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Abstract - This paper presents a Verilog model of an 
artificial neural network for Arabic character recognition. 
A neural network by nature is a non-linear system that 
presents some unusual challenges when realized in digital 
domain. A main feature of our proposed model is that it 
does not require hardware-intensive resources, such as 
dividers and multipliers. A character recognition accuracy 
of 80.3% was achieved with the model. The flexible nature 
of the model allows experimentation with any other 
different set of neural network weights, without affecting 
the overall network structure. The network model can be 
easily adapted to other similarly-written Middle-
Eastern/Asian languages, such as Persian (Iran), Urdu 
(Pakistan), Pushto (Afghanistan), etc. Potential 
applications of such a system are in portable devices such 
as pen-shaped text readers/recognizers; Braille-aware or 
low-vision text-to-speech devices; or in large-scale 
character recognition systems such as postal mail systems, 
bank-check processing, etc.   

Keywords: Human-computer interaction, optical character 
recognition, Verilog modeling, artificial intelligence, and 
neural networks. 

 
 
1 Introduction 
 Artificial neural networks (ANNs) mimic the 
structure and function (learning and recall) of biological 
neurons. The ANNs offer parallel processing of data in 
contrast to the conventional sequential processing 
computing systems  [4].  

A neuron is the basic building block of an ANN (Fig. 
1). A practical ANN has one or more input neurons. The 
real world data is presented to the ANN via input neurons. 
There are one or more hidden neurons that are fed by the 
input neurons and may not have direct contact with the 
outside world. The hidden neurons process the 
complicated input patterns to produce useful outputs. An 
ANN may comprise of single or multiple layers of hidden 
neurons. Outputs of hidden neurons drive their respective 
‘forward’ layer of neurons. In single-hidden layer ANNs, 
the hidden layers connect to the layer of output neurons, 
which produce the final results. When information passes 
in only one direction and there is no communication 
among neurons of a particular layer, the network is called a 
feed-forward ANN (Fig. 1)  [13].  

Usually, an ANN is specifically developed for one 
particular purpose. The ANNs have been used in a wide 
variety of applications, including human-computer 
interaction technologies, such as character recognition, 
speech recognition, machine translation, Braille systems, 
etc. Most of these applications are software-based, but 
there also have been some implementations in hardware 
 [13].   

Software implementations of the optical character 
recognition (OCR) systems have been reported extensively 
in the research literature. Off-line printed and hand-written 
text recognition has been done using ANNs and other 
technologies such hidden Markov models (HMMs)  [6], 
 [11],  [13]. (We will not delve into any discussion of 
HMMs as the subject of this paper is ANNs). The main 
advantage of hardware implementation is the added 
improvement of ANN speeds as compared to software 
running on a traditional computer. The ANN hardware has 
been constructed in the form of VLSI chips and special 
accelerator boards. The stumbling block may still be the 
Amdahl’s law that limits the speedup gained by a piece of 
hardware  [3].  

 A hardware-based ANN can take up different 
architectural forms such as perceptron, feed-forward multi-
layer perceptron, radial basis function, etc. An ANN’s 
structural details include number of inputs and outputs, 
number of layers, and activation functions (AFs). Another 
design decision is whether the network would be analog, 

 

 
Fig. 1: A single layer of neurons. When used in a feed-
forward ANN, the information only flows in one 
(forward) direction. Also, there is no interaction among 
different neurons in the same layer.  
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digital, or hybrid. The learning of a network, i.e., 
determination of neuron count and neuron weights, can be 
done offline or online  [3]. Examples of hardware- 
implemented of ANNs are: an FPGA-based “virtual 
sensor”  [10], and a pulse-density-modulating NN hardware 
to study its statistical behavior  [9].  

