
Data Processing for Effective Modeling of Circuit Behavior

AZAM BEG and P. W. C. PRASAD
College of Information Technology
 United Arab Emirates University,

UAE
{abeg, prasadc}@uaeu.ac.ae

Abstract: - Data transformation is an important step in developing practical and robust neural networks and
can take a relatively large percentage of development efforts. In this paper, we present different techniques
and their algorithms for data transformation as they apply to the neural network models for predicting
Boolean function complexity. The data transformation techniques proposed in this paper yield a high level of
model accuracy. The given techniques can also be applied to neural networks developed for other
applications.

Key-Words: - Boolean function complexity, Neural network, Modeling, Data transformation

1 Introduction
 Complexity of Boolean functions is an
important topic in the computation theory.
Researchers have in the past tried to classify
Boolean functions on the basis of different
complexity measures, for example, the minimum
size to implement a computing entity [1]. The
way a Boolean function is implemented directly
affects the computation and memory resources.
Being able to estimate the circuit complexity
based on Boolean functions is useful for
conducting design feasibility studies [2].
Mathematical and neural network (NN) models
have been used in the past for addressing
complexity-related problems [3] [4] [5].

NNs are based on the principle of biological
neurons. An NN may have one or more input and
output neurons as well as one or more (hidden)
layers of neurons interconnecting the input and
output neurons. In the well-known feed-forward
NNs, the outputs of one layer of neurons send
data (only) to the next layer. Back-propagation is
a common scheme for creating (training) the
NNs. During the process of NN-creation, internal
weights of the neurons are iteratively adjusted so
that the outputs are produced within desired
accuracy [7].

In order to train the NNs, known examples of
input-output datasets are needed. The datasets
have to be chosen prudently. Selection and
preparation of suitable training data can take up
to 80% of the NN development effort [8]. Data
preparation can vary from simple scaling or
range-compression to complex schemes such as
polynomial expansion [9] and Fourier

transformation.
The objective of this paper is to present three

different methods of data transformation for use
in Boolean function complexity (BFC) models.
The proposed techniques are generic enough to
be used in other NN modeling applications as
well. Section 2 of this paper explains the need for
data transformation for BFC models. Section 3
describes the transformation techniques and their
corresponding code snippets. Section 4 discusses
the results and Section 5 presents the
conclusions. Appendix A lists the code for three
methods of data transformation.

2. Need for Transforming the Data

Yale [8] identifies data transformation as a
multi-step process for developing well-designed
NNs. Processing of input data has to be done in
such a manner that all input variables are given
an equally distributed significance. Stated
alternately, the inputs with larger absolute values
should be given the same importance as the
inputs that have smaller magnitudes [10].
 We can see the need for data transformation
in Fig. 1 that shows BFC curves for 2- to 14-
variables (The plotted data was acquired from
Boolean function simulations [5].). Number for
'minterms' in a function is shown on the
horizontal axis; on the vertical axis, 'nodes'
represents the complexity of a Boolean function.
The curves for 2-6 variables, in their original
form, are not only visually hard to see but also
hard for a NN to learn. The minimum and
maximum values on both axes of these curves
vary widely and non-linearly, as listed in Table 1.

ACCEPTED:
A. Beg and P. W. C. Prasad, "Data Processing for Effective Modeling of Circuit Behavior," in Lecture Notes in Computational Intelligence: WSEAS Press, 2007.

So the smaller variable curves could be ignored
altogether during the NN-training process; data
processing alleviates this issue by transforming
the curves that have a similar set of minimum and
maximum ranges.

0

400

800

1200

1600

0 400 800 1200 1600 2000 2400 2800 3200
Minterms

N
od

es

14-variable

13-variable

12-variable

Fig. 1: Boolean function complexity data for 2- to 14-
variables in original (raw) format. The smaller
variable curves (lower left corner) are not as visible as
the large ones and have the potential of not being
correctly learnt by the NN.

Table 1: Minimum and maximum values for Boolean
function complexity curves for 2- to 14-variables. The
minimum and maximum values range widely making
it difficult for a NN to model the BFC behavior
accurately.

