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Abstract

Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant
effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of
Boolean function complexity (BFC). We compare NNs’ predictive capabilities with (1) no preprocessing (2) scaling the values in different
curves based on every curve’s own peak and then normalizing to [0,1] range (3) applying z-score to values in all curves and then nor-
malizing to [0,1] range, and (4) logarithmically scaling all curves and then normalizing to [0,1] range. The efficiency of these methods
was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic prepro-
cessing method resulted in the best prediction statistics as compared to other techniques.
� 2007 Published by Elsevier Ltd.

Keywords: Machine learning; Feed-forward neural network; Data preprocessing; Pattern recognition; Boolean function complexity; Computer-aided
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E1. Introduction

Complexity of Boolean functions is an important topic
in the computation theory. Researchers in the past have
tried to classify Boolean functions on the basis of different
complexity measures, for example, the minimum size to
implement a computing entity (Nemani & Najm, 1996;
Priyank, 1997; Wegener, 1987). The way a Boolean func-
tion is implemented directly affects the computation and
memory resources. Being able to estimate the circuit com-
plexity based on Boolean functions is useful for conducting
design feasibility studies (Assi, Prasad, Mills, & El-Chou-
emi, 2005; Priyank, 1997). Mathematical and NN models
have been used in the past for addressing complexity-
related problems (Beg, Prasad, & Beg, in press; Dunne &
van der Hoeke, 2004; Franco, 2005; Franco & Anthony,
2004; Nemani & Najm, 1996; Prasad, Assi, & Beg, 2006;
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Ramalingam & Bhanja, 2005; Raseen, Prasad, & Assi,
2005).

NNs are based on the principle of biological neurons.
An NN may have one or more input and output neurons
as well as one or more (hidden) layers of neurons intercon-
necting the input and output neurons. In the well-known
feed-forward NNs, the outputs of one layer of neurons send
data (only) to the next layer (Beiu, Peperstraete, Vandewal-
le, & Lauwereins, 1994; Caudill, 1990; Franco, 2006; Par-
berry, 1994; Shawe-Taylor, Anthony, & Kern, 1992).
Back-propagation is a common scheme for creating (train-

ing) the NNs. During the process of NN-creation, internal
weights of the neurons are iteratively adjusted so that the
outputs are produced within desired accuracy (Parberry,
1994).

In order to train the NNs, known examples of input–out-
put datasets are needed. The datasets have to be chosen pru-
dently. Selection and preparation of suitable training data
can take up to 80% of the NN development effort (Yale,
1997). Data preparation can vary from simple scaling or
range-compression to complex schemes such as polynomial
expansion (Tuck, 1993) and Fourier transformation.
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052
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The objective of this paper is to present three different
methods of data transformation (preprocessing) for use
in BFC models. The proposed techniques are generic
enough to be used in other NN modeling applications as
well. Section 2 of this paper explains the need for data
transformation for BFC models. Section 3 describes the
transformation techniques. Sections 4 and 5 discuss BFC-
NN model, its predictions for ISCAS benchmark circuits,
and the conclusions, respectively. Appendix A lists the code
for three methods of data transformation.
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2. Need for transforming the data

Yale (1997) identifies data transformation as a multi-
step process for developing well-designed NNs. Processing
of input data has to be done in such a manner that all input
variables are given an equally distributed significance. Sta-
ted alternately, the inputs with larger absolute values
should be given the same importance as the inputs that
have smaller magnitudes (Masters, 1994).

We can see the need for data transformation in Table 1
that shows variation of BFC (in terms of nodes) for 2–14
variables. It can also be observed that for 2–6 variables,
in their original form, could be hard for a NN to learn.
The maximum values for the minterms and nodes vary
widely and non-linearly. So the smaller variables could be
ignored altogether during the NN-training process; data
preprocessing alleviates this issue by transforming the
curves that have somewhat similar set of minimum and
maximum ranges.
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3. Data transformation techniques

In this section, we analyze three arbitrarily chosen meth-
ods of data transformation that will be useful in creating
efficient BFC-NN models: min–max, z-score, and
logarithmic.
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Table 1
Minimum and maximum values for Boolean function complexity curves
for 2–14 variables

Variable Minterm min Minterm max Node min Node max

2 1 7 1 2.53
3 1 16 1 3.68
4 1 36 1 5.27
5 1 54 1 7.96
6 1 93 1 13.11
7 1 156 1 23.77
8 2 248 1 40.25
9 2 392 1 72.2

10 2 650 1 130.38
11 1 969 1.11 243.6
12 1 1597 1 439.73
13 1 2530 1 805.34
14 1 3806 1 1503.24