From a designer’s viewpoint, customized hardware 
can take relatively much longer time than the use of a 
programmable device, such as an field programmable gate 
array (FPGA), or complex programmable logic device 
(CPLD); both of these devices offer tens of thousands of 
building blocks, and their distinctions tends to blur. 
FPGAs have allowed implementation of complex 
prototypes and actual systems. RTL languages such as 
Verilog and VHDL are among the common hardware 
description languages (HDLs) used for hardware 
development. A higher level of abstraction is possible with 
languages such as Handel-C. However, this paper covers 
only on the Verilog implementation of the ANN  [8].  

In general, the implementation of a digital design in 
FPGA requires the following steps:  (1) design entry using 
an HDL or schematic; (2) logic synthesis to convert HDL 
or schematic into a netlist, i.e., specific gates and wires; (3) 
logic implementation to map the gates and wires into the 
FPGA and creation of corresponding bitstream (defining 
opening and closing of switches for signal routing); (4) 
downloading bitstream into a physical FPGA chip; and (5) 
validating the design by providing stimuli to inputs and by 
measuring the outputs.  

2 ANN Implementation of an Arabic 
OCR System  

Arabic characters can have variations in their shapes; a 
letter can take up four or more shapes. This means that the 
original character set of 89 letters (inclusive of punctuation 
and special characters) expands to 157 different forms. 
This variation adds to the complexity of an OCR system. 
Another challenge in such a system is handling the letters 
which vary only by the number of dots, for example, the 
letters baa, taa, and thaa; and letters jeem, haa, and khaa 
(Fig. 2)  [5]- [7].   

A fully-fledged OCR system generally reads a 
complete page worth of information. The page may need 
to be rotated to remove any skew before it is split into 
individual lines. Each line is then split into words or letter 
groups. A software-based Arabic OCR system can use a 
large dataset for development/testing, for example, 

DARPA Arabic OCR Corpus  [12] that comprises 345 
scanned pages (at 600 DPI) of Arabic text (nearly 670k 
characters) from different sources such as magazines, 
newspapers, and a few four computer printouts (Fig. 3).  

 Two basic methods used in OCR schemes are: matrix 
matching, and feature extraction. Matrix matching tends to 
be algorithmically simpler and hence better suits a 
hardware implementation. Matrix matching involves 
comparing a character with a library of character matrices 
or templates.  

Unlike a software-based, full-page OCR system, our 
proposed hardware is limited to only individual letters of 
Arabic language. Additionally, we opted for a matrix-
matching approach due to its simplicity in terms of 
hardware. The development of the Arabic OCR-ANN 
involved the following steps:  

(a) Creating training samples of Arabic letters (alif to 
yaa). 

(b) Use the training samples to create a software-only 
ANN; this determined the neuron-count and neuron-
weights.   

(c) Implement the individual Verilog modules: adder, 
multiplier, shifter (divider), and AF (ramp, and piece-wise-
linear approximation of a sigmoid).  

(d) Implement a single neuron using the individual blocks 
developed in step (c). 

(e) Build a hidden layer consisting of multiple neurons 
using weights acquired in step (b). 

(f) Build an output layer which consists of multiple 
neurons using weights acquired in step (b). 

(g) Connect inputs, hidden and output layers together. 

(h) Test the complete design and analyze the results. 

We will discuss these steps in detail in the following 
sections.  

2.1 ANN Data 
As mentioned earlier, the character recognition task 

for the proposed Verilog model was simplified by (1) 
including only the main Arabic characters in the dataset 
(and by excluding any punctuation and special symbols), 
and (2) using only a single form of each letter (instead of 
up to 4 for some of them). The 28-character ANN training 
set was manually created (and was not derived from 
scanned samples). Shapes of the characters were varied 

 

 ث ت ب
baa taa thaa 

 

 خ ح ج
 jeem haa khaa 

 
Fig. 2: The main body of letter baa is similar to letters 
taa and thaa. The only differences are the placement 
and count of dots. Similar situation happens with three 
letters jeem, haa, and khaa.  
 

 

Fig. 3: Samples of computer generated text in DARPA 
Arabic OCR Corpus. 
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slightly to get 5 samples each for a given character (Fig. 
4). This resulted in a total of 140 training samples.  