Variable Minterm
min

Minterm
max

Node
min

Node
max

2 1 7 1 2.53
3 1 16 1 3.68
4 1 36 1 5.27
5 1 54 1 7.96
6 1 93 1 13.11
7 1 156 1 23.77
8 2 248 1 40.25
9 2 392 1 72.2
10 2 650 1 130.38
11 1 969 1.11 243.6
12 1 1597 1 439.73
13 1 2530 1 805.34
14 1 3806 1 1503.24

3. Data Transformation Techniques

In this section, we analyze three arbitrarily
chosen methods of data transformation that will be
useful in creating efficient BFC NN models: Min-
Max, Z-score, and Logarithmic.

3.1 Min-Max Transformation

In Fig. 1 and Table 1, we have seen how
widely the minimum and maximum values of
lower variable curves vary from the higher
variable curves. Using min-max transformation,
we first change all curves to one scale, in this

case to the 14-variable curve's ranges. Then, we
normalize the minterms, node and variable values
to the [0,1] range. No min-max-transformation
was applied to variable values due to their
existing linearity and their limited range of 2 to
14.

1-n .. 0 i ,
min

' =−= x
i

x
i

x
 (1)

1-n .. 0 i ,
max
'/''' == x

i
x

i
x (2)

The complete algorithm for min-max
transformation and [0,1]-normalization of
minterms, nodes and variable values is given by
the code snippet in Appendix A.1.

3.2 Z-Score Transformation

Z-score normalization is a statistical technique
of specifying the degree of deviation of a data
value from the mean. In other words, Z-score
places different types of data on a common scale.
Z-score is calculated by the following formula
 [11]:

σ
)(xxZ −

=
 (3)

where x is the sample mean, and σ is the sample
standard deviation defined as [12]:

1
)(2

−

−
= ∑

n
xx

σ
 (4)

where n is the sample size.

 For data transformation of minterms and
nodes, we first apply the Z-score transformation
and then the [0, 1]-normalization. (As explained in
Section 3.1, the variable values were not Z-score-
transformed.) The code for the two data processing
steps is given in Appendix A.2.

3.3 Logarithmic Transformation

The logarithmic transformation tends to be
algorithmically simpler than the two techniques
explained in Sections 3.1 and 3.2. Unlike
previous procedures, we simply apply a base-10
logarithm to both the minterm and node values.
(As discussed in Section 3.1, no log-
transformation was applied to variable values.)

ACCEPTED:
A. Beg and P. W. C. Prasad, "Data Processing for Effective Modeling of Circuit Behavior," in Lecture Notes in Computational Intelligence: WSEAS Press, 2007.

1-n .. 0 i),(
10

log' ==
i

x
i

x
 (5)

The [0,1]-normalization of minterms, nodes

and variables is done in the same manner as
before. The transformation-normalization can be
performed using the code given in Appendix A.3.

4. Results and Discussion

We used an NN software package called
BrainMaker (version 3.75 for MS-Windows) to
model the BFC behavior [13]. The software uses
fully-connected feed-forward back-propagation
NNs, meaning all inputs are connected to all
hidden neurons, and all hidden neurons are
connected to the outputs.

In our NN models, the input neuron count is
fixed at 2 (one for 'minterms' and the other for
'variables') and output neuron count at one (for
'node' (complexity) prediction); the NNs
comprise of different number of hidden neurons.

We acquired 1186 data sets (also called facts)
by running Boolean function simulations [5]. The
simulation results have been transformed and
normalized before being utilized for NN training.
We use 10% of the data sets as the NN training
set and the remaining 10% as the validation set.
During NN-training, only the training set is
presented to the NN, and not the validation set.

The application of minimum-maximum
transformation and [0,1]-normalization on the
original data yields the curves shown in Fig. 2.
The general shape of the curves stays close to the
original. Due to shifted and scaled positions of 2-
6 variable curves, we are able to attain better NN
training results. Comparative training and
validation statistics for a few NN models are
shown in Table 2. Training accuracy refers to the
percentage of training data sets that were
modeled by the NN with the desired accuracy.
Similarly, validation accuracy refers to the
percentage of validation data sets tested within
the required accuracy limit.

