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Abstract - Integrated circuits in the coming years are 
expected to be based on nano-scaled devices, such as 
single electron transistors, self-assembled DNA, carbon 
nano-tubes, and resonant tunnel diodes. Future designs 
based on such nano-devices will exhibit high integration 
densities, and might be either low power or fast 
switching but not both. Unfortunately, nano-devices 
suffer heavily from fabrication inconsistencies, and 
transient and permanent failures due to external causes. 
Therefore, circuit reliability will have to be added to the 
design space currently consisting of timing, area, and 
power. This also means that the reliability 
calculation/estimation could soon be an important topic 
in the undergraduate/graduate courses on circuit design. 
Probability transfer matrix numerical method has been 
used as an exact way to calculate the reliability of a 
circuit. Traditionally, the matrices are created manually, 
making the process tedious, time-consuming, and error-
prone. This paper proposes an automatic tool 
(AutoPTMate) for generating ready-to-use MATLAB m-
files for calculating the circuit’s reliability. The tool 
allows users to significantly speed-up the reliability 
assessment of a large number of circuits. The first 
potential users of such a tool are members of academia 
and R&D community.  
 
Index Terms - Active learning, teaching tools, curricula, 
computer-aided design, nano-architecture, reliability, 
probability transfer matrix (PTM), fault tolerance 

CHALLENGES FOR FUTURE CIRCUIT DESIGNERS 

The development of ever-smaller devices brings promise for 
further improvement in the performance of future integrated 
circuits (ICs), yet also leads to several new technical 
challenges, including the need for architectures that reduce 
the uncertainty inherent to computations at very small scales 
 [1]– [3]. In particular, as feature sizes are aggressively 
scaled, the design and manufacturing of ICs becomes more 
complex and inevitably introduces more defects. The 
devices’ small sizes—and consequently the tiny amounts of 
energy required in their switching—make them susceptible 
to transient failures  [4]. Unfortunately, architectures built 
from emerging nanodevices, such as resonant tunnel diodes 
(RTDs), single electron transistor (SET), carbon nanotubes 
(CNTs), silicon nanowires, molecular devices, etc., will be 
even more vulnerable to parameter variations, fabrication 
noise, and transient failures induced by 
environmental/external causes  [2],  [5]. Device failure rates 

are predicted to be as high as 10% in case of single-electron 
transistor (SET)  [6] and going up to 30% in case of self-
assembled DNA (SADNA)  [7]. As a fresh example,  [8] has 
reported defect rates of 60% for a 160-kilobit molecular 
electronic memory. Clearly, achieving 100% correctness at 
the system level using such devices (and their associated 
interconnects) will be not only outrageously expensive, but 
might be plainly impossible! Therefore, relaxing the 
requirement of 100% correctness for devices and 
interconnects might significantly reduce the costs of 
manufacturing, verification, and test. This will lead to more 
transient and permanent failures of signals, logic values, 
devices, and interconnects. Therefore, most (if not all) of 
these failures will have to be compensated by architectural 
level techniques (e.g., redundancy in space, time, and 
information)  [9]- [15]. 

An accurate calculation of the reliability of nano-
architectural circuits through simulations will become 
essential for future designs. It will allow designers to 
estimate the yield and the behavior of their designs under 
different operating conditions. It is also crucial in 
designing/selecting the most suitable (nano) architecture that 
optimally makes a trade-off among all the delay, power, 
area, and reliability requirements.  

In Section 2, we present some ideas about a course on 
circuit reliability (for example, target audience, delivery 
method, topics, etc.) Section 3 delves into the details of 
AutoPTMate (pronounced as auto-P-T-mate), a tool – for use 
by designers and students – that aids in reliability evaluation 
of circuits. A complete example on PTM methodology is 
also included. And finally, we present the conclusions.  