In order to keep the ANN input count and hence the 
overall hardware to a reasonable size, we chose a grid of 
8x8 to define all characters; this resulted in 64 Boolean-
input ANNs. The network’s output layer was made of 28 
neurons; each neuron represented a single character.  

2.2 ANN Configuration and Training 
A software package called BrainMaker  [2] was used 

to train the ANNs. The package uses fully-connected, 
feed-forward, back-propagation networks. The training 
with the package provided us with the neuron counts and 
weights required for hardware development. Our 
experiments were limited to ANNs made up of single 
hidden layer of neurons, because one such layer is 
considered sufficient for modeling most non-linear 
systems  [4]. In general, a neuron can implemented using 
the equation  [13]: 
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As we can see above, in order to model a neuron, we 
need these building blocks: multipliers, adders, an AF, and 
a threshold unit. The multipliers are used to calculate the 
product of an input with its corresponding weight. In our 
application, the input values are binary (‘0’ or ‘1’). So the 
multiplication operation can be very simply and cheaply 
implemented by a buffer with an enable line. The enable 
input is connected to the binary inputs (Fig. 5). 

The ANNs produced with BrainMaker yield weights 
in the continuous (and not integer) values: -7.99 to +7.99. 
In order to simplify the hardware design, we multiplied all 
the original weights by 100, and used only the integer parts 
of the multiples. So the new value range is -799 to +799. 

 )*100int('
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Our experiments involved multiple configurations of 
the hidden layer. We varied the neuron count in the hidden 
layer from 2 to 30; we found an 8-neuron layer to fulfill 
our character recognition accuracy requirement of 95% (an 
arbitrary value). Using this size as a guideline, we were 
able to select the bit-widths of the computing elements, 
especially the adder count and widths. The adder 
requirements for a hidden-layer neuron are listed in Table 
1. Each hidden layer neuron has 64 inputs (i0 … i63) and 65 
weights; 64 weights correspond to 64 inputs, while one is a 
threshold weight (for producing non-zero output, in case 
all inputs are zeros).  

As there are 8 neurons in the hidden layers, each of 
the output layer neurons has 8 inputs. There are 28 neurons 
in the output layer; each neuron belongs to one of the 28 
letters. Note that output-layer neurons don’t have threshold 
weights  [2].  

   

2.3 Activation Function Implementation 
Usually all neurons of an ANN layer are based on the 

same type of AF. Conventionally, the neurons in the entire 
ANN employ the same AF, but the output layer may use a 
different AF type. An AF can be implemented in many 
different ways. Early ANNs made use of simple threshold 
functions which means the output is one or zero. This was 
a non-differentiable function which could be improved 
upon by using a continuous function. Generally, a sigmoid 
(S-shaped) AF is considered to be one of the most 
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Fig. 4: Four training samples for letter baa (ب). The 
circles represent binary ‘1’ inputs, and the dots 
represent the ‘0’ inputs to the ANN. The samples 
assume ‘thinned’ characters, meaning all lines are one 
pixel wide.  
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Fig. 5: Block diagram of a digital neuron in the 
hidden/output layers. Basic elements include buffers, 
adders, sigmoid function, and threshold units. 
 
Table 1: Sixty four adders of different sizes (bit widths) 
are needed to implement one hidden neuron (as shown 
in Fig. 5) that has 64 inputs and 65 weights. Each input 
is between -800 and 800. 
 

Adder size (bits) Adder count 
12 1 
13 3 
14 5 
15 10 
16 20 
17 25 

TOTAL 64  
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effective functions. An AF may always produce just 
positive values (such as logistic function), or both negative 
and positive values (such as hyperbolic tangent function). 
As known well, a sigmoid function is defined as  

  xe
xf −+
=

1
1)(1 , (3)     

and a hyperbolic tangent is defined as  [13] 
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An analog neuron can be implemented using non-
linearity of a CMOS device, but it suffers from the effects 
such as thermal drift; and the device may not be re-
programmed. A neuron’s digital implementation, on the 
other hand is programmable, and is able of producing 
consistent results. However, the non-linear nature of a 
neuron’s AF poses a design challenge when realized in 
digital hardware.  