The minimum and maximum values range widely making it difficult for a
NN to model the BFC behavior accurately.
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3.1. Min–max transformation

In Table 1, we have seen how widely the minimum and
maximum values of lower variable curves vary from the
higher variable curves. Using min–max transformation,
we first change all curves to one scale, in this case to the
14-variable curve’s ranges. Then, we normalize the min-
term, node and variable values to the [0,1] range. No
min–max transformation was applied to variable values
due to their existing linearity and their limited range of
2–14.

x0i ¼ xi � xmin; i ¼ 0; . . . ; n� 1 ð1Þ

x00i ¼ x0i=x0max; i ¼ 0; . . . ; n� 1 ð2Þ

Implementation details of min–max transformation and
[0,1] normalization of minterm, node and variable values is
given by the code in Appendix A.1.

3.2. Z-score transformation

z-score transformation is a statistical technique of spec-
ifying the degree of deviation of a data value from the
mean. In other words, z-score places different types of data
on a common scale. Z-score is calculated by the following
formula (Jeff, 2007):

Z ¼ ðx� �xÞ
r

ð3Þ

where �x is the sample mean, r and is the sample standard
deviation defined as (Triola, 1994):

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðx� �xÞ2

n� 1

s
ð4Þ

where n is the sample size.
For data transformation of minterms and nodes, we first

apply the z-score transformation and then the [0,1]-nor-
malization. (As explained in Section 3.1, the variable values
were not z-score-transformed.) The code for the two data
processing steps is given in Appendix A.2.

3.3. Logarithmic transformation

The logarithmic transformation is algorithmically sim-
pler than the two techniques explained in Sections 3.1
and 3.2. Unlike previous procedures, we simply apply a
base-10 logarithm to both the minterm and node values.
(As discussed in Section 3.1, no log-transformation was
applied to variable values.)

x0i ¼ log10ðxiÞ; i ¼ 0; . . . ; n� 1 ð5Þ

The [0,1] normalization of minterms, nodes and vari-
ables is done in the same manner as before. The transfor-
mation-normalization can be performed by the code
given in Appendix A.3.
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052
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Fig. 2. Training and validation statistics for log transformation.
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Fig. 3. Training and validation statistics for min–max transformation.
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4. NN modeling, results and discussion

We used an NN software package called BrainMaker
(version 3.75 for MS-Windows) to model the BFC behav-
ior (BrainMaker, 1998). The software uses fully-connected
feed-forward back-propagation NNs, meaning all inputs are
connected to all hidden neurons, and all hidden neurons
are connected to the outputs.

In our NN models (NNMs), the input neuron count is
fixed at 2 (one for minterms and the other for variables)
and output neuron count at one (for node (BFC) predic-
tion); the NNs comprise of different number of hidden
neurons.

We acquired 1186 data sets (also called facts) by running
Boolean function simulations (Assi, Prasad, & Beg, 2006).
The simulation results were transformed and normalized
before being utilized for NN-training. We use 10% of the
data sets as the NN training set and the remaining 10%
as the validation set. During NN-training, only the training
set was shown to the NN, and not the validation set. Ran-
dom initial weights were used at the beginning of each
training session. Each NN-configuration was trained sev-
eral times to find the best training and validation perfor-
mance and to reduce the chances of ending up in the
local minima.

Application of min–max transformation and [0, 1] nor-
malization on the original data yields the curves shown in
Fig. 1. The general shape of the curves stays close to the
original. Due to shifted and scaled positions of 2–6 variable
curves, we are able to attain better NN-training results.
Comparative training and validation statistics for a few
NN models are shown in Figs. 2–4 for log, min–max and
z-score transformation, respectively. Training accuracy
refers to the percentage of training data sets that were
learnt by the NN with the desired accuracy (i.e., error of
15% or less). Similarly, validation accuracy refers to the
percentage of validation data sets tested within the required
accuracy limit (i.e., error of 15% or less).

The proximity of training and validation accuracies with
log and z-score transformations shows that the training
process was effective in avoiding over-training (Figs. 2
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Fig. 1. Effect of min–max transformation and normalization on the
original data. The general shape of the original curves is retained.

Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
and 4). In contrast, min–max transformation seems to suf-
fer from over-fitting for hidden neuron of count other than
4 (Fig. 3). Use of z-score transformation and normalization
gives us the curves that we see in Fig. 5. The shapes of these
curves are again somewhat similar to the originals while
making their scales also the same. NN-training using the
preprocessed data improves NN’s predictive accuracy
(Fig. 4).

