
An Efficient Realization of an OCR System Using HDL

Azam Beg

College of Information Technology, UAE University, Al-Ain, Abu-Dhabi, UAE
Email: abeg@uaeu.ac.ae

Abstract - This paper presents a Verilog model of an
artificial neural network for Arabic character recognition.
A neural network by nature is a non-linear system that
presents some unusual challenges when realized in digital
domain. A main feature of our proposed model is that it
does not require hardware-intensive resources, such as
dividers and multipliers. A character recognition accuracy
of 80.3% was achieved with the model. The flexible nature
of the model allows experimentation with any other
different set of neural network weights, without affecting
the overall network structure. The network model can be
easily adapted to other similarly-written Middle-
Eastern/Asian languages, such as Persian (Iran), Urdu
(Pakistan), Pushto (Afghanistan), etc. Potential
applications of such a system are in portable devices such
as pen-shaped text readers/recognizers; Braille-aware or
low-vision text-to-speech devices; or in large-scale
character recognition systems such as postal mail systems,
bank-check processing, etc.

Keywords: Human-computer interaction, optical character
recognition, Verilog modeling, artificial intelligence, and
neural networks.

1 Introduction
 Artificial neural networks (ANNs) mimic the
structure and function (learning and recall) of biological
neurons. The ANNs offer parallel processing of data in
contrast to the conventional sequential processing
computing systems [4].

A neuron is the basic building block of an ANN (Fig.
1). A practical ANN has one or more input neurons. The
real world data is presented to the ANN via input neurons.
There are one or more hidden neurons that are fed by the
input neurons and may not have direct contact with the
outside world. The hidden neurons process the
complicated input patterns to produce useful outputs. An
ANN may comprise of single or multiple layers of hidden
neurons. Outputs of hidden neurons drive their respective
‘forward’ layer of neurons. In single-hidden layer ANNs,
the hidden layers connect to the layer of output neurons,
which produce the final results. When information passes
in only one direction and there is no communication
among neurons of a particular layer, the network is called a
feed-forward ANN (Fig. 1) [13].

Usually, an ANN is specifically developed for one
particular purpose. The ANNs have been used in a wide
variety of applications, including human-computer
interaction technologies, such as character recognition,
speech recognition, machine translation, Braille systems,
etc. Most of these applications are software-based, but
there also have been some implementations in hardware
 [13].

Software implementations of the optical character
recognition (OCR) systems have been reported extensively
in the research literature. Off-line printed and hand-written
text recognition has been done using ANNs and other
technologies such hidden Markov models (HMMs) [6],
 [11], [13]. (We will not delve into any discussion of
HMMs as the subject of this paper is ANNs). The main
advantage of hardware implementation is the added
improvement of ANN speeds as compared to software
running on a traditional computer. The ANN hardware has
been constructed in the form of VLSI chips and special
accelerator boards. The stumbling block may still be the
Amdahl’s law that limits the speedup gained by a piece of
hardware [3].

 A hardware-based ANN can take up different
architectural forms such as perceptron, feed-forward multi-
layer perceptron, radial basis function, etc. An ANN’s
structural details include number of inputs and outputs,
number of layers, and activation functions (AFs). Another
design decision is whether the network would be analog,

Fig. 1: A single layer of neurons. When used in a feed-
forward ANN, the information only flows in one
(forward) direction. Also, there is no interaction among
different neurons in the same layer.

ACCEPTED:
A. Beg, "An Efficient Realization of an OCR System Using HDL," in International Conference on Artificial Intelligence (ICAI'08), Las Vegas, NV, United States, 2008.

digital, or hybrid. The learning of a network, i.e.,
determination of neuron count and neuron weights, can be
done offline or online [3]. Examples of hardware-
implemented of ANNs are: an FPGA-based “virtual
sensor” [10], and a pulse-density-modulating NN hardware
to study its statistical behavior [9].

From a designer’s viewpoint, customized hardware
can take relatively much longer time than the use of a
programmable device, such as an field programmable gate
array (FPGA), or complex programmable logic device
(CPLD); both of these devices offer tens of thousands of
building blocks, and their distinctions tends to blur.
FPGAs have allowed implementation of complex
prototypes and actual systems. RTL languages such as
Verilog and VHDL are among the common hardware
description languages (HDLs) used for hardware
development. A higher level of abstraction is possible with
languages such as Handel-C. However, this paper covers
only on the Verilog implementation of the ANN [8].