TEACHING NANO-CIRCUIT RELIABILITY – STRUCTURE 
AND CONTENTS OF A COURSE 

Circuit reliability calculation (estimation) could soon be 
an important part of VLSI courses; the students will have to 
consider reliability as a new design pillar. Reliability-driven 
digital design can be taught both in undergraduate and 
graduate level classes. An undergraduate class may only 
cover reliability as one of the topics in a course on digital 
design; whereas a complete graduate level course can be 
offered on the reliability of sub-10 nm designs. The students 
learning nano-circuit reliability may also come from 
industry/R&D background.  

The teaching format of a nano-circuit reliability class 
may differ among different audiences. For example, the 
topic can be a part of a university level digital design course 
or it can be offered as a stand-alone course; a university 
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course can proceed at a moderate pace with some take-home 
assignments and/or projects. Whereas, for industrial users, a 
semester-long format may not be suitable, so the course 
could be limited to duration of 5 days or less; conflict with 
work schedule or urgent needs may still interfere with the 
course progression, although an off-site class may alleviate 
some disruptions. Such students would like to see practical 
information that can be readily applied in work situations 
 [14]. They may prefer some methodologies that are 
applicable to the work-related situations. Unlike academic 
students, the practicing engineers would rather not be taught 
theory in depth. Any managers attending the course may just 
be interested in the overall picture and the upcoming trends, 
instead of detailed methods  [16]. 

Both in academic and industrial environments, emphasis 
should be placed on the course offering being interactive. 
The university students’ background and hands-on 
experience (if any) is not as varied as the practitioners; level 
of prior knowledge needs to be taken into account. Some 
take-away material or a carefully selected book is obviously 
quite helpful for future reference.    

Normally, an academic student may design a circuit, and 
run simulations to verify its functionality; however, the 
correctness of his/her design does not warrant that the 
design is fulfilling its reliability requirements. A common 
approach taken by students while working on small projects 
is designing-before-thinking. This method may work fine in 
the academic environment, but may not help the students 
learn to tackle the real-life design tasks of much larger sizes. 
The students, therefore, need to be taught a pro-active frame 
of mind of problem solving  [16]  [17].  

While developing reliable hardware, one can borrow 
lifecycle techniques from the software realm: prevention, 
removal, tolerance, and prediction. As mentioned before, the 
reliability issues in nanometric circuits are bound to happen, 
so it will become quite critical to estimate and predict them. 
Reliability-driven design methodology could begin by first 
establishing reliability goals, and then by the meeting other 
constraints such as timing and power/area. An example 
would be Tosun et al’s  [17] methodology that searches 
through a library of design alternatives in order to yield a 
design with best reliability figures. Their framework first 
finds the most reliable configuration and then tries to meet 
the area/power and timing constraints.  

We propose that the course on reliability-driven circuit 
design include this general design methodology: design 
definition, setting criteria for optimal 
reliability/power/timing, design/reliability test vector 
generation, design implementation, test execution; and 

design modifications, if needed. The following is a proposed 
outline of a (graduate-level) course offered on nano-scaled 
devices and their associated reliability  [21] [22]:  
1. Review of CMOS devices; and device feature reduction 

and its implications.  
2. Nanometric devices and models: for example, resonant 

tunneling devices, quantum devices, solid-state nano-
electronic devices, SETs, CNTs, etc.  

3. Nanoscale architecture models and designs: crossbar, 
CMOS molecular (CMOL), quantam cellular automata 
(QCA), etc.  

4. Interconnection network topologies: crossbar, hyper-
mesh, cube-connected cycle, spanning bus hypercube, 
etc.  

5. Elements of reliability: theory, statistics, 
characterization, etc.  

6. Applicability of reliability: identifying unreliable/fault-
prone components/sub-circuits, computing reliability, 
fault-tolerance techniques, and related automated/CAD 
tools, etc.  

