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Abstract: - Data transformation is an important step in developing practical and robust neural networks and 
can take a relatively large percentage of development efforts. In this paper, we present different techniques 
and their algorithms for data transformation as they apply to the neural network models for predicting 
Boolean function complexity. The data transformation techniques proposed in this paper yield a high level of 
model accuracy. The given techniques can also be applied to neural networks developed for other 
applications. 
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1 Introduction 
     Complexity of Boolean functions is an 
important topic in the computation theory. 
Researchers have in the past tried to classify 
Boolean functions on the basis of different 
complexity measures, for example, the minimum 
size to implement a computing entity  [1]. The 
way a Boolean function is implemented directly 
affects the computation and memory resources. 
Being able to estimate the circuit complexity 
based on Boolean functions is useful for 
conducting design feasibility studies  [2]. 
Mathematical and neural network (NN) models 
have been used in the past for addressing 
complexity-related problems  [3] [4] [5].   

NNs are based on the principle of biological 
neurons. An NN may have one or more input and 
output neurons as well as one or more (hidden) 
layers of neurons interconnecting the input and 
output neurons.  In the well-known feed-forward 
NNs, the outputs of one layer of neurons send 
data (only) to the next layer. Back-propagation is 
a common scheme for creating (training) the 
NNs. During the process of NN-creation, internal 
weights of the neurons are iteratively adjusted so 
that the outputs are produced within desired 
accuracy  [7].  

In order to train the NNs, known examples of 
input-output datasets are needed. The datasets 
have to be chosen prudently. Selection and 
preparation of suitable training data can take up 
to 80% of the NN development effort  [8]. Data 
preparation can vary from simple scaling or 
range-compression to complex schemes such as 
polynomial expansion  [9] and Fourier 

transformation.  
The objective of this paper is to present three 

different methods of data transformation for use 
in Boolean function complexity (BFC) models. 
The proposed techniques are generic enough to 
be used in other NN modeling applications as 
well. Section  2 of this paper explains the need for 
data transformation for BFC models. Section 3 
describes the transformation techniques and their 
corresponding code snippets. Section 4 discusses 
the results and Section  5 presents the 
conclusions. Appendix A lists the code for three 
methods of data transformation.  
 
2. Need for Transforming the Data  

Yale  [8] identifies data transformation as a 
multi-step process for developing well-designed 
NNs. Processing of input data has to be done in 
such a manner that all input variables are given 
an equally distributed significance.  Stated 
alternately, the inputs with larger absolute values 
should be given the same importance as the 
inputs that have smaller magnitudes  [10].  
  We can see the need for data transformation 
in Fig. 1 that shows BFC curves for 2- to 14- 
variables (The plotted data was acquired from 
Boolean function simulations  [5].). Number for 
'minterms' in a function is shown on the 
horizontal axis; on the vertical axis, 'nodes' 
represents the complexity of a Boolean function. 
The curves for 2-6 variables, in their original 
form, are not only visually hard to see but also 
hard for a NN to learn. The minimum and 
maximum values on both axes of these curves 
vary widely and non-linearly, as listed in Table 1. 
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So the smaller variable curves could be ignored 
altogether during the NN-training process; data 
processing alleviates this issue by transforming 
the curves that have a similar set of minimum and 
maximum ranges.  
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Fig. 1: Boolean function complexity data for 2- to 14-
variables in original (raw) format. The smaller 
variable curves (lower left corner) are not as visible as 
the large ones and have the potential of not being 
correctly learnt by the NN. 

 
 

Table 1: Minimum and maximum values for Boolean 
function complexity curves for 2- to 14-variables. The 
minimum and maximum values range widely making 
it difficult for a NN to model the BFC behavior 
accurately.  

Variable Minterm 
min 

Minterm 
max 

Node 
min 

Node 
max 

2 1 7 1 2.53 
3 1 16 1 3.68 
4 1 36 1 5.27 
5 1 54 1 7.96 
6 1 93 1 13.11 
7 1 156 1 23.77 
8 2 248 1 40.25 
9 2 392 1 72.2 
10 2 650 1 130.38 
11 1 969 1.11 243.6 
12 1 1597 1 439.73 
13 1 2530 1 805.34 
14 1 3806 1 1503.24 

 
3. Data Transformation Techniques 

In this section, we analyze three arbitrarily 
chosen methods of data transformation that will be 
useful in creating efficient BFC NN models: Min-
Max, Z-score, and Logarithmic. 
 