In general, the implementation of a digital design in
FPGA requires the following steps: (1) design entry using
an HDL or schematic; (2) logic synthesis to convert HDL
or schematic into a netlist, i.e., specific gates and wires; (3)
logic implementation to map the gates and wires into the
FPGA and creation of corresponding bitstream (defining
opening and closing of switches for signal routing); (4)
downloading bitstream into a physical FPGA chip; and (5)
validating the design by providing stimuli to inputs and by
measuring the outputs.

2 ANN Implementation of an Arabic
OCR System

Arabic characters can have variations in their shapes; a
letter can take up four or more shapes. This means that the
original character set of 89 letters (inclusive of punctuation
and special characters) expands to 157 different forms.
This variation adds to the complexity of an OCR system.
Another challenge in such a system is handling the letters
which vary only by the number of dots, for example, the
letters baa, taa, and thaa; and letters jeem, haa, and khaa
(Fig. 2) [5]- [7].

A fully-fledged OCR system generally reads a
complete page worth of information. The page may need
to be rotated to remove any skew before it is split into
individual lines. Each line is then split into words or letter
groups. A software-based Arabic OCR system can use a
large dataset for development/testing, for example,

DARPA Arabic OCR Corpus [12] that comprises 345
scanned pages (at 600 DPI) of Arabic text (nearly 670k
characters) from different sources such as magazines,
newspapers, and a few four computer printouts (Fig. 3).

 Two basic methods used in OCR schemes are: matrix
matching, and feature extraction. Matrix matching tends to
be algorithmically simpler and hence better suits a
hardware implementation. Matrix matching involves
comparing a character with a library of character matrices
or templates.

Unlike a software-based, full-page OCR system, our
proposed hardware is limited to only individual letters of
Arabic language. Additionally, we opted for a matrix-
matching approach due to its simplicity in terms of
hardware. The development of the Arabic OCR-ANN
involved the following steps:

(a) Creating training samples of Arabic letters (alif to
yaa).

(b) Use the training samples to create a software-only
ANN; this determined the neuron-count and neuron-
weights.

(c) Implement the individual Verilog modules: adder,
multiplier, shifter (divider), and AF (ramp, and piece-wise-
linear approximation of a sigmoid).

(d) Implement a single neuron using the individual blocks
developed in step (c).

(e) Build a hidden layer consisting of multiple neurons
using weights acquired in step (b).

(f) Build an output layer which consists of multiple
neurons using weights acquired in step (b).

(g) Connect inputs, hidden and output layers together.

(h) Test the complete design and analyze the results.

We will discuss these steps in detail in the following
sections.

2.1 ANN Data
As mentioned earlier, the character recognition task

for the proposed Verilog model was simplified by (1)
including only the main Arabic characters in the dataset
(and by excluding any punctuation and special symbols),
and (2) using only a single form of each letter (instead of
up to 4 for some of them). The 28-character ANN training
set was manually created (and was not derived from
scanned samples). Shapes of the characters were varied

 ث ت ب
baa taa thaa

 خ ح ج
 jeem haa khaa

Fig. 2: The main body of letter baa is similar to letters
taa and thaa. The only differences are the placement
and count of dots. Similar situation happens with three
letters jeem, haa, and khaa.

Fig. 3: Samples of computer generated text in DARPA
Arabic OCR Corpus.

ACCEPTED:
A. Beg, "An Efficient Realization of an OCR System Using HDL," in International Conference on Artificial Intelligence (ICAI'08), Las Vegas, NV, United States, 2008.

slightly to get 5 samples each for a given character (Fig.
4). This resulted in a total of 140 training samples.

In order to keep the ANN input count and hence the
overall hardware to a reasonable size, we chose a grid of
8x8 to define all characters; this resulted in 64 Boolean-
input ANNs. The network’s output layer was made of 28
neurons; each neuron represented a single character.