There are several ways of approximating the sigmoid 
function (equation (3), e.g., first or second order piecewise 
linear (PWL) approximation, combinational 
approximation, etc. We opted for the first-order three-line 
approximation. After extensive experimentation, we 
arrived at the following set of equations: 
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where i is the input to the AF ranging from -800 to 800; 
the AF output ranges from -64 to 64. Fig. 6 shows the plots 
of actual sigmoid and its PWL-based approximations. In 
the figure, ‘PWL1’ corresponds to equation (5), ‘PWL2’ to 
equation (6), and ‘PWL3’ to equation (7). One can notice 
that the equations (5)–(7) require these computing 
elements: divider, and adder/subtractor. As a divider can 
be quite costly in terms of hardware (i.e., device/area cost), 
we chose the denominators of the fractions such that they 
can be represented in 2n form. This allowed us to replace 
the division operation with simple right shifts: 2-bit 
shifting for division-by-4, and 6-bit shifting for division-
by-64. Table 2 mathematically compares the actual 
sigmoid function represented by equation (3), and its PWL 
approximations with equations (5)–(7). The standard 
deviation varies between -3.49 and 2.11, while the average 
error ranges from -2.71% to 2.69%. The average errors are 
quite comparable to different methods proposed in  [8]. 
Finally, the RMS error is 6.7%. 

2.3 Threshold Function Implementation 
The threshold function in our neurons outputs ‘0’ if 

the input is less than or equal to zero; else the output is ‘1’. 

The hardware implementation of this function simply 
comprises of a most-significant bit comparator (Fig. 5).  

2.4 Model Simulation and Analysis  
The proposed Verilog models were simulated using 

ModelSim XE/Starter 5.5e_p1 revision 2001.11. Although 
the prediction accuracy of a software-only model is up to 
95%, the hardware model has lower accuracy of 80.3%. 
The higher error rate could be mainly attributed to the 
following factors:  

1) Approximation of the sigmoid AF with a three-line 
PWL functions: 5 or 7-line approximation may provide 
better results. Actual dividers, although being hardware-
intensive blocks, could be tried out instead of simple 
shifters. Use of a lookup table instead of linear 
approximations could be investigated.   

2) Lower input count: The input samples are made up of 
8x8 grids. Larger grids such as 8x10, 10x10 could be tried. 
Although this will lead to higher hardware implementation 
cost.  

3) Similarity of letter shapes: Additional training samples 
could improve the ANN learning ability, hence improving 
the prediction accuracy. This may not affect the ANN 
hardware configuration.      

3 Conclusions 
A Verilog implementation of an ANN for the purpose 

of recognizing Arabic language letters has been proposed 
in this paper. The Verilog/hardware implementation of the 
ANN had lower accuracy than its software counterpart. 
One reason for reduced accuracy is the PWL 
approximation of non-linear sigmoid AF. The hardware’s 
character recognition accuracy is still significantly high at 
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Fig. 6: Graphical comparison of a sigmoid function 
with its three-line PWL approximations (PWL1-3). The 
input range is [-799 … +799], and the output range is  
[-64 … +63]. 
 

Table 2: Numerical comparison of actual sigmoid AF 
with its PWL approximations. 

 Standard deviation Average error 
Line 1 (eq. 5) 2.08 -2.71% 
Line 2 (eq. 6) -3.49 2.49% 
Line 3 (eq. 7) 2.11 2.69% 
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80.3%. Further improvements are possible without 
significantly altering the hardware, for example, by using a 
larger dataset for training. Different neuron weights can be 
easily incorporated in the ANN as the weights are inputs to 
individual neurons and do not require change in network 
topology. 

The hardware implementation is somewhat 
independent of the language being recognized. Languages 
that use character sets similar to Arabic, such as Persian 
and Urdu can be also recognized by the proposed 
hardware. The only changes required would be to the 
neuron counts and their respective weights. 

