
Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-1

On Teaching Circuit Reliability

Azam Beg and Walid Ibrahim
College of Information Technology, UAE University

{abeg, walidibr}@uaeu.ac.ae

Abstract - Integrated circuits in the coming years are
expected to be based on nano-scaled devices, such as
single electron transistors, self-assembled DNA, carbon
nano-tubes, and resonant tunnel diodes. Future designs
based on such nano-devices will exhibit high integration
densities, and might be either low power or fast
switching but not both. Unfortunately, nano-devices
suffer heavily from fabrication inconsistencies, and
transient and permanent failures due to external causes.
Therefore, circuit reliability will have to be added to the
design space currently consisting of timing, area, and
power. This also means that the reliability
calculation/estimation could soon be an important topic
in the undergraduate/graduate courses on circuit design.
Probability transfer matrix numerical method has been
used as an exact way to calculate the reliability of a
circuit. Traditionally, the matrices are created manually,
making the process tedious, time-consuming, and error-
prone. This paper proposes an automatic tool
(AutoPTMate) for generating ready-to-use MATLAB m-
files for calculating the circuit’s reliability. The tool
allows users to significantly speed-up the reliability
assessment of a large number of circuits. The first
potential users of such a tool are members of academia
and R&D community.

Index Terms - Active learning, teaching tools, curricula,
computer-aided design, nano-architecture, reliability,
probability transfer matrix (PTM), fault tolerance

CHALLENGES FOR FUTURE CIRCUIT DESIGNERS

The development of ever-smaller devices brings promise for
further improvement in the performance of future integrated
circuits (ICs), yet also leads to several new technical
challenges, including the need for architectures that reduce
the uncertainty inherent to computations at very small scales
 [1]– [3]. In particular, as feature sizes are aggressively
scaled, the design and manufacturing of ICs becomes more
complex and inevitably introduces more defects. The
devices’ small sizes—and consequently the tiny amounts of
energy required in their switching—make them susceptible
to transient failures [4]. Unfortunately, architectures built
from emerging nanodevices, such as resonant tunnel diodes
(RTDs), single electron transistor (SET), carbon nanotubes
(CNTs), silicon nanowires, molecular devices, etc., will be
even more vulnerable to parameter variations, fabrication
noise, and transient failures induced by
environmental/external causes [2], [5]. Device failure rates

are predicted to be as high as 10% in case of single-electron
transistor (SET) [6] and going up to 30% in case of self-
assembled DNA (SADNA) [7]. As a fresh example, [8] has
reported defect rates of 60% for a 160-kilobit molecular
electronic memory. Clearly, achieving 100% correctness at
the system level using such devices (and their associated
interconnects) will be not only outrageously expensive, but
might be plainly impossible! Therefore, relaxing the
requirement of 100% correctness for devices and
interconnects might significantly reduce the costs of
manufacturing, verification, and test. This will lead to more
transient and permanent failures of signals, logic values,
devices, and interconnects. Therefore, most (if not all) of
these failures will have to be compensated by architectural
level techniques (e.g., redundancy in space, time, and
information) [9]- [15].

An accurate calculation of the reliability of nano-
architectural circuits through simulations will become
essential for future designs. It will allow designers to
estimate the yield and the behavior of their designs under
different operating conditions. It is also crucial in
designing/selecting the most suitable (nano) architecture that
optimally makes a trade-off among all the delay, power,
area, and reliability requirements.

In Section 2, we present some ideas about a course on
circuit reliability (for example, target audience, delivery
method, topics, etc.) Section 3 delves into the details of
AutoPTMate (pronounced as auto-P-T-mate), a tool – for use
by designers and students – that aids in reliability evaluation
of circuits. A complete example on PTM methodology is
also included. And finally, we present the conclusions.

TEACHING NANO-CIRCUIT RELIABILITY – STRUCTURE
AND CONTENTS OF A COURSE

Circuit reliability calculation (estimation) could soon be
an important part of VLSI courses; the students will have to
consider reliability as a new design pillar. Reliability-driven
digital design can be taught both in undergraduate and
graduate level classes. An undergraduate class may only
cover reliability as one of the topics in a course on digital
design; whereas a complete graduate level course can be
offered on the reliability of sub-10 nm designs. The students
learning nano-circuit reliability may also come from
industry/R&D background.

