42.1 35.3
Log 92.2 91.6
Min–max 74.0 69.7
Z-score 72.4 75.6

4 P.W. Chandana Prasad, A. Beg / Expert Systems with Applications xxx (2007) xxx–xxx

ESWA 2362 No. of Pages 8, Model 5+

31 October 2007 Disk Used
ARTICLE IN PRESS
R
Rlogarithmic transformation (with no [0,1] normalization).

As compared to training with the raw data, the NN-train-
ing results improve in this case as well (Fig. 2).

In some cases, while post-processing NNs’ predicted val-
ues, the logarithmic processing method may result in lower
U
N

C
O 205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

900

Minterms

A
re

a
co

m
pl

ex
ity

simulation
log
min-max
z-score

Fig. 7. Comparison of simulations and NN predictions with different data
transformation techniques for 11 variables.

Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
accuracy than other two ‘non-logarithmic’ techniques.
(Post-processing is done for restoration of actual ranges;
anti-normalization is followed by anti-logarithmization
(10x) of the predicted values.)

The comparison of the actual Colorado University Deci-
sion Diagram (CUDD) simulations and NN predictions
with different transformation techniques for the 11 and
14 variables are shown in Figs. 7 and 8, respectively. The
training and validation accuracies of NNs that made use
of transformed data were higher than the NN that learnt
from the raw (untransformed) data; a numerical compari-
son is presented in Table 2. Without data preprocessing,
the NN-training and validation accuracies remain very
low and the best accuracies are yielded with log
transformation.

5. Circuit complexity (BFC) analysis using benchmark

circuits

The validated results for data transformation techniques
for selected ISCAS benchmark circuits (Brglez & Fujiwara,
1985; Hansen, Yalcin, & Hayes, 1999; Yang, 1991) are
compiled in Table 3. The experimental results were
obtained on a Pentium-IV machine with 512 MB RAM
running on Linux environment. It is well known that run-
ning the models is generally faster than simulations, espe-
cially when larger circuits are involved (Hossain, Pease,
Burns, & Parveen, 2002). Training of our NNMs with
the circuit simulation data took a fair amount of time,
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052

R
R

E
C

T
E
D

P
R

O
O

F

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

243243

Table 3
NNM results for ISCAS benchmark circuits

ISCAS circuit name Number of input variables Number of circuits Area complexity Relative error

CUDD Neural network models

Log Min–max Z-score Log Min–max Z-score

5xp1 7 10 97 94 96 99 �0.03 �0.01 0.02
alu4 14 8 2505 2524 2432 2458 0.01 �0.03 �0.02
apex4 9 19 773 797 686 708 0.03 �0.11 �0.08
apex7 48 55 338 357 507 428 0.06 0.50 0.27
b1 3 4 4 4 3 3 0.19 �0.22 �0.06
b12 15 9 132 120 119 122 �0.09 �0.10 �0.08
b9 41 21 404 480 1186 1185 0.19 1.94 1.93
C17 4 2 10 9 8 9 �0.06 �0.17 �0.04
c8 28 17 165 152 672 486 �0.08 3.08 1.95
cc 21 18 85 78 99 97 �0.08 0.16 0.14
cht 47 36 200 182 166 190 �0.09 �0.17 �0.05
clip 9 5 332 342 279 283 0.03 �0.16 �0.15
cm138a 6 8 89 86 80 86 �0.04 �0.10 �0.04
cm152a 11 8 8 6 165 103 �0.26 19.01 11.44
cm162a 11 6 78 89 314 222 0.14 3.03 1.85
cm163a 9 5 59 53 85 73 �0.10 0.45 0.25
cm82a 5 3 18 14 15 18 �0.20 �0.14 �0.02
cmb 16 4 36 31 1169 724 �0.15 31.61 19.21
con1 6 2 17 16 16 17 �0.04 �0.04 0.01
cu 14 11 57 48 199 198 �0.15 2.47 2.45
decod 5 16 70 63 83 79 �0.09 0.20 0.13
i6 5 67 342 332 323 366 �0.03 �0.05 0.07
i7 6 67 480 445 531 567 �0.07 0.11 0.18
inc 15 57 114 124 150 156 0.08 0.31 0.37
majority 5 1 7 7 6 7 �0.06 �0.16 �0.05
misex1 8 7 94 100 144 143 0.07 0.54 0.53
Pcle 19 9 71 62 796 511 �0.13 10.15 6.16
rd53 5 3 17 15 18 20 �0.07 0.07 0.22
rd73 7 3 39 32 38 43 �0.18 �0.02 0.10
Sao2 10 4 291 285 379 312 �0.02 0.30 0.07
Sct 14 15 172 149 1576 1031 �0.13 8.17 5.00
sqrt8 8 4 19 15 15 17 �0.17 �0.20 �0.06
Squar5 5 8 57 52 50 56 �0.08 �0.12 0.00
ttt2 24 12 273 235 2883 1882 �0.14 9.56 5.89
X2 10 7 49 41 201 138 �0.16 3.13 1.82
x4 94 59 647 575 1965 2174 �0.11 2.04 2.36
z4ml 7 4 75 74 73 75 �0.01 �0.02 0.01