We are currently investigating an expanded training 
character-set for the ANNs. We are also looking into 
metrics such as the actual cost/size of the hardware by 
implementing the proposed design using synthesis tools 
(such as Synopsys Design Compiler). A pipelined 
approach, especially to save on adder hardware (inside a 
neuron) is also under consideration. The findings from 
these experiments will be reported in a future publication.  

Acknowledgements 
The author acknowledges the contribution made by 

UAE University students (Sameira Sultan, Amal Ahmad, 
Shama Ali, Alyaa Rashed, and Aisha Sultan) in conducting 
the ANN experiments and Verilog development, as a 
project.   

References 
[1] B. Al-Badr and S. Mahmoud, “Survey and 
Bibliography of Arabic Optical Text Recognition,” Signal 
Processing, vol. 41, no. 1, pp. 49-77, 1995. 

[2] BrainMaker User’s Guide and Reference Manual, 7th 
ed. California Scientific Software Press, California, 1998.  

[3] C. S. Lindsey and T. Lindblad, “Review of hardware 
neural networks: a user’s perspective” [Online]. Available: 
http://www.particle.kth.se/~lindsey/elba2html/elba2html.ht
ml 

[4] I. H. Witten, and E. Frank, “Data Mining,” Morgan 
Kaufman Publishers, San Francisco, CA, 2nd ed., 2005.  

[5] J. Bellegarda and D. Nahamoo, “Tied Mixture 
Continuous Parameter Models for Large Vocabulary 
Isolated Speech Recognition,” IEEE Int’l Conf. Acoustics, 
Speech, Signal Processing, vol. 1, pp. 13-16, Glasgow, 
Scotland, May 1989. 

[6] K. Aas and L. Eikvil, “Text page recognition using 
grey-Level Features and Hidden Markov Models,” Pattern 
Recognition, vol. 29, pp. 977-985, 1996. 

[7] M. Allam, “Segmentation Versus Segmentation-Free 
for Recognizing Arabic Text,” Proc. SPIE, vol. 2,422, pp. 
228-235, 1995. 

[8] M. T. Tommiska, “Efficient digital implementation of 
the sigmoid function for reprogrammable logic,” IEE 
Proceedings on Computers and Digital Techniques, Vol. 
150, Issue 6, pp. 403-411, Nov. 2003. 

[9] M. Yasunaga and Y. Hirai, “Ising model calculation 
using PDM neural network hardware: Boltzmann 
statistical mechanics embedded in the hardware,” 
International Conference on Neural Networks, Vol. 2, pp. 
948 – 952, Jun. 1997. 

[10] M. A. A. Leon, A. R. Castro, and R. R. L. Ascencio, 
“An artificial neural network on a field programmable gate 
array as a virtual sensor,” Third International Workshop on 
Design of Mixed-Mode Integrated Circuits and 
Applications, pp. 114 – 117, 1999.  

[11] N. B. Amara and A. Belaid, “Printed PAW 
Recognition Based on Planar Hidden Markov Models,” 
13th Int’l Conf. Pattern Recognition, vol. 2, pp. 220-224, 
Vienna, 1996. 

[12] R. B. Davidson and R. L. Hopley, “Arabic and Persian 
OCR Training and Test Data Sets,” Proc. Symp. Document 
Image Understanding Technology (SDIUT97), pp. 303-
307, Annapolis, Md., 1997.  

[13] T. Masters. Signal and Image Processing with Neural 
Networks. John Wiley & Sons, New York, 1994.   

[14] W. Cho, S. W. Lee, and J. H. Kim, “Modeling and 
Recognition of Cursive Words with Hidden Markov 
Models,” Pattern Recognition, vol. 28, pp. 1,941-1,953, 
1995.  

 

ACCEPTED:
A. Beg, "An Efficient Realization of an OCR System Using HDL," in International Conference on Artificial Intelligence (ICAI'08), Las Vegas, NV, United States, 2008.