The teaching format of a nano-circuit reliability class
may differ among different audiences. For example, the
topic can be a part of a university level digital design course
or it can be offered as a stand-alone course; a university

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-2

course can proceed at a moderate pace with some take-home
assignments and/or projects. Whereas, for industrial users, a
semester-long format may not be suitable, so the course
could be limited to duration of 5 days or less; conflict with
work schedule or urgent needs may still interfere with the
course progression, although an off-site class may alleviate
some disruptions. Such students would like to see practical
information that can be readily applied in work situations
 [14]. They may prefer some methodologies that are
applicable to the work-related situations. Unlike academic
students, the practicing engineers would rather not be taught
theory in depth. Any managers attending the course may just
be interested in the overall picture and the upcoming trends,
instead of detailed methods [16].

Both in academic and industrial environments, emphasis
should be placed on the course offering being interactive.
The university students’ background and hands-on
experience (if any) is not as varied as the practitioners; level
of prior knowledge needs to be taken into account. Some
take-away material or a carefully selected book is obviously
quite helpful for future reference.

Normally, an academic student may design a circuit, and
run simulations to verify its functionality; however, the
correctness of his/her design does not warrant that the
design is fulfilling its reliability requirements. A common
approach taken by students while working on small projects
is designing-before-thinking. This method may work fine in
the academic environment, but may not help the students
learn to tackle the real-life design tasks of much larger sizes.
The students, therefore, need to be taught a pro-active frame
of mind of problem solving [16] [17].

While developing reliable hardware, one can borrow
lifecycle techniques from the software realm: prevention,
removal, tolerance, and prediction. As mentioned before, the
reliability issues in nanometric circuits are bound to happen,
so it will become quite critical to estimate and predict them.
Reliability-driven design methodology could begin by first
establishing reliability goals, and then by the meeting other
constraints such as timing and power/area. An example
would be Tosun et al’s [17] methodology that searches
through a library of design alternatives in order to yield a
design with best reliability figures. Their framework first
finds the most reliable configuration and then tries to meet
the area/power and timing constraints.

We propose that the course on reliability-driven circuit
design include this general design methodology: design
definition, setting criteria for optimal
reliability/power/timing, design/reliability test vector
generation, design implementation, test execution; and

design modifications, if needed. The following is a proposed
outline of a (graduate-level) course offered on nano-scaled
devices and their associated reliability [21] [22]:
1. Review of CMOS devices; and device feature reduction

and its implications.
2. Nanometric devices and models: for example, resonant

tunneling devices, quantum devices, solid-state nano-
electronic devices, SETs, CNTs, etc.

3. Nanoscale architecture models and designs: crossbar,
CMOS molecular (CMOL), quantam cellular automata
(QCA), etc.

4. Interconnection network topologies: crossbar, hyper-
mesh, cube-connected cycle, spanning bus hypercube,
etc.

5. Elements of reliability: theory, statistics,
characterization, etc.

6. Applicability of reliability: identifying unreliable/fault-
prone components/sub-circuits, computing reliability,
fault-tolerance techniques, and related automated/CAD
tools, etc.

AUTOPTMATE – A TOOL FOR RELIABILITY EVALUATION

Probability transfer matrix (PTM) is a powerful modeling
tool for problems involving uncertainty [19]. (The
methodology falls under item 5 listed above). The PTMs can
be used to evaluate a circuit’s overall reliability by
combining the PTMs of elementary gates. A PTM performs
simultaneous computation over all possible input
combinations, and calculates the exact probabilities of
errors. Another advantage (besides being exact) is that it is
very easy to use different probabilities of failures for
different gates. However, the circuit’s overall probability of
failure requires dividing the circuit manually into several
stages (as shown in Figure 1), generating the PTMs for the
individual stages, and finally combining all the PTMs to
construct the circuit’s overall PTM. This process is fairly
simple for small circuits, but becomes quite intricate and
error-prone as the circuit size increases. If performed
manually, the PTM method can limit the number of circuits,
a user may design and analyze during a limited amount of
time.