AUTOPTMATE – A TOOL FOR RELIABILITY EVALUATION 

Probability transfer matrix (PTM) is a powerful modeling 
tool for problems involving uncertainty  [19]. (The 
methodology falls under item 5 listed above). The PTMs can 
be used to evaluate a circuit’s overall reliability by 
combining the PTMs of elementary gates. A PTM performs 
simultaneous computation over all possible input 
combinations, and calculates the exact probabilities of 
errors. Another advantage (besides being exact) is that it is 
very easy to use different probabilities of failures for 
different gates. However, the circuit’s overall probability of 
failure requires dividing the circuit manually into several 
stages (as shown in Figure 1), generating the PTMs for the 
individual stages, and finally combining all the PTMs to 
construct the circuit’s overall PTM. This process is fairly 
simple for small circuits, but becomes quite intricate and 
error-prone as the circuit size increases. If performed 
manually, the PTM method can limit the number of circuits, 
a user may design and analyze during a limited amount of 
time. 

In this paper, we introduce AutoPTMate (pronounced as 
auto-P-T-mate), a tool that fully automates the PTM 
methodology. The current version of the tool outputs a set of 
MATLAB commands included in a single m-file. The user 
simply needs to run this file to calculate the circuit overall 
probability of failure.  
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In the PTM methodology, each type of gate has its unique 
matrix. For example, a PTM that represents a 2-input NAND 
gate is shown in Figure 2; pf represents the probability of 
incorrect output for any given input, also called probability 
of failure. The output values are shown on the left and the 
inputs on the top of the matrix. The probability of each 
output value is given for each input set in the matrix. By 
combining PTMs that represent the probability of failure of 
the individual gates and connection wires, one can determine 
a circuit’s overall probability of failure. Gates and sub-
circuits are combined using the following three rules  [20]: 
1. If two gates (or sub-circuits) with PTM1 and PTM2 are 

connected in series, then their combined PTM is the 
product of the individual gates (or sub-circuits) PTMs:  

PTMs = PTM1 × PTM2 (1)
2. If two gates (or sub-circuits) with PTM1 and PTM2 are 

connected in parallel, then their combined PTM is the 
Kronecker (tensor) product of the individual gates (or 
sub-circuits):  

PTMp = PTM1⊗ PTM2 (2)
3. If two gates (or sub-circuits) are connected with fan-out 

(an output of one gate/sub-circuit is connected to more 
than one input of the following gates (or sub-circuits), 
the combined PTM is constructed by calculating the 
Kronecker product of the two gates (or sub-circuits) and 
eliminating all the columns that have different values 
for the fan-out inputs. 

The first step toward the calculation of the circuit’s 
probability of failure is to divide the circuit into a series of 
stages (stg1-4 in Figure 1). Stages can be classified into a 
computing stage, a connecting stage, or a mix of computing 
and connecting stages. A connecting stage contains only a 
group of connecting wires (or simply connections). 
Connecting stages prepare the inputs for the following 
computing stage. Connecting stages can be used to augment 
the number of connections using the fan-out rule. A separate 
PTM is calculated for each stage using the previously 
described rules. The PTM for the complete circuit is then 
calculated by successive multiplication of PTMs of 
individual stages (starting from the input stage): 
 

PTM S1-2 = PTMS2 × PTMS1, (3)
PTMS1-3 = PTMS3 × PTMS1-2, …, (4)

PTMS1-n = PTMSn × PTMSn-1 = ∏
=

1

PTM
ni

Si . (5)

In the next section, we include a detailed example (based on 
the circuit of Figure 1) to demonstrate the full process of 
evaluating the probability of failure.   