Total circuits 594 RMS error 0.11 6.71 4.11

P.W. Chandana Prasad, A. Beg / Expert Systems with Applications xxx (2007) xxx–xxx 5

ESWA 2362 No. of Pages 8, Model 5+

31 October 2007 Disk Used
ARTICLE IN PRESS
U
N

C
Obut it was an up-front, once-only cost; subsequently the

NNM would produce the results for various functions with
different number of variables and minterms within a few
milliseconds or less.

In Table 3, the 1st column indicates the ISCAS bench-
mark circuit name and the 2nd and 3rd columns are for
the maximum number of input variables and number of
output circuits for the respective benchmark circuit. In col-
umn 4, the actual circuit area complexity for the bench-
mark circuits have been calculated as nodes in binary
decision diagram (Akers, 1978; Bryant, 1991; Drechsler &
Sieling, 2001) using CUDD package (Somenzi, 2003).
The area complexities (BFC) for all three data transforma-
tion techniques were calculated for the number of variables
and number of minterms for each respective benchmark
circuit. Columns 5–7 list the BFC predictions utilizing
Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
NNs that had made use of log, min–max and z-score tech-
niques. The RMS relative errors for all three methods com-
pared to the actual benchmark area complexity are given in
columns 8–10. The relative errors were computed as the
deviation of CUDD’s measured (simulated) values from
NNM’s predicted values

Relative errori

¼ ðNNM predicted valuei � CUDD measured valueiÞ
CUDD measured valuei

;

i ¼ 0; . . . ; n� 1 ð6Þ

RMS error ¼

ffiPn
i¼1ðRelative erroriÞ2

n

s
ð7Þ
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052

T
E
D

P
R

O
O

F

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265 Q2

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

6 P.W. Chandana Prasad, A. Beg / Expert Systems with Applications xxx (2007) xxx–xxx

ESWA 2362 No. of Pages 8, Model 5+

31 October 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

The deviations for BFC estimation for a complete set of
594 circuits were calculated and the RMS errors for log,
min–max and z-score transformation techniques were
0.11, 6.71 and 4.11, respectively. It can be concluded from
these results, that the log transformation technique pro-
duced a closer match with the actual CUDD results.

According to Table 3, the benchmarks tested were up to
94 input variables. The benchmarks circuits mostly consist
of the minterms of 1–13 variables. It was observed that most
of the benchmarks do not have minterms which can pro-
duce the maximum BFC (peak of the respective curve) for
the variable of that minterm. Visually, for 11 and 14 vari-
ables, the simulated and NN-predicted data (with logarith-
mic transformation) show differences close to the peaks in
Figs. 7 and 8. However, the benchmark circuit comparisons
are quite acceptable. This is primarily because the evaluated
benchmarks results were clustered well below the peak of
each curve. It was also observed that out of 596 circuits
tested, only 48 circuits were with 14 variables and 34 circuits
with 11 variables, which meant that the data used from the
graphs were less than 1%. Therefore, we can conclude that
the rising edge of the graphs for any variables (Fig. 7 and 8)
are only important for the validation of benchmarks for
these methods. This can be the main reason behind the
low RMS error for log transformation. It is obvious that
importance of a full-scale match of the curves will be more
difficult to justify because of the lack of sample minterms
that can be extracted from the benchmarks.