In this paper, we introduce AutoPTMate (pronounced as
auto-P-T-mate), a tool that fully automates the PTM
methodology. The current version of the tool outputs a set of
MATLAB commands included in a single m-file. The user
simply needs to run this file to calculate the circuit overall
probability of failure.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-3

In the PTM methodology, each type of gate has its unique
matrix. For example, a PTM that represents a 2-input NAND
gate is shown in Figure 2; pf represents the probability of
incorrect output for any given input, also called probability
of failure. The output values are shown on the left and the
inputs on the top of the matrix. The probability of each
output value is given for each input set in the matrix. By
combining PTMs that represent the probability of failure of
the individual gates and connection wires, one can determine
a circuit’s overall probability of failure. Gates and sub-
circuits are combined using the following three rules [20]:
1. If two gates (or sub-circuits) with PTM1 and PTM2 are

connected in series, then their combined PTM is the
product of the individual gates (or sub-circuits) PTMs:

PTMs = PTM1 × PTM2 (1)
2. If two gates (or sub-circuits) with PTM1 and PTM2 are

connected in parallel, then their combined PTM is the
Kronecker (tensor) product of the individual gates (or
sub-circuits):

PTMp = PTM1⊗ PTM2 (2)
3. If two gates (or sub-circuits) are connected with fan-out

(an output of one gate/sub-circuit is connected to more
than one input of the following gates (or sub-circuits),
the combined PTM is constructed by calculating the
Kronecker product of the two gates (or sub-circuits) and
eliminating all the columns that have different values
for the fan-out inputs.

The first step toward the calculation of the circuit’s
probability of failure is to divide the circuit into a series of
stages (stg1-4 in Figure 1). Stages can be classified into a
computing stage, a connecting stage, or a mix of computing
and connecting stages. A connecting stage contains only a
group of connecting wires (or simply connections).
Connecting stages prepare the inputs for the following
computing stage. Connecting stages can be used to augment
the number of connections using the fan-out rule. A separate
PTM is calculated for each stage using the previously
described rules. The PTM for the complete circuit is then
calculated by successive multiplication of PTMs of
individual stages (starting from the input stage):

PTM S1-2 = PTMS2 × PTMS1, (3)
PTMS1-3 = PTMS3 × PTMS1-2, …, (4)

PTMS1-n = PTMSn × PTMSn-1 = ∏
=

1

PTM
ni

Si . (5)

In the next section, we include a detailed example (based on
the circuit of Figure 1) to demonstrate the full process of
evaluating the probability of failure.

AUTOPTMATE DESCRIPTION AND USAGE

This section describes the AutoPTMate tool (using the
circuit in Figure 1). The primary usage of the tool is to
calculate the overall probability of failure of a given circuit
(pfCIRC) using the probability of failure of its individual gates
(pfGATE). The tool is developed in the popular scripting
language PERL, which makes it fully portable and flexible,
so that it can easily run on different host systems, e.g.,
Windows, Linux, etc. Obviously, no compilation is required,
and also no installation is required (as long as a recent
version of PERL is available on the host system). The input
to the tool is a Verilog file in structural format. (Refer to the
two sample files in Appendix A). The tool’s output is a
MATLAB m-file; MATLAB has been chosen for its
efficient matrix handling capabilities. To calculate pfCIRC, the
user needs to simply run the generated m-file using a pre-
installed MATLAB package. The syntax for running
AutoPTMate from the command-line follows:

perl autoPTMate.pl -f filename -pf pfnand

As an example, the command line for creating an m-file

that has pfGATE (for NAND gate) ranging from 0 to 0.05,
would be like this:

perl autoPTMate.pl -f eg1.v -pfnand 0:0.005:0.05

A graphical overview of AutoPTMate is shown in Figure

3. The tool first scans the circuit description (presented by
the input Verilog file) to identify the inputs, outputs, and
nets, by parsing the lines starting with keywords input,
output, and wire. (The Verilog file corresponding to the
circuit in Figure 1 is included in Appendix A).

stg1 stg2 stg3 stg4

out1

out2

i1
i2

U1 U2

U3

n1

FIGURE 1

A CIRCUIT SPLIT INTO STAGES IN ORDER TO CREATE EACH STAGE’S OWN
PTM.