2.2 ANN Configuration and Training
A software package called BrainMaker [2] was used

to train the ANNs. The package uses fully-connected,
feed-forward, back-propagation networks. The training
with the package provided us with the neuron counts and
weights required for hardware development. Our
experiments were limited to ANNs made up of single
hidden layer of neurons, because one such layer is
considered sufficient for modeling most non-linear
systems [4]. In general, a neuron can implemented using
the equation [13]:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+== ∑

−

=

1

0

.)(
n

j
njj wwafnetfout

. (1)

As we can see above, in order to model a neuron, we
need these building blocks: multipliers, adders, an AF, and
a threshold unit. The multipliers are used to calculate the
product of an input with its corresponding weight. In our
application, the input values are binary (‘0’ or ‘1’). So the
multiplication operation can be very simply and cheaply
implemented by a buffer with an enable line. The enable
input is connected to the binary inputs (Fig. 5).

The ANNs produced with BrainMaker yield weights
in the continuous (and not integer) values: -7.99 to +7.99.
In order to simplify the hardware design, we multiplied all
the original weights by 100, and used only the integer parts
of the multiples. So the new value range is -799 to +799.

)*100int('
ii ww = (2)

Our experiments involved multiple configurations of
the hidden layer. We varied the neuron count in the hidden
layer from 2 to 30; we found an 8-neuron layer to fulfill
our character recognition accuracy requirement of 95% (an
arbitrary value). Using this size as a guideline, we were
able to select the bit-widths of the computing elements,
especially the adder count and widths. The adder
requirements for a hidden-layer neuron are listed in Table
1. Each hidden layer neuron has 64 inputs (i0 … i63) and 65
weights; 64 weights correspond to 64 inputs, while one is a
threshold weight (for producing non-zero output, in case
all inputs are zeros).

As there are 8 neurons in the hidden layers, each of
the output layer neurons has 8 inputs. There are 28 neurons
in the output layer; each neuron belongs to one of the 28
letters. Note that output-layer neurons don’t have threshold
weights [2].

2.3 Activation Function Implementation
Usually all neurons of an ANN layer are based on the

same type of AF. Conventionally, the neurons in the entire
ANN employ the same AF, but the output layer may use a
different AF type. An AF can be implemented in many
different ways. Early ANNs made use of simple threshold
functions which means the output is one or zero. This was
a non-differentiable function which could be improved
upon by using a continuous function. Generally, a sigmoid
(S-shaped) AF is considered to be one of the most

.

.

.

. . O . . . O .

. . O O O O O .

.

. . . . O . . .

.

.

.

.

. O O .

. O O O O O O .

.

. . O

.

.

.

.

. O O .

. O O O O O O .

.

. . . . O . . .

.

.

.

.

. O O

. . O O O O O .

.

. . . . O . . .

.

Fig. 4: Four training samples for letter baa (ب). The
circles represent binary ‘1’ inputs, and the dots
represent the ‘0’ inputs to the ANN. The samples
assume ‘thinned’ characters, meaning all lines are one
pixel wide.

ENBin0
wt0

ENBin1
wt1

ENBin2
wt2

ENBinn
wtn

threshold

digital
sigmoid

output

digital
sigmoid

Fig. 5: Block diagram of a digital neuron in the
hidden/output layers. Basic elements include buffers,
adders, sigmoid function, and threshold units.

Table 1: Sixty four adders of different sizes (bit widths)
are needed to implement one hidden neuron (as shown
in Fig. 5) that has 64 inputs and 65 weights. Each input
is between -800 and 800.

Adder size (bits) Adder count
12 1
13 3
14 5
15 10
16 20
17 25

TOTAL 64

ACCEPTED:
A. Beg, "An Efficient Realization of an OCR System Using HDL," in International Conference on Artificial Intelligence (ICAI'08), Las Vegas, NV, United States, 2008.

effective functions. An AF may always produce just
positive values (such as logistic function), or both negative
and positive values (such as hyperbolic tangent function).
As known well, a sigmoid function is defined as

 xe
xf −+
=

1
1)(1 , (3)

and a hyperbolic tangent is defined as [13]

 xx

xx

ee
eexxf −

−

+
−

==)tanh()(2 . (4)

An analog neuron can be implemented using non-
linearity of a CMOS device, but it suffers from the effects
such as thermal drift; and the device may not be re-
programmed. A neuron’s digital implementation, on the
other hand is programmable, and is able of producing
consistent results. However, the non-linear nature of a
neuron’s AF poses a design challenge when realized in
digital hardware.