Use of Z-scale transformation and
normalization gives us the curves that we see in
Fig. 3. The shapes of these curves are again
somewhat similar to the originals while making
their scales also the same. The accuracy of NN
training using the processed data provides us with
better accuracy (Table 2).

Unlike the first two schemes, the logarithmic
transformation changes the shapes of the original
curves, while still achieving the goal of bringing
their minimums and maximums to much smaller

ranges. Fig. 4 shows the effect of logarithmic-
transformation (with no [0,1] normalization). As
compared to raw data, the NN-training results
improve in this case also (Table 2).
 In some cases, while post-processing the NNs'
predicted values, the logarithmic processing
method may result in lower accuracy than other
two 'non-logarithmic' techniques. (Post-
processing is done for restoration of actual
ranges: anti-normalization followed by anti-
logarithm (10x) of the predicted values.)

We observed that the training and validation
accuracy of NNs that made use of transformed
data were higher than the NN that learnt from the
raw (untransformed) data (94-99% vs. 90%). The
comparison of the actual simulations and NN-
predictions for the 6-variable case (utilizing log-
transformation) is shown in Fig 5.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
Minterms

N
od

es

2-variable

14-variable

Fig. 2: Effect of min-max transformation and
normalization on the original data. The general shape
of the original curves is retained. Notice the difference
in positions of curves between this and Fig. 1.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
Minterms

N
od

es 2-variable

14-variable

Fig. 3: Effect of Z-score transformation and
normalization on the original data. The overall shape
of the original curves stays somewhat closer to the
original. Notice the difference in positions of curves
between this and Fig. 1.

ACCEPTED:
A. Beg and P. W. C. Prasad, "Data Processing for Effective Modeling of Circuit Behavior," in Lecture Notes in Computational Intelligence: WSEAS Press, 2007.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Minterms

N
od

es 2-variable

14-variable

Fig. 4: Effect of logarithmic transformation on
minterm and node curves (pre-[0,1]-normalization).
Curves have changed shape while bringing them all
closer and making them 'training-visible'. The order of
the curves (i.e., 2-variable on bottom and 14-variable
on top) is the same as the originals in Fig. 1.

Table 2: Training and validation statistics for a few
NN models. NNs that used transformed data were
found to perform generally better than the NNs using
raw data.

Pre-Processing
Technique None Linear Z-score Log10

Input Layer
Neurons 2 2 2 2

Hidden Layer
Neurons 21 21 21 21

Output Neurons 1 1 1 1

Training Accuracy 90.8% 99.5% 94.1% 99.9%

Validation
Accuracy 90.8% 100.0% 95.8% 100.0%

BrainMaker parameters: test/training tolerance = 0.1; stop training
when average error <= 2.5%; activation function = sigmoid. The
accuracy is dependent on initial neuron weights and the former can
vary from one training session to the other.

0.0

3.5

7.0

10.5

14.0

1 11 21 31 41 51 61 71 81 91
Validation data set #

N
od

es Prediction

Simulation

Fig. 5: Comparison of simulations and NN-predicted
results for 6-variables (using log-transformation and
[0,1]-normalization). There is a close match between
the two curves showing the effectiveness of the NN
model.

5. Conclusion
The data transformation techniques for NN-

training presented in this paper exhibit their
usefulness for the purpose of BFC modeling.
Training accuracies of 94% to 99% were
achieved with transformed data as compared to
the raw data that gave only 90% accuracy. The
proposed transformation methods or their
variations can be helpful in developing robustly
working NNs for other practical applications.

Appendix A

This section lists the code required for data
transformation specific to NNs for BDD
complexity modeling.

A.1 Min-Max Transformation

//---
// Each data points is represented by 3
// values: number of variables, number of
// minterms (MT) and nodes (BFC).