 Input
 00 01 10 11
0 pf pf pf (1-pf)

O
ut

pu
t

1 (1-pf) (1-pf) (1-pf) pf

FIGURE 2
PTM FOR A 2-INPUT NAND GATE WITH pf PROBABILITY OF FAILURE.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-4

In the following step, the tool identifies the gates and their
types from the gate (or sub-circuit) instantiations. The tool
then builds a complete list of branches by starting at output
nodes and back-tracking towards input nodes. For example,
the circuit of Figure 1 has the following four branches: out1-
n1-i1; out2-n1-i1; out2-i1; out1-n1-i2; out2-n1-i2. These branches
help the tool divide up the circuit into different stages; in
other words, the gates belonging to each stage are now
known. In medium and large size circuits, the creation of the
PTMs corresponding to the wire stages is usually the most
difficult and error-prone step toward the calculation of the
pfCIRC. This is because the wires usually intersect and cross
over each other, which complicates the definition of the
matrices that describe the probability of failure of the output
signals in terms of the input signals. In order to overcome
this difficulty, we introduce the concept of an Input-Output
Mapping Matrix (IOMM). The IOMM describes the
relationship between the input and output signals in a stage;
the IOMM concept is utilized by the tool to generate the
corresponding PTM.

A stage with c inputs signals and r outputs signals results
in an IOMM of dimensions r × c (see Figure 4(a)). We
assume that the wires are perfect, and therefore have pfWIRE
= 0. Any connection between an input and output is denoted
by 1, while no connection is denoted by 0. In case of a fan-
out of n, the count of 1’s appearing in a column is n (see
column i1 in Figure 4(a)).

The next step involves creating PTMs for wires and gates
in hybrid stages (stg2 in Figure 1) and gate-only stages (stg4
in Figure 1). For the hybrid stages and gate-only stages, the
tool creates MATLAB commands for instantiating
Kronecker products, in order to determine the PTM for the
whole stage. Finally, commands for equations such as (3),
(4), and (5) are created, so that the circuit’s overall PTM can
be determined. Creation of the IOMM and the PTM
corresponding to each stage is discussed next (starting with
the wire-only stages, due to the simplicity of their PTM
calculations).

stg1: This wire-only stage has IOMM shown in Figure
4(a). An IOMM is used to create the PTM which has 22
= 4 input columns and 23 = 8 rows (see Figure 4(b)).
Notice how the fan-out of the wires affects the IOMM
and its corresponding PTM.
stg3: This stage has a fan-out to increase the number of
signals from 2 to 3. The corresponding IOMM and PTM
are shown in Figure 5.
stg2: This stage has a single 2-input XOR gate (U1) and
a single wire. The PTM of the stage is generated by
performing a Kronecker product of the PTMs
corresponding to XOR gate and the wire. Since we
assume that all the wires are perfect (pfWIRE = 0), the
PTM corresponding to a single wire is simply a 2 × 2
identity matrix. As widely known, if A is an m × n
matrix and B is a p × q matrix, the Kronecker product
of A and B is a matrix of dimensions mp × nq. The size
of the XOR gate’s PTM is 2 × 4, while the size of the
wire’s PTM is 2 × 2. Therefore the PTM for this stage is
a 4 × 8 matrix (Figure 6).

stg4: This stage has an inverter (U2) and a 2-input NAND
(U3) gate. The PTM corresponding to this stage is also
obtained by performing a Kronecker product for the PTMs

Synthesize using
Synopsys DC,

etc.