There are several ways of approximating the sigmoid
function (equation (3), e.g., first or second order piecewise
linear (PWL) approximation, combinational
approximation, etc. We opted for the first-order three-line
approximation. After extensive experimentation, we
arrived at the following set of equations:

201800,50

64
−≥≥−−= iiAFi

, (5)

199200,

4
≥≥−== iiiAFi

, (6)

800200,50

64
≥≥+= iiAFi

, (7)

where i is the input to the AF ranging from -800 to 800;
the AF output ranges from -64 to 64. Fig. 6 shows the plots
of actual sigmoid and its PWL-based approximations. In
the figure, ‘PWL1’ corresponds to equation (5), ‘PWL2’ to
equation (6), and ‘PWL3’ to equation (7). One can notice
that the equations (5)–(7) require these computing
elements: divider, and adder/subtractor. As a divider can
be quite costly in terms of hardware (i.e., device/area cost),
we chose the denominators of the fractions such that they
can be represented in 2n form. This allowed us to replace
the division operation with simple right shifts: 2-bit
shifting for division-by-4, and 6-bit shifting for division-
by-64. Table 2 mathematically compares the actual
sigmoid function represented by equation (3), and its PWL
approximations with equations (5)–(7). The standard
deviation varies between -3.49 and 2.11, while the average
error ranges from -2.71% to 2.69%. The average errors are
quite comparable to different methods proposed in [8].
Finally, the RMS error is 6.7%.

2.3 Threshold Function Implementation
The threshold function in our neurons outputs ‘0’ if

the input is less than or equal to zero; else the output is ‘1’.

The hardware implementation of this function simply
comprises of a most-significant bit comparator (Fig. 5).

2.4 Model Simulation and Analysis
The proposed Verilog models were simulated using

ModelSim XE/Starter 5.5e_p1 revision 2001.11. Although
the prediction accuracy of a software-only model is up to
95%, the hardware model has lower accuracy of 80.3%.
The higher error rate could be mainly attributed to the
following factors:

1) Approximation of the sigmoid AF with a three-line
PWL functions: 5 or 7-line approximation may provide
better results. Actual dividers, although being hardware-
intensive blocks, could be tried out instead of simple
shifters. Use of a lookup table instead of linear
approximations could be investigated.

2) Lower input count: The input samples are made up of
8x8 grids. Larger grids such as 8x10, 10x10 could be tried.
Although this will lead to higher hardware implementation
cost.

3) Similarity of letter shapes: Additional training samples
could improve the ANN learning ability, hence improving
the prediction accuracy. This may not affect the ANN
hardware configuration.

3 Conclusions
A Verilog implementation of an ANN for the purpose

of recognizing Arabic language letters has been proposed
in this paper. The Verilog/hardware implementation of the
ANN had lower accuracy than its software counterpart.
One reason for reduced accuracy is the PWL
approximation of non-linear sigmoid AF. The hardware’s
character recognition accuracy is still significantly high at

-800 -600 -400 -200 0 200 400 600 800
-80

-60

-40

-20

0

20

40

60

80

AF input

A
F

ou
tp

ut

sigmoid
PWL1

PWL2

PWL3

Fig. 6: Graphical comparison of a sigmoid function
with its three-line PWL approximations (PWL1-3). The
input range is [-799 … +799], and the output range is
[-64 … +63].

Table 2: Numerical comparison of actual sigmoid AF
with its PWL approximations.

 Standard deviation Average error
Line 1 (eq. 5) 2.08 -2.71%
Line 2 (eq. 6) -3.49 2.49%
Line 3 (eq. 7) 2.11 2.69%

ACCEPTED:
A. Beg, "An Efficient Realization of an OCR System Using HDL," in International Conference on Artificial Intelligence (ICAI'08), Las Vegas, NV, United States, 2008.