// Original values for node complexity for
// each variable are stored in their
// individual array named Node_orig[2][n],
// Node_orig[3][m], … Node_orig[14][p]
// and the scaled values are in
// Node_scaled[][] array. Final normalized
// array is Node_norm[][]

// Original values for minterms for
// each variable are stored in their
// individual array named MT_orig[2][n],
// MT_orig[3][m], … MT_orig[14][p]
// and the scaled values are in
// MT_scaled[][] array. Final normalized
// array is MT_norm[][]

// PtCount[] represents points in each curve.
// For example, there are 7 points in 2-var-
// able curve so PtCount[2]=7; there are 16
// points in 2-variable curve so

PtCount[3]=16
// and so on

// MTmax[v] represents the maximum MT value
// for variable v:
// MTmaxAll = max(MTmax[v]), v = 2 .. 14

// Nodemax[v] represents the maximum node
// value for variable v:
// NodemaxAll = max(Nodemax[v]), v = 2 .. 14

// Find minterm and node scaling factors
// (MT-SF[v], Node_SF[v]) for v = 2 .. 14
for (v=2; v<=14; v++) {
 MT_SF[v] = MTmaxAll/MTmax[v];
 Node_SF[v] = ModeMaxAll/ModeMax[v];
}
// Scale the curves for all variables
for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {
 // Scale MT array

MT_scaled[v][p] =
 MT_orig[v][p] * MT_SF[v];

// Scale node array

ACCEPTED:
A. Beg and P. W. C. Prasad, "Data Processing for Effective Modeling of Circuit Behavior," in Lecture Notes in Computational Intelligence: WSEAS Press, 2007.

Node_scaled[v][p] =
 Node_orig[v][p] * Node_SF[v]

}
}

// Normalize the MT, node and var arrays to
// [0,1] ranges
for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {

// MT_scaled_min = min(MT_scaled[])
MT_norm_a[v][p] =
 MT_scaled[v][p] – MT_scaled_min;

// Node_scaled_min = min(Node_scaled[])
Node_norm_a[v][p] =
 Node_orig[v][p] - Node_scaled_min;
} // end of for-p

// var_min = min(var_orig[]) = 2
var_norm_a[v] = var_orig[v] - varmin
} // end of for-v
for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {

// MT_scaled_max = max(MT_norm_a[])
MT_norm[v][p] =
 MT_norm_a[v][p]/MT_scaled_max;

// Node_scaled_max = max(Node_norm_a[])
Node_norm[v][p] =
 Node_norm_a[v][p]/Node_scaled_max;
// end of for-p

// var_max = max(var_norm_a[])
var_norm[v] = var_norm_a[v]/varmax
} // end of for-v
//---

A.2 Z-Score Transformation

//---
// Most variable definitions are the same as //

in Section 0. Only the new variables
are // explained here.

// avgMT = average MT for all variables
// stdvMT = std-dev of MT for all variables
// avgNode = average node val for all
// variables
// stdvNode = std-dev of for all variables

// Z-scale minterm and node values for all
// variables
for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {
 // Scale MT array
MT_scaled[v][p] =
(MT_orig[v][p] – avgMT)/stdvMT ;

// Scale node array
Node_scaled[v][p] = (Node_orig[v][p] –
avgNode)/stdvNode
}
}

// Normalize the MT, node and var arrays
to
// [0,1] ranges
for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {

// MT_scaled_min = min(MT_scaled[])
MT_norm_a[v][p] =
 MT_scaled[v][p] – MT_scaled_min;

// Node_scaled_min=min(Node_scaled[])

Node_norm_a[v][p] =
 Node_orig[v][p] - Node_scaled_min;
} // end of for-p

// var_min = min(var_orig[]) = 2
var_norm_a[v] = var_orig[v] - varmin
} // end of for-v
for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {

// MT_scaled_max = max(MT_norm_a[])
MT_norm[v][p] =
 MT_norm_a[v][p]/MT_scaled_max;

// Node_scaled_max = max(Node_norm_a[])
Node_norm[v][p] =
 Node_norm_a[v][p]/Node_scaled_max;
// end of for-p

// var_max = max(var_norm_a[])
var_norm[v] = var_norm_a[v]/varmax
} // end of for-v
//---