3.1     Min-Max Transformation  

In Fig. 1 and Table 1, we have seen how 
widely the minimum and maximum values of 
lower variable curves vary from the higher 
variable curves. Using min-max transformation, 
we first change all curves to one scale, in this 

case to the 14-variable curve's ranges. Then, we 
normalize the minterms, node and variable values 
to the [0,1] range. No min-max-transformation 
was applied to variable values due to their 
existing linearity and their limited range of 2 to 
14. 
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The complete algorithm for min-max 
transformation and [0,1]-normalization of 
minterms, nodes and variable values is given by 
the code snippet in Appendix A.1.  

 
3.2 Z-Score Transformation  

Z-score normalization is a statistical technique 
of specifying the degree of deviation of a data 
value from the mean. In other words, Z-score 
places different types of data on a common scale. 
Z-score is calculated by the following formula 
 [11]: 
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where x  is the sample mean, and σ  is the sample 
standard deviation defined as  [12]:  
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where n is the sample size.  
 
 For data transformation of minterms and 
nodes, we first apply the Z-score transformation 
and then the [0, 1]-normalization. (As explained in 
Section 3.1, the variable values were not Z-score-
transformed.) The code for the two data processing 
steps is given in Appendix A.2.   
 
3.3 Logarithmic Transformation  

The logarithmic transformation tends to be 
algorithmically simpler than the two techniques 
explained in Sections 3.1 and 3.2. Unlike 
previous procedures, we simply apply a base-10 
logarithm to both the minterm and node values. 
(As discussed in Section 3.1, no log-
transformation was applied to variable values.)  
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The [0,1]-normalization of minterms, nodes 

and variables is done in the same manner as 
before. The transformation-normalization can be 
performed using the code given in Appendix A.3.   
 
4. Results and Discussion 

We used an NN software package called 
BrainMaker (version 3.75 for MS-Windows) to 
model the BFC behavior  [13]. The software uses 
fully-connected feed-forward back-propagation 
NNs, meaning all inputs are connected to all 
hidden neurons, and all hidden neurons are 
connected to the outputs. 

In our NN models, the input neuron count is 
fixed at 2 (one for 'minterms' and the other for 
'variables') and output neuron count at one (for 
'node' (complexity) prediction); the NNs 
comprise of different number of hidden neurons. 

We acquired 1186 data sets (also called facts) 
by running Boolean function simulations  [5]. The 
simulation results have been transformed and 
normalized before being utilized for NN training. 
We use 10% of the data sets as the NN training 
set and the remaining 10% as the validation set. 
During NN-training, only the training set is 
presented to the NN, and not the validation set. 

The application of minimum-maximum 
transformation and [0,1]-normalization on the 
original data yields the curves shown in Fig. 2. 
The general shape of the curves stays close to the 
original. Due to shifted and scaled positions of 2-
6 variable curves, we are able to attain better NN 
training results. Comparative training and 
validation statistics for a few NN models are 
shown in Table 2. Training accuracy refers to the 
percentage of training data sets that were 
modeled by the NN with the desired accuracy. 
Similarly, validation accuracy refers to the 
percentage of validation data sets tested within 
the required accuracy limit. 

Use of Z-scale transformation and 
normalization gives us the curves that we see in 
Fig. 3. The shapes of these curves are again 
somewhat similar to the originals while making 
their scales also the same. The accuracy of NN 
training using the processed data provides us with 
better accuracy (Table 2).  

Unlike the first two schemes, the logarithmic 
transformation changes the shapes of the original 
curves, while still achieving the goal of bringing 
their minimums and maximums to much smaller 

ranges. Fig. 4 shows the effect of logarithmic-
transformation (with no [0,1] normalization). As 
compared to raw data, the NN-training results 
improve in this case also (Table 2).  
     In some cases, while post-processing the NNs' 
predicted values, the logarithmic processing 
method may result in lower accuracy than other 
two 'non-logarithmic' techniques. (Post-
processing is done for restoration of actual 
ranges: anti-normalization followed by anti-
logarithm (10x) of the predicted values.)  