AUTOPTMATE DESCRIPTION AND USAGE 

This section describes the AutoPTMate tool (using the 
circuit in Figure 1). The primary usage of the tool is to 
calculate the overall probability of failure of a given circuit 
(pfCIRC) using the probability of failure of its individual gates 
(pfGATE). The tool is developed in the popular scripting 
language PERL, which makes it fully portable and flexible, 
so that it can easily run on different host systems, e.g., 
Windows, Linux, etc. Obviously, no compilation is required, 
and also no installation is required (as long as a recent 
version of PERL is available on the host system). The input 
to the tool is a Verilog file in structural format. (Refer to the 
two sample files in Appendix A). The tool’s output is a 
MATLAB m-file; MATLAB has been chosen for its 
efficient matrix handling capabilities. To calculate pfCIRC, the 
user needs to simply run the generated m-file using a pre-
installed MATLAB package.  The syntax for running 
AutoPTMate from the command-line follows:   

  
perl autoPTMate.pl -f filename -pf pfnand  
 
As an example, the command line for creating an m-file 

that has pfGATE (for NAND gate) ranging from 0 to 0.05, 
would be like this: 
 

perl autoPTMate.pl -f eg1.v -pfnand 0:0.005:0.05 
 
A graphical overview of AutoPTMate is shown in Figure 

3. The tool first scans the circuit description (presented by 
the input Verilog file) to identify the inputs, outputs, and 
nets, by parsing the lines starting with keywords input, 
output, and wire. (The Verilog file corresponding to the 
circuit in Figure 1 is included in Appendix A).  

stg1 stg2 stg3 stg4

out1

out2

i1
i2

U1 U2

U3

n1

 
FIGURE 1 

A CIRCUIT SPLIT INTO STAGES IN ORDER TO CREATE EACH STAGE’S OWN 
PTM. 

 
  Input  
 00 01 10 11 
0  pf  pf   pf (1-pf) 

O
ut

pu
t 

1 (1-pf) (1-pf) (1-pf)  pf  
 

FIGURE 2 
PTM FOR A 2-INPUT NAND GATE WITH pf PROBABILITY OF FAILURE. 
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In the following step, the tool identifies the gates and their 
types from the gate (or sub-circuit) instantiations. The tool 
then builds a complete list of branches by starting at output 
nodes and back-tracking towards input nodes. For example, 
the circuit of Figure 1 has the following four branches: out1-
n1-i1; out2-n1-i1; out2-i1; out1-n1-i2; out2-n1-i2. These branches 
help the tool divide up the circuit into different stages; in 
other words, the gates belonging to each stage are now 
known. In medium and large size circuits, the creation of the 
PTMs corresponding to the wire stages is usually the most 
difficult and error-prone step toward the calculation of the 
pfCIRC. This is because the wires usually intersect and cross 
over each other, which complicates the definition of the 
matrices that describe the probability of failure of the output 
signals in terms of the input signals. In order to overcome 
this difficulty, we introduce the concept of an Input-Output 
Mapping Matrix (IOMM). The IOMM describes the 
relationship between the input and output signals in a stage; 
the IOMM concept is utilized by the tool to generate the 
corresponding PTM.   

A stage with c inputs signals and r outputs signals results 
in an IOMM of dimensions r × c (see Figure 4(a)). We 
assume that the wires are perfect, and therefore have pfWIRE 
= 0. Any connection between an input and output is denoted 
by 1, while no connection is denoted by 0. In case of a fan-
out of n, the count of 1’s appearing in a column is n (see 
column i1 in Figure 4(a)).  

The next step involves creating PTMs for wires and gates 
in hybrid stages (stg2 in Figure 1) and gate-only stages (stg4 
in Figure 1). For the hybrid stages and gate-only stages, the 
tool creates MATLAB commands for instantiating 
Kronecker products, in order to determine the PTM for the 
whole stage. Finally, commands for equations such as (3), 
(4), and (5) are created, so that the circuit’s overall PTM can 
be determined. Creation of the IOMM and the PTM 
corresponding to each stage is discussed next (starting with 
the wire-only stages, due to the simplicity of their PTM 
calculations).  