6. Conclusions

The data preprocessing (transformation) techniques for
NNMs presented in this paper exhibit varying degree of
effectiveness for the purpose of BFC modeling. We com-
pared the performance of various NNMs for large sets of
Monte Carlo data for different number of variables and
minterms up to 14 variables. Without making use of data
transformation, the NNM prediction accuracy remained
unacceptably low at approximately 42%; the min–max
and z-score transformations improved these statistics to
74% and 72%, respectively. The logarithmic transformation
yielded the best prediction capability with accuracy of
more than 92%. The effectiveness of logarithmic transfor-
mation was also justified by the RMS error of 0.11
achieved for ISCAS benchmarks in comparison to 6.71
and 4.11 for min–max and z-score transformations, respec-
tively. The proposed transformation methods or their vari-
ations can be helpful in developing robustly working NNs
for other practical applications. We are currently exploring
the extension of this work to identify the extrapolative
behavior of the neural methods for circuits of more than
14 variables.

Appendix A.

This section lists the code required for data transforma-
tion specific to NNs for BFC modeling.
Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
A.1. Min–max transformation
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052

328328328328328328

329

330

331

332

ystems with Applications xxx (2007) xxx–xxx 7

ESWA 2362 No. of Pages 8, Model 5+

31 October 2007 Disk Used
ARTICLE IN PRESS
A.2. Z-Score Transformation
P.W. Chandana Prasad, A. Beg / Expert S
U
N

C
O

R
R

E
C

T

R
O

O
F

333

334
335
336
337
338Q3

339
340
341
342
343
344
345Q4

346
347
348
349
350Q5

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

A.3 Logarithmic Transformation

Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
E
D

PReferences

Akers, S. B. (1978). Binary decision diagram. IEEE Transaction on

Computers, 27, 509–516.
Assi, A., Prasad, P. W. C., & Beg, A. (2006). Modeling the complexity of

digital circuits using neural networks. WSEAS Transacation on

Circuits and Systems.
Assi, A., Prasad, P. W. C., Mills, B., & El-Chouemi, A. (2005). Empirical

analysis and mathematical representation of the path length complex-
ity in binary decision diagrams. Journal of Computer Science, 2(3),
236–244.

Beg, A., Prasad, P. W. C., & Beg, A. (in press). Applicability of feed-
forward and recurrent neural networks to boolean function complexity
modeling. Expert Systems with Applications.

Beiu, V., Peperstraete, J. A., Vandewalle, J., & Lauwereins, R. (1994).
Placing feedforward neural networks among several circuit complexity
classes. In Proceedings of the WCNN’94 (pp. 584–589).

BrainMaker. (1998). User’s guide and reference manual (7th ed.). Califor-
nia Scientific Software Press.

Brglez, F., & Fujiwara, H. (1985). A Neutral netlist of 10 combinational
circuits and a target translator in fortran. In Proceedings of the

international symposium on circuit and systems, special session on ATPG

and fault simulation (pp. 663–6985).
Bryant, R. E. (1991). On the complexity of VLSI implementations and

graph representations of Boolean functions with application to integer
multiplication. IEEE Transactions on Computers, 40, 203–213.

Caudill, M. (1990). AI expert: Neural network primer. Miller Freeman
Publications.