Unlike the first two schemes, the logarithmic transfor-
mation changes the shapes of the original curves, while still
achieving the goal of bringing their minimums and maxi-
mums to much smaller ranges. Fig. 6 shows the effect of
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Fig. 4. Training and validation statistics for z-score transformation.
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Fig. 8. Comparison of simulations and NN predictions with different data
transformation techniques for 14 variables.

Table 2
NNM training and validation accuracies with different data transforma-
tion techniques

Preprocessing/
transformation technique

Maximum training
accuracy (%)

Maximum validation
accuracy (%)

None 42.1 35.3
Log 92.2 91.6
Min–max 74.0 69.7
Z-score 72.4 75.6
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As compared to training with the raw data, the NN-train-
ing results improve in this case as well (Fig. 2).

In some cases, while post-processing NNs’ predicted val-
ues, the logarithmic processing method may result in lower
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Fig. 7. Comparison of simulations and NN predictions with different data
transformation techniques for 11 variables.
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accuracy than other two ‘non-logarithmic’ techniques.
(Post-processing is done for restoration of actual ranges;
anti-normalization is followed by anti-logarithmization
(10x) of the predicted values.)

The comparison of the actual Colorado University Deci-
sion Diagram (CUDD) simulations and NN predictions
with different transformation techniques for the 11 and
14 variables are shown in Figs. 7 and 8, respectively. The
training and validation accuracies of NNs that made use
of transformed data were higher than the NN that learnt
from the raw (untransformed) data; a numerical compari-
son is presented in Table 2. Without data preprocessing,
the NN-training and validation accuracies remain very
low and the best accuracies are yielded with log
transformation.

5. Circuit complexity (BFC) analysis using benchmark

circuits

The validated results for data transformation techniques
for selected ISCAS benchmark circuits (Brglez & Fujiwara,
1985; Hansen, Yalcin, & Hayes, 1999; Yang, 1991) are
compiled in Table 3. The experimental results were
obtained on a Pentium-IV machine with 512 MB RAM
running on Linux environment. It is well known that run-
ning the models is generally faster than simulations, espe-
cially when larger circuits are involved (Hossain, Pease,
Burns, & Parveen, 2002). Training of our NNMs with
the circuit simulation data took a fair amount of time,
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052
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Table 3
NNM results for ISCAS benchmark circuits

ISCAS circuit name Number of input variables Number of circuits Area complexity Relative error

CUDD Neural network models

Log Min–max Z-score Log Min–max Z-score

5xp1 7 10 97 94 96 99 �0.03 �0.01 0.02
alu4 14 8 2505 2524 2432 2458 0.01 �0.03 �0.02
apex4 9 19 773 797 686 708 0.03 �0.11 �0.08
apex7 48 55 338 357 507 428 0.06 0.50 0.27
b1 3 4 4 4 3 3 0.19 �0.22 �0.06
b12 15 9 132 120 119 122 �0.09 �0.10 �0.08
b9 41 21 404 480 1186 1185 0.19 1.94 1.93
C17 4 2 10 9 8 9 �0.06 �0.17 �0.04
c8 28 17 165 152 672 486 �0.08 3.08 1.95
cc 21 18 85 78 99 97 �0.08 0.16 0.14
cht 47 36 200 182 166 190 �0.09 �0.17 �0.05
clip 9 5 332 342 279 283 0.03 �0.16 �0.15
cm138a 6 8 89 86 80 86 �0.04 �0.10 �0.04
cm152a 11 8 8 6 165 103 �0.26 19.01 11.44
cm162a 11 6 78 89 314 222 0.14 3.03 1.85
cm163a 9 5 59 53 85 73 �0.10 0.45 0.25
cm82a 5 3 18 14 15 18 �0.20 �0.14 �0.02
cmb 16 4 36 31 1169 724 �0.15 31.61 19.21
con1 6 2 17 16 16 17 �0.04 �0.04 0.01
cu 14 11 57 48 199 198 �0.15 2.47 2.45
decod 5 16 70 63 83 79 �0.09 0.20 0.13
i6 5 67 342 332 323 366 �0.03 �0.05 0.07
i7 6 67 480 445 531 567 �0.07 0.11 0.18
inc 15 57 114 124 150 156 0.08 0.31 0.37
majority 5 1 7 7 6 7 �0.06 �0.16 �0.05
misex1 8 7 94 100 144 143 0.07 0.54 0.53
Pcle 19 9 71 62 796 511 �0.13 10.15 6.16
rd53 5 3 17 15 18 20 �0.07 0.07 0.22
rd73 7 3 39 32 38 43 �0.18 �0.02 0.10
Sao2 10 4 291 285 379 312 �0.02 0.30 0.07
Sct 14 15 172 149 1576 1031 �0.13 8.17 5.00
sqrt8 8 4 19 15 15 17 �0.17 �0.20 �0.06
Squar5 5 8 57 52 50 56 �0.08 �0.12 0.00
ttt2 24 12 273 235 2883 1882 �0.14 9.56 5.89
X2 10 7 49 41 201 138 �0.16 3.13 1.82
x4 94 59 647 575 1965 2174 �0.11 2.04 2.36
z4ml 7 4 75 74 73 75 �0.01 �0.02 0.01