stg1: This wire-only stage has IOMM shown in Figure 
4(a). An IOMM is used to create the PTM which has 22 
= 4 input columns and 23 = 8 rows (see Figure 4(b)). 
Notice how the fan-out of the wires affects the IOMM 
and its corresponding PTM. 
stg3: This stage has a fan-out to increase the number of 
signals from 2 to 3. The corresponding IOMM and PTM 
are shown in Figure 5.  
stg2: This stage has a single 2-input XOR gate (U1) and 
a single wire. The PTM of the stage is generated by 
performing a Kronecker product of the PTMs 
corresponding to XOR gate and the wire. Since we 
assume that all the wires are perfect (pfWIRE = 0), the 
PTM corresponding to a single wire is simply a 2 × 2 
identity matrix. As widely known, if A is an m × n 
matrix and B is a p × q matrix, the Kronecker product 
of A and B is a matrix of dimensions mp × nq. The size 
of the XOR gate’s PTM is 2 × 4, while the size of the 
wire’s PTM is 2 × 2. Therefore the PTM for this stage is 
a 4 × 8 matrix (Figure 6).   

stg4: This stage has an inverter (U2) and a 2-input NAND 
(U3) gate. The PTM corresponding to this stage is also 
obtained by performing a Kronecker product for the PTMs 

Synthesize using 
Synopsys DC, 

etc.

Parse Verilog 
code

Identify 
branches 

starting from 
outputs to inputs

Gate types and 
netlist

Verilog 
structural code

Verilog 
source

Identify driven 
and driver nets

Identify stages 
for gates

Create PTMs for 
wire-only stages

Create PTMs for 
‘wires-and-

gates’ hybrid 
stages

Re-arrange all 
PTMs, if needed

Write PTM 
definitions and 
multiplication 

commands to m-
file

Matlab m-file

Nodes 
defining 

branches

Node listsStage 
numbers for 

gates

Wire PTMs

Hybrid 
PTMs

Final PTMs

 
 

FIGURE 3 
 THE STEPS AUTOPTMATE TAKES TO GENERATE THE M-FILES FROM VERILOG FILES. 

 i1 i2  
o1 1 0  
o2 0 1  
o3 1 0  

(A) 
 

 00 01 10 11 
000 1 0 0 0 
001 0 0 0 0 
010 0 1 0 0 
011 0 0 0 0 
100 0 0 0 0 
101 0 0 1 0 
110 0 0 0 0 
111 0 0 0 1 

(B) 
 

FIGURE 4 
 THE IOMM AND PTM FOR STG1: (A) IOM; (B) PTM. 
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corresponding to the inverter and the NAND gates. The 
PTM for this stage is shown in Figure 7.   

To calculate the pfCIRC, for a given pfGATE, the user should 
run the tool twice. In the first run, pfGATE = 0, while in the 
second run, the desired value of pfGATE is used. These two 
runs produce two matrices. The next step would be to find 
the location of the value 1 in each column of the first matrix 
(see Figure 8(a)) and then sum up the corresponding values 
in the second matrix (i.e., S = 0.85975 + 0.85975 + 0.8575 + 
0.8575 = 3.4345. Finally, pfCIRC is calculated: 

pfCIRC = 
n
S

−1  (6)

where n is the number of columns.  pfCIRC for the circuit (of 
Figure 1), when pfGATE  = 0.05, is: 1 – 3.4345 / 4 = 0.1414. 

To confirm the tool’s correctness, we used it to generate 
the PTMs for several different circuits; and then we verified 
that the automatically generated PTMs are identical to the 
manually generated ones. 

In order to demonstrate the insight one can quickly gain 
by using AutoPTMate, we used a somewhat larger circuit 
which has 4 gates spread over 8 stages; the circuit is shown 
in Figure 9 and its corresponding Verilog code is listed in 
Appendix A. In our analysis, we varied pfGATE (from 0 to 
0.5) for one gate-type at a time, while keeping pfGATE for all 
other gate-types fixed at zero. Figure 10 shows the 

cumulative results from multiple runs of the tool. In the 
figure, we can see that the circuit’s reliability is the most 
affected by the NOR gate, whereas the circuit reliability is 
the least vulnerable to the inverter. This type of information 
can help a circuit designer locate and harden the gates/parts 
of a circuit that are the most susceptible to failure.  