80.3%. Further improvements are possible without
significantly altering the hardware, for example, by using a
larger dataset for training. Different neuron weights can be
easily incorporated in the ANN as the weights are inputs to
individual neurons and do not require change in network
topology.

The hardware implementation is somewhat
independent of the language being recognized. Languages
that use character sets similar to Arabic, such as Persian
and Urdu can be also recognized by the proposed
hardware. The only changes required would be to the
neuron counts and their respective weights.

We are currently investigating an expanded training
character-set for the ANNs. We are also looking into
metrics such as the actual cost/size of the hardware by
implementing the proposed design using synthesis tools
(such as Synopsys Design Compiler). A pipelined
approach, especially to save on adder hardware (inside a
neuron) is also under consideration. The findings from
these experiments will be reported in a future publication.

Acknowledgements
The author acknowledges the contribution made by

UAE University students (Sameira Sultan, Amal Ahmad,
Shama Ali, Alyaa Rashed, and Aisha Sultan) in conducting
the ANN experiments and Verilog development, as a
project.

References
[1] B. Al-Badr and S. Mahmoud, “Survey and
Bibliography of Arabic Optical Text Recognition,” Signal
Processing, vol. 41, no. 1, pp. 49-77, 1995.

[2] BrainMaker User’s Guide and Reference Manual, 7th
ed. California Scientific Software Press, California, 1998.

[3] C. S. Lindsey and T. Lindblad, “Review of hardware
neural networks: a user’s perspective” [Online]. Available:
http://www.particle.kth.se/~lindsey/elba2html/elba2html.ht
ml

[4] I. H. Witten, and E. Frank, “Data Mining,” Morgan
Kaufman Publishers, San Francisco, CA, 2nd ed., 2005.

[5] J. Bellegarda and D. Nahamoo, “Tied Mixture
Continuous Parameter Models for Large Vocabulary
Isolated Speech Recognition,” IEEE Int’l Conf. Acoustics,
Speech, Signal Processing, vol. 1, pp. 13-16, Glasgow,
Scotland, May 1989.

[6] K. Aas and L. Eikvil, “Text page recognition using
grey-Level Features and Hidden Markov Models,” Pattern
Recognition, vol. 29, pp. 977-985, 1996.

[7] M. Allam, “Segmentation Versus Segmentation-Free
for Recognizing Arabic Text,” Proc. SPIE, vol. 2,422, pp.
228-235, 1995.

[8] M. T. Tommiska, “Efficient digital implementation of
the sigmoid function for reprogrammable logic,” IEE
Proceedings on Computers and Digital Techniques, Vol.
150, Issue 6, pp. 403-411, Nov. 2003.

[9] M. Yasunaga and Y. Hirai, “Ising model calculation
using PDM neural network hardware: Boltzmann
statistical mechanics embedded in the hardware,”
International Conference on Neural Networks, Vol. 2, pp.
948 – 952, Jun. 1997.

[10] M. A. A. Leon, A. R. Castro, and R. R. L. Ascencio,
“An artificial neural network on a field programmable gate
array as a virtual sensor,” Third International Workshop on
Design of Mixed-Mode Integrated Circuits and
Applications, pp. 114 – 117, 1999.

[11] N. B. Amara and A. Belaid, “Printed PAW
Recognition Based on Planar Hidden Markov Models,”
13th Int’l Conf. Pattern Recognition, vol. 2, pp. 220-224,
Vienna, 1996.

[12] R. B. Davidson and R. L. Hopley, “Arabic and Persian
OCR Training and Test Data Sets,” Proc. Symp. Document
Image Understanding Technology (SDIUT97), pp. 303-
307, Annapolis, Md., 1997.

[13] T. Masters. Signal and Image Processing with Neural
Networks. John Wiley & Sons, New York, 1994.

[14] W. Cho, S. W. Lee, and J. H. Kim, “Modeling and
Recognition of Cursive Words with Hidden Markov
Models,” Pattern Recognition, vol. 28, pp. 1,941-1,953,
1995.

ACCEPTED:
A. Beg, "An Efficient Realization of an OCR System Using HDL," in International Conference on Artificial Intelligence (ICAI'08), Las Vegas, NV, United States, 2008.