Total circuits 594 RMS error 0.11 6.71 4.11
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NNM would produce the results for various functions with
different number of variables and minterms within a few
milliseconds or less.

In Table 3, the 1st column indicates the ISCAS bench-
mark circuit name and the 2nd and 3rd columns are for
the maximum number of input variables and number of
output circuits for the respective benchmark circuit. In col-
umn 4, the actual circuit area complexity for the bench-
mark circuits have been calculated as nodes in binary
decision diagram (Akers, 1978; Bryant, 1991; Drechsler &
Sieling, 2001) using CUDD package (Somenzi, 2003).
The area complexities (BFC) for all three data transforma-
tion techniques were calculated for the number of variables
and number of minterms for each respective benchmark
circuit. Columns 5–7 list the BFC predictions utilizing
Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
NNs that had made use of log, min–max and z-score tech-
niques. The RMS relative errors for all three methods com-
pared to the actual benchmark area complexity are given in
columns 8–10. The relative errors were computed as the
deviation of CUDD’s measured (simulated) values from
NNM’s predicted values

Relative errori

¼ ðNNM predicted valuei � CUDD measured valueiÞ
CUDD measured valuei

;

i ¼ 0; . . . ; n� 1 ð6Þ

RMS error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðRelative erroriÞ2

n

s
ð7Þ
., Investigating data preprocessing methods for circuit complex-
swa.2007.09.052
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The deviations for BFC estimation for a complete set of
594 circuits were calculated and the RMS errors for log,
min–max and z-score transformation techniques were
0.11, 6.71 and 4.11, respectively. It can be concluded from
these results, that the log transformation technique pro-
duced a closer match with the actual CUDD results.

According to Table 3, the benchmarks tested were up to
94 input variables. The benchmarks circuits mostly consist
of the minterms of 1–13 variables. It was observed that most
of the benchmarks do not have minterms which can pro-
duce the maximum BFC (peak of the respective curve) for
the variable of that minterm. Visually, for 11 and 14 vari-
ables, the simulated and NN-predicted data (with logarith-
mic transformation) show differences close to the peaks in
Figs. 7 and 8. However, the benchmark circuit comparisons
are quite acceptable. This is primarily because the evaluated
benchmarks results were clustered well below the peak of
each curve. It was also observed that out of 596 circuits
tested, only 48 circuits were with 14 variables and 34 circuits
with 11 variables, which meant that the data used from the
graphs were less than 1%. Therefore, we can conclude that
the rising edge of the graphs for any variables (Fig. 7 and 8)
are only important for the validation of benchmarks for
these methods. This can be the main reason behind the
low RMS error for log transformation. It is obvious that
importance of a full-scale match of the curves will be more
difficult to justify because of the lack of sample minterms
that can be extracted from the benchmarks.

6. Conclusions

The data preprocessing (transformation) techniques for
NNMs presented in this paper exhibit varying degree of
effectiveness for the purpose of BFC modeling. We com-
pared the performance of various NNMs for large sets of
Monte Carlo data for different number of variables and
minterms up to 14 variables. Without making use of data
transformation, the NNM prediction accuracy remained
unacceptably low at approximately 42%; the min–max
and z-score transformations improved these statistics to
74% and 72%, respectively. The logarithmic transformation
yielded the best prediction capability with accuracy of
more than 92%. The effectiveness of logarithmic transfor-
mation was also justified by the RMS error of 0.11
achieved for ISCAS benchmarks in comparison to 6.71
and 4.11 for min–max and z-score transformations, respec-
tively. The proposed transformation methods or their vari-
ations can be helpful in developing robustly working NNs
for other practical applications. We are currently exploring
the extension of this work to identify the extrapolative
behavior of the neural methods for circuits of more than
14 variables.

Appendix A.

This section lists the code required for data transforma-
tion specific to NNs for BFC modeling.
Please cite this article in press as: Chandana Prasad, P. W. , & Beg, A
ity models, Expert Systems with Applications (2007), doi:10.1016/j.e
A.1. Min–max transformation
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