CONCLUSION 

Traditionally, reliability calculations using PTM 
methodology to create the PTM and all related commands 

  i1 i2  
o1  1 0  
o2  1 0  
o3  0 1  

           (A) 
 

  00 01 10 11  
000  1 0 0 0  
001  0 1 0 0  
010  0 0 0 0  
011  0 0 0 0  
100  0 0 0 0  
101  0 0 0 0  
110  0 0 1 0  
111  0 0 0 1  

          (B) 
 

FIGURE 5. THE IOMM AND PTM FOR STG3: (A) IOM; (B) PTM. 
 

 00 01 10 11 
00 0 0 1 0 
01 0 1 0 0 
10 0 0 0 0 
11 1 0 0 1 

(A) 
 

 00 01 10 11 
00 0.00475 0.04525 0.8575 0.0475 

01 0.09025 0.85975 0.0475 0.0475 

10 0.04525 0.00475 0.0475 0.0475 

11 0.85975 0.09025 0.0475 0.8575 
(B) 

 
FIGURE 8  

THE CIRCUIT’S OVERALL PTM FOR: (A) pf = 0; (B) pf = 0.05. 

  000 001 010 011 100 101 110 111 
00  1 0 0 0 0 0 1 0 
01  0 1 0 0 0 0 0 1 
10  0 0 1 0 1 0 0 0 
11  0 0 0 1 0 1 0 0 

 
FIGURE 6  

PTM FOR STG2 WHERE PF = 0. 
 

  000 001 010 011 100 101 110 111 
00  0 0 0 0 0 0 0 1 
01  0 0 0 0 1 1 1 0 
10  0 0 0 1 0 0 0 0 
11  1 1 1 0 0 0 0 0 

 
FIGURE 7  

PTM FOR STG4 WHERE PF = 0. 

 
 

FIGURE  9 
A SAMPLE CIRCUIT WITH SEVERAL STAGES. 
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FIGURE  10 

EFFECT OF VARYING A SINGLE GATE’S pf WHILE ALL OTHERS ARE KEPT 
CONSTANT AT ZERO, FOR CIRCUIT IN FIGURE 9. THE CIRCUIT’S pf IS 
THE MOST AFFECTED BY THE NOR GATE WHEREAS THE NOT GATE 

AFFECTS THE CIRCUIT-pf THE LEAST. 
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have been performed manually, which is both a time-
consuming and an error-prone process. The proposed 
AutoPTMate simplifies the task of reliability calculations by 
automatically generating MATLAB m-files that include all 
the command to calculate the circuit’s PTM. The tool allows 
the users to significantly speed-up the reliability assessment 
of a large number of circuits. Potential users of such a tool 
are members of academia and R&D community alike. 

We have started to use AutoPTMate to generate the PTMs 
for other larger and more complex circuits. The results from 
our ongoing experiments will be reported in the future. We 
are also planning to enhance the tool so that it helps create 
mathematical models for circuit reliability.   

APPENDIX A 

Verilog code for the circuit of Figure 1:  
module EG1 (out1, out2, i1, i2); 
  input  i1, i2; 
  output out1, out2; 
  wire   n1; 
  xor2_1x  U1 (.B(i1), .A(i2), .Y(n1)); 
  not_1x   U2 (.A(n1), .Y(out1)); 
  nand2_1x U3 (.B(n1), .A(i1), .Y(out2)); 
endmodule 
 

Verilog code for the circuit of Figure 9:  
module EG2 (out, i0, i1, i2); 
  input i0, i1, i2; 
  output out; 
  wire   n1, n2, n3; 
  inv_1x U1 (.A(i0), .Y(n3) ); 
  and_1x U2 (.A(n3), .B(i1), .Y(n2)); 
  and_1x U3 (.A(n2), .B(i2), .Y(n1)); 
  nor_1x U4 (.A(n1), .B(n2), .C(i0), .Y(out)); 
endmodule 
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