We observed that the training and validation 
accuracy of NNs that made use of transformed 
data were higher than the NN that learnt from the 
raw (untransformed) data (94-99% vs. 90%). The 
comparison of the actual simulations and NN-
predictions for the 6-variable case (utilizing log-
transformation) is shown in Fig 5. 
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Fig. 2: Effect of min-max transformation and 
normalization on the original data. The general shape 
of the original curves is retained. Notice the difference 
in positions of curves between this and Fig. 1. 
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Fig. 3: Effect of Z-score transformation and 
normalization on the original data. The overall shape 
of the original curves stays somewhat closer to the 
original. Notice the difference in positions of curves 
between this and Fig. 1.  
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Fig. 4: Effect of logarithmic transformation on 
minterm and node curves (pre-[0,1]-normalization). 
Curves have changed shape while bringing them all 
closer and making them 'training-visible'. The order of 
the curves (i.e., 2-variable on bottom and 14-variable 
on top) is the same as the originals in Fig. 1.  

  
 
Table 2: Training and validation statistics for a few 
NN models.  NNs that used transformed data were 
found to perform generally better than the NNs using 
raw data.  

Pre-Processing 
Technique  None Linear Z-score Log10 

Input Layer 
Neurons 2 2 2 2 

Hidden Layer 
Neurons 21 21 21 21 

Output Neurons 1 1 1 1 

Training Accuracy 90.8% 99.5% 94.1% 99.9% 

Validation 
Accuracy 90.8% 100.0% 95.8% 100.0%

BrainMaker parameters: test/training tolerance = 0.1; stop training 
when average error <= 2.5%; activation function = sigmoid. The 
accuracy is dependent on initial neuron weights and the former can 
vary from one training session to the other.  
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Fig. 5: Comparison of simulations and NN-predicted 
results for 6-variables (using log-transformation and 
[0,1]-normalization). There is a close match between 
the two curves showing the effectiveness of the NN 
model. 
 

 

5. Conclusion 
The data transformation techniques for NN-

training presented in this paper exhibit their 
usefulness for the purpose of BFC modeling. 
Training accuracies of 94% to 99% were 
achieved with transformed data as compared to 
the raw data that gave only 90% accuracy. The 
proposed transformation methods or their 
variations can be helpful in developing robustly 
working NNs for other practical applications.  
  
Appendix A 
 

This section lists the code required for data 
transformation specific to NNs for BDD 
complexity modeling.  
 
A.1   Min-Max Transformation  
 
//------------------------------------------- 
// Each data points is represented by 3 
// values: number of variables, number of 
// minterms (MT) and nodes (BFC).   
 
// Original values for node complexity for  
// each variable are stored in their  
// individual array named Node_orig[2][n], 
// Node_orig[3][m], … Node_orig[14][p] 
// and the scaled values are in  
// Node_scaled[][] array. Final normalized 
// array is Node_norm[][] 
 
// Original values for minterms for  
// each variable are stored in their  
// individual array named MT_orig[2][n], 
// MT_orig[3][m], … MT_orig[14][p] 
// and the scaled values are in  
// MT_scaled[][] array. Final normalized 
// array is MT_norm[][]  
 
// PtCount[] represents points in each curve. 
// For example, there are 7 points in 2-var- 
// able curve so PtCount[2]=7; there are 16  
// points in 2-variable curve so 

PtCount[3]=16  
// and so on 
 
// MTmax[v] represents the maximum MT value 
// for variable v:  
// MTmaxAll = max(MTmax[v]), v = 2 .. 14 
 
// Nodemax[v] represents the maximum node  
// value for variable v:  
// NodemaxAll = max(Nodemax[v]), v = 2 .. 14 

 
// Find minterm and node scaling factors 
// (MT-SF[v], Node_SF[v]) for v = 2 .. 14 
for (v=2; v<=14; v++) { 
    MT_SF[v] = MTmaxAll/MTmax[v]; 
    Node_SF[v] = ModeMaxAll/ModeMax[v]; 
} 
// Scale the curves for all variables  
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
  // Scale MT array 

MT_scaled[v][p] = 
   MT_orig[v][p] * MT_SF[v]; 
 

// Scale node array 
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Node_scaled[v][p] =  
   Node_orig[v][p] * Node_SF[v] 