Parse Verilog
code

Identify
branches

starting from
outputs to inputs

Gate types and
netlist

Verilog
structural code

Verilog
source

Identify driven
and driver nets

Identify stages
for gates

Create PTMs for
wire-only stages

Create PTMs for
‘wires-and-

gates’ hybrid
stages

Re-arrange all
PTMs, if needed

Write PTM
definitions and
multiplication

commands to m-
file

Matlab m-file

Nodes
defining

branches

Node listsStage
numbers for

gates

Wire PTMs

Hybrid
PTMs

Final PTMs

FIGURE 3
 THE STEPS AUTOPTMATE TAKES TO GENERATE THE M-FILES FROM VERILOG FILES.

 i1 i2
o1 1 0
o2 0 1
o3 1 0

(A)

 00 01 10 11
000 1 0 0 0
001 0 0 0 0
010 0 1 0 0
011 0 0 0 0
100 0 0 0 0
101 0 0 1 0
110 0 0 0 0
111 0 0 0 1

(B)

FIGURE 4
 THE IOMM AND PTM FOR STG1: (A) IOM; (B) PTM.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-5

corresponding to the inverter and the NAND gates. The
PTM for this stage is shown in Figure 7.

To calculate the pfCIRC, for a given pfGATE, the user should
run the tool twice. In the first run, pfGATE = 0, while in the
second run, the desired value of pfGATE is used. These two
runs produce two matrices. The next step would be to find
the location of the value 1 in each column of the first matrix
(see Figure 8(a)) and then sum up the corresponding values
in the second matrix (i.e., S = 0.85975 + 0.85975 + 0.8575 +
0.8575 = 3.4345. Finally, pfCIRC is calculated:

pfCIRC =
n
S

−1 (6)

where n is the number of columns. pfCIRC for the circuit (of
Figure 1), when pfGATE = 0.05, is: 1 – 3.4345 / 4 = 0.1414.

To confirm the tool’s correctness, we used it to generate
the PTMs for several different circuits; and then we verified
that the automatically generated PTMs are identical to the
manually generated ones.

In order to demonstrate the insight one can quickly gain
by using AutoPTMate, we used a somewhat larger circuit
which has 4 gates spread over 8 stages; the circuit is shown
in Figure 9 and its corresponding Verilog code is listed in
Appendix A. In our analysis, we varied pfGATE (from 0 to
0.5) for one gate-type at a time, while keeping pfGATE for all
other gate-types fixed at zero. Figure 10 shows the

cumulative results from multiple runs of the tool. In the
figure, we can see that the circuit’s reliability is the most
affected by the NOR gate, whereas the circuit reliability is
the least vulnerable to the inverter. This type of information
can help a circuit designer locate and harden the gates/parts
of a circuit that are the most susceptible to failure.

CONCLUSION

Traditionally, reliability calculations using PTM
methodology to create the PTM and all related commands

 i1 i2
o1 1 0
o2 1 0
o3 0 1

 (A)

 00 01 10 11
000 1 0 0 0
001 0 1 0 0
010 0 0 0 0
011 0 0 0 0
100 0 0 0 0
101 0 0 0 0
110 0 0 1 0
111 0 0 0 1

 (B)

FIGURE 5. THE IOMM AND PTM FOR STG3: (A) IOM; (B) PTM.

 00 01 10 11
00 0 0 1 0
01 0 1 0 0
10 0 0 0 0
11 1 0 0 1

(A)

 00 01 10 11
00 0.00475 0.04525 0.8575 0.0475

01 0.09025 0.85975 0.0475 0.0475

10 0.04525 0.00475 0.0475 0.0475

11 0.85975 0.09025 0.0475 0.8575
(B)

FIGURE 8

THE CIRCUIT’S OVERALL PTM FOR: (A) pf = 0; (B) pf = 0.05.

 000 001 010 011 100 101 110 111
00 1 0 0 0 0 0 1 0
01 0 1 0 0 0 0 0 1
10 0 0 1 0 1 0 0 0
11 0 0 0 1 0 1 0 0

FIGURE 6

PTM FOR STG2 WHERE PF = 0.

 000 001 010 011 100 101 110 111
00 0 0 0 0 0 0 0 1
01 0 0 0 0 1 1 1 0
10 0 0 0 1 0 0 0 0
11 1 1 1 0 0 0 0 0

FIGURE 7

PTM FOR STG4 WHERE PF = 0.