Drechsler, R., & Sieling, D. (2001). Binary decision diagrams in theory and

practice. Springer-Verlag Transaction, pp. 112–136.
Dunne, P. E., & van der Hoeke, W. (2004). Representation and

complexity in Boolean games. In Proceedings of the nineth European

conference on logics in artificial intelligence. LNCS 3229 (pp. 347–35).
Franco, L. (2005). Role of function complexity and network size in the

generalization ability of feedforward networks. Lecture notes in
computer science. computational intelligence and bioinspired systems.
In Proceedings of the eighth international workshop on artificial neural

networks (pp. 1–8).
Franco, L. (2006). Generalization ability of Boolean functions imple-

mented in feedforward neural networks. Neurocomputing, 70, 351–361.
Franco, L., & Anthony, M. (2004). On a generalization complexity

measure for Boolean functions. In Proceedings of the IEEE interna-

tional joint conference on neural networks. IJCNN 2004 (pp. 973–978).
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389 Q6

390
391
392
393
394
395
396

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

8 P.W. Chandana Prasad, A. Beg / Expert Systems with Applications xxx (2007) xxx–xxx

ESWA 2362 No. of Pages 8, Model 5+

31 October 2007 Disk Used
ARTICLE IN PRESS
Hansen, M., Yalcin, H., & Hayes, J. P. (1999). Unveiling the ISCAS-85
Benchmarks: A case study in reverse engineering. IEEE Transaction on

Design and Test, 16, 72–80.
Hossain, A., Pease, D. J., Burns, J. S., & Parveen, N. (2002). Trace cache

performance parameters. In Proceedings of the IEEE international

conference on computer design, VLSI in computers and processors (pp.
348–355).

Jeff. (2007). What’s a Z-score and why use it in usability testing? <http://
www.measuringusability.com/z.htm>.

Masters, T. (1994). Signal and image processing with neural networks. John
Wiley & Sons, Inc.

Nemani, M., & Najm, F. N. (1996). High-level power estimation and the
area complexity of Boolean functions. In Proceedings of the IEEE

international symposium on low power electronics and design (pp. 329–
334).

Parberry, I. (1994). Circuit complexity and neural networks. MIT Press.
Prasad, P. W. C., Assi, A., & Beg, A. (2006). Binary decision diagrams and

neural networks. Journal of Supercomputing, 2(2), 141–147.
Priyank, K. (1997). VLSI logic test, validation and verification, properties

& applications of binary decision diagrams. Lecture Notes-department
of Electrical and Computer Engineering University of Utah, Salt Lake
City. UT 84112.
U
N

C
O

R
R

E
C

T
419

Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
R
O

O
F

Ramalingam, N., & Bhanja, S. (2005). Causal probabilistic input
dependency learning for switching model in VLSI circuits. In
Proceedings of the ACM great lakes symposium on VLSI (pp. 112–115).

Raseen, M., Prasad, P. W. C., & Assi, A. (2005). An efficient estimation of
the ROBDD’s complexity. Integration – VLSI Journal, 39(3), 211–228.

Shawe-Taylor, J. S., Anthony, M. H. G., & Kern, W. (1992). Classes of
feedforward neural networks and their circuit complexity. Neural

Networks, 5, 971–977.
Somenzi, F. (2003). CUDD: CU decision diagram package. <ftp://

vlsi.colorado.edu/pub/>.
Triola, M. (1994). Elementary Stastictics (6th ed.). Addison-Wesley

Publishing Co.
Tuck, D. L. (1993). Practical polynomial expansion of input data can

improve neurocomputing results. In Proceedings of the artificial neural
networks and expert systems (pp. 42–45).

Wegener, I. (1987). The complexity of Boolean functions. Wiley and Sons,
Inc.

Yale, K. (1997). Preparing the right data for training neural networks.
IEEE Spectrum, 34(3), 64–66.

Yang, S. (1991). Logic synthesis and optimization benchmarks user guide

version 3.0. Technical Report. Microelectronic Center of North
Carolina Research Triangle Park.
E
D

P

., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052

http://www.measuringusability.com/z.htm
http://www.measuringusability.com/z.htm

	Investigating data preprocessing methods for circuit complexity models
	Introduction
	Need for transforming the data
	Data transformation techniques
	Min-max transformation
	Z-score transformation
	Logarithmic transformation

	NN modeling, results and discussion
	Circuit complexity (BFC) analysis using benchmark circuits
	Conclusions
	 blank
	Min-max transformation
	Z-Score Transformation

	References