A.3 Logarithmic Transformation

//---
// Variable definitions are the same as in
// Section 0

// Z-scale minterm and node values for all
// variables
for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {
 // Scale MT array
MT_scaled[v][p] =
 log10(MT_orig[v][p]);

// Scale node array
Node_scaled[v][p] =
 log10(Node_orig[v][p]);
}
}
// Normalize the MT, node and var arrays to
// [0,1] ranges
for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {

// MT_scaled_min = min(MT_scaled[])
MT_norm_a[v][p] =
 MT_scaled[v][p] – MT_scaled_min;

// Node_scaled_min=min(Node_scaled[])
Node_norm_a[v][p] =
 Node_orig[v][p] - Node_scaled_min;
} // end of for-p

// var_min = min(var_orig[]) = 2
var_norm_a[v] = var_orig[v] - varmin
} // end of for-v

for (v=2; v<=14; v++) {
 for (p=0; p<PtCount[v]; p++) {

// MT_scaled_max = max(MT_norm_a[])
MT_norm[v][p] =
 MT_norm_a[v][p]/MT_scaled_max;
// Node_scaled_max = max(Node_norm_a[])
Node_norm[v][p] =
 Node_norm_a[v][p]/Node_scaled_max;
// end of for-p

// var_max = max(var_norm_a[])
var_norm[v] = var_norm_a[v]/varmax
} // end of for-v
//---

ACCEPTED:
A. Beg and P. W. C. Prasad, "Data Processing for Effective Modeling of Circuit Behavior," in Lecture Notes in Computational Intelligence: WSEAS Press, 2007.

References
[1] M. Nemani, and F.N. Najm, “High-level power

estimation and the area complexity of Boolean
functions,” Proc. of IEEE Intl. Symp. on Low Power
Electronics and Design, 1996, pp. 329-334.

[2] A. Assi, P.W. C. Prasad , B. Mills, and A. El-Chouemi,
“Empirical Analysis and Mathematical Representation
of the Path Length Complexity in Binary Decision
Diagrams”, in Journal of Computer Science, Science
Publications, Vol. 2(3), 2005, pp. 236-244.

[3] L. Franco, M. Anthony, "On a generalization complexity
measure for Boolean functions", IEEE Conference on
Neural Networks, Proceedings, v 2, 2004 IEEE
International Joint Conference on Neural Networks –
Proceedings, 2004, pp. 973-978.

[4] L. Franco, "Role of function complexity and network
size in the generalization ability of feedforward
networks", Lecture Notes in Computer Science, v 3512,
Computational Intelligence and Bioinspired Systems:
8th International Workshop on Artificial Neural
Networks, IWANN 2005, Proceedings, 2005. pp. 1-8.

[5] A. Assi, P. W. Chandana Prasad, and A. Beg, Modeling
the Complexity of Digital Circuits Using Neural
Networks, WSEAS Transactions on Circuits and
Systems, June 2006.

[6] L. Franco, Generalization ability of Boolean functions
implemented in feed forward neural networks.
Neurocomputing. Vol. 70, pp. 351-361.

[7] M. Caudill, AI Expert: Neural Network Primer, Miller
Freeman Publications, 1990.

[8] K. Yale, “Preparing the right data for training neural
networks,” IEEE Spectrum, Vol. 34, Issue 3, Mar. 1997,
pp. 64-66.

[9] D.L. Tuck, "Practical polynomial expansion of input
data can improve neurocomputing results", ANNES'93,
Los Alamitos, CA, 1993, pp. 42-45.

[10] T. Masters, Signal and Image Processing with Neural
Networks” John Wiley & Sons, Inc., 1994.

[11] "What's a Z-Score and Why Use it in Usability
Testing?" http://www.measuringusability.com/z.htm,
2007

[12] M. Triola, Elementary Stastictics, 6th ed, Addison-
Wesley Publishing Co, 1994.

[13] BrainMaker – User’s Guide and Reference Manual, 7th
ed., California Scientific Software Press, 1998.

ACCEPTED:
A. Beg and P. W. C. Prasad, "Data Processing for Effective Modeling of Circuit Behavior," in Lecture Notes in Computational Intelligence: WSEAS Press, 2007.