FIGURE 9
A SAMPLE CIRCUIT WITH SEVERAL STAGES.

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Gate probability of failure

C
irc

ui
t p

ro
ba

bi
lit

y
of

 fa
ilu

re

AND

NOR

NOT

FIGURE 10

EFFECT OF VARYING A SINGLE GATE’S pf WHILE ALL OTHERS ARE KEPT
CONSTANT AT ZERO, FOR CIRCUIT IN FIGURE 9. THE CIRCUIT’S pf IS
THE MOST AFFECTED BY THE NOR GATE WHEREAS THE NOT GATE

AFFECTS THE CIRCUIT-pf THE LEAST.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-6

have been performed manually, which is both a time-
consuming and an error-prone process. The proposed
AutoPTMate simplifies the task of reliability calculations by
automatically generating MATLAB m-files that include all
the command to calculate the circuit’s PTM. The tool allows
the users to significantly speed-up the reliability assessment
of a large number of circuits. Potential users of such a tool
are members of academia and R&D community alike.

We have started to use AutoPTMate to generate the PTMs
for other larger and more complex circuits. The results from
our ongoing experiments will be reported in the future. We
are also planning to enhance the tool so that it helps create
mathematical models for circuit reliability.

APPENDIX A

Verilog code for the circuit of Figure 1:
module EG1 (out1, out2, i1, i2);
 input i1, i2;
 output out1, out2;
 wire n1;
 xor2_1x U1 (.B(i1), .A(i2), .Y(n1));
 not_1x U2 (.A(n1), .Y(out1));
 nand2_1x U3 (.B(n1), .A(i1), .Y(out2));
endmodule

Verilog code for the circuit of Figure 9:
module EG2 (out, i0, i1, i2);
 input i0, i1, i2;
 output out;
 wire n1, n2, n3;
 inv_1x U1 (.A(i0), .Y(n3));
 and_1x U2 (.A(n3), .B(i1), .Y(n2));
 and_1x U3 (.A(n2), .B(i2), .Y(n1));
 nor_1x U4 (.A(n1), .B(n2), .C(i0), .Y(out));
endmodule

REFERENCES

[1] G. Krishnaswamy, G. Viamontes, I. Markov, and J. P. Hayes,
“Accurate reliability evaluation and enhancement via probabilistic
transfer matrices,” Proc. Des., Automation & Test in Europe Conf. &
Exhib. (DATE 2005), Munich, pp. 282-287, Mar. 2005.

[2] Semiconductor Industry Association (SIA), Intl. Tech. Roadmap for
Semicond (ITRS), SEMATECH, Austin, TX, USA, 2005 Edition and
2006 Update.

[3] J. D. Meindl, Q. Chen, and J.A. Davis, “Limits on silicon
nanoelectronics for terascale integration,” Science, vol. 293, 14 Sep.
2001, pp. 2044–2049.

[4] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE Micro, vol. 23, Jul.-Aug. 2003, pp. 14–19.

[5] P. Sivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on soft error rate of
combinatorial logic,” Proc. Intl. Conf. Dependable Sys. & Networks
DSN’02, Washington, DC, USA, Jun. 23-26, 2002, pp. 389–398.

[6] K. K. Likharev, “Single-electron devices and their applications,”
Proc. IEEE …, vol. 87, Apr. 1999, pp. 606–632.

[7] U. Feldkamp, and C. M. Niemeyer, “Rational design of DNA
nanoarch.,” Angew. Chem. Intl. Ed., vol. 45, 13 Mar. 2006, pp. 1856–
1876.

[8] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-
Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu , Y. S. Shin, H. R.
Tseng, J. F. Stoddart, and J. R. Heath, “A 160-kilobit molecular
electronic memory patterned at 1011 bits per square centimeter,”
Nature, vol. 445, 25 Jan. 2007, pp. 414–417.

[9] K. Nicolić, A. Sadek, and M. Forshaw, “Arch. for reliable computing
with unreliable nanodevices,” Proc. IEEE Conf. Nanotech. (IEEE-
NANO’01), Maui, HI, USA, Oct. 2001, pp. 254–259.

[10] J. Dai, L. Wang, and F. Jain, “Analysis of Defect Tolerance in
Molecular Electronics Using Information-Theoretic Measures,” IEEE
Intl. Symp. on Nanoscale Arch. (NANOARCH 2007), San Jose, CA,
USA, Oct. 2007, pp. 21-26.

[11] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P. Hayes,
“Enhancing Design Robustness with Reliability-aware Resynthesis
and Logic Simulation,” IEEE/ACM Intl. Conf. on Computer-Aided
Design (ICCAD 2007), San Jose, CA, USA, Nov. 2007, pp. 149-154.

[12] S. Krishnaswamy, S. M. Plaza, and J. P. Hayes, “Tracking Uncertainty
with Probabilistic Logic Circuit Testing,” IEEE Design & Test of
Computers, Jul.-Aug., 2007, pp 312-321.

[13] H. Li, J. Mundy, W. Patterson, D. Kazazis, A. Zaslavsky, and R. I.
Bahar, “Thermally-induced soft errors in nanoscale CMOS circuits,”
IEEE Intl. Symp. on Nanoscale Arch. (NANOARCH 2007), San Jose,
CA, USA, Oct. 2007, pp. 62 – 69.

[14] A.W. Mayers, S. K. Kurtz, “Teaching reliability eng. to working
engineers,” Proc. 30th Annual Frontiers in Education Conf., (FIE
2000), Kansas City, MO, USA, Vol. 2, pp. F2E/14 - F2E/19

[15] F. Martorell, S. D. Cotofana, and A. Rubio, “An Analysis of Internal
Parameter Variations Effects on Nanoscaled Gates,” IEEE Trans. on
Nanotechnology, vol. 7, No. 1, Jan. 2008, pp. 24-33.

[16] M. Garzia, J. Hudepohl, W. Snipes, M. Lyu, J. Musa C. Smidts, and
L. Williams “How should software reliability eng. (SRE) be
taught?” ACM SIGSOFT Software Eng. Notes, Vol. 31, Issue 4, Jul.
2006, pp. 1-5.

[17] M. R. Lyu, “Software Reliability Eng. : A Roadmap,” Intl. Conf. on
Software Eng. (FOSE '07), May 2007, pp. 153-170.

[18] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie, and W-L.
Hung, “Reliability-Centric Hardware/Software Co-design,” Proc. of
the 6th Intl. Symp. on Quality of Electronic Design (ISQED’05), San
Jose, CA, USA, Mar. 2005, pp. 375 – 380.

[19] K. N. Patel, I. L. Markov, and J. P. Hayes, “Evaluating circuit
reliability under probabilistic gate-level fault models,” Proc. Intl.
Workshop Logic Synthesis (IWLS’03), Laguna Beach, CA, USA, May
2003, pp. 59–64.

[20] K. Mohanram and N. A. Touba, “Cost-effective approach for reducing
soft error failure rate in logic circuits,” Proc. Intl. Test Conf. (ITC
2003), Sept. 2003, Charlotte, NC, USA, pp. 893-901.

[21] D. Kim, R. Kamoua, and A. Pacelli, “Design-oriented introduction of
nanotechnology into the electrical and computer eng. curriculum”
Journal of Educational Tech. Sys., Vol. 34, No. 2, 2005-2006, pp.
155-164.

[22] R. Kamoua, D. Kim, and G. Roach, “Incorporating nanoscale system
design into the undergraduate electrical and computer eng.
curriculum,” Proc. of 9th Intl. Conf. Eng. Educ., Jul. 2006, San Juan,
Peurto Rico, pp. M4K4-M4K9.

AUTHOR INFORMATION

Azam Beg Assistant Professor, College of Information
Technology, UAE University, Al-Ain, UAE,
abeg@uaeu.ac.ae

Walid Ibrahim, Assistant Professor, College of Information
Technology, UAE University, Al-Ain, UAE,
walidibr@uaeu.ac.ae