} 
} 

// Normalize the MT, node and var arrays to 
// [0,1] ranges 
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
   
// MT_scaled_min = min(MT_scaled[]) 
MT_norm_a[v][p] = 
   MT_scaled[v][p] – MT_scaled_min; 
 
// Node_scaled_min = min(Node_scaled[]) 
Node_norm_a[v][p] =  
   Node_orig[v][p] - Node_scaled_min; 
} // end of for-p 
 
// var_min = min(var_orig[]) = 2 
var_norm_a[v] = var_orig[v] - varmin  
} // end of for-v 
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
   
// MT_scaled_max = max(MT_norm_a[]) 
MT_norm[v][p] = 
   MT_norm_a[v][p]/MT_scaled_max; 
 
// Node_scaled_max = max(Node_norm_a[]) 
Node_norm[v][p] =  
   Node_norm_a[v][p]/Node_scaled_max; 
// end of for-p 
 
// var_max = max(var_norm_a[])  
var_norm[v] = var_norm_a[v]/varmax  
} // end of for-v 
//------------------------------------------- 
 
A.2  Z-Score Transformation  
 
//------------------------------------------- 
// Most variable definitions are the same as // 

in Section  0. Only the new variables 
are // explained here.  
 

// avgMT = average MT for all variables 
// stdvMT = std-dev of MT for all variables  
// avgNode = average node val for all  
//           variables 
// stdvNode = std-dev of for all variables  

 
// Z-scale minterm and node values for all  
// variables 
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
  // Scale MT array 
MT_scaled[v][p] = 
(MT_orig[v][p] – avgMT)/stdvMT ; 
 
// Scale node array 
Node_scaled[v][p] = (Node_orig[v][p] – 
avgNode)/stdvNode  
} 
} 
 
// Normalize the MT, node and var arrays 
to 
// [0,1] ranges  
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
   
// MT_scaled_min = min(MT_scaled[]) 
MT_norm_a[v][p] = 
   MT_scaled[v][p] – MT_scaled_min; 
 
// Node_scaled_min=min(Node_scaled[]) 

Node_norm_a[v][p] =  
   Node_orig[v][p] - Node_scaled_min; 
} // end of for-p 
 
// var_min = min(var_orig[]) = 2 
var_norm_a[v] = var_orig[v] - varmin  
} // end of for-v 
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
   
// MT_scaled_max = max(MT_norm_a[]) 
MT_norm[v][p] = 
   MT_norm_a[v][p]/MT_scaled_max; 
 
// Node_scaled_max = max(Node_norm_a[]) 
Node_norm[v][p] =  
   Node_norm_a[v][p]/Node_scaled_max; 
// end of for-p 
 
// var_max = max(var_norm_a[])  
var_norm[v] = var_norm_a[v]/varmax  
} // end of for-v 
//------------------------------------------- 
 
A.3  Logarithmic Transformation  
 
//------------------------------------------- 
// Variable definitions are the same as in 
// Section  0 
 
// Z-scale minterm and node values for all  
// variables 
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
  // Scale MT array 
MT_scaled[v][p] =  
   log10(MT_orig[v][p]); 
 
// Scale node array 
Node_scaled[v][p] = 
   log10(Node_orig[v][p]); 
} 
} 
// Normalize the MT, node and var arrays to 
// [0,1] ranges 
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
   
// MT_scaled_min = min(MT_scaled[]) 
MT_norm_a[v][p] = 
   MT_scaled[v][p] – MT_scaled_min; 
 
// Node_scaled_min=min(Node_scaled[]) 
Node_norm_a[v][p] =  
   Node_orig[v][p] - Node_scaled_min; 
} // end of for-p 
 
// var_min = min(var_orig[]) = 2 
var_norm_a[v] = var_orig[v] - varmin  
} // end of for-v 
 
for (v=2; v<=14; v++) { 
    for (p=0; p<PtCount[v]; p++) { 
   
// MT_scaled_max = max(MT_norm_a[]) 
MT_norm[v][p] = 
   MT_norm_a[v][p]/MT_scaled_max; 
// Node_scaled_max = max(Node_norm_a[]) 
Node_norm[v][p] =  
   Node_norm_a[v][p]/Node_scaled_max; 
// end of for-p 
 
// var_max = max(var_norm_a[])  
var_norm[v] = var_norm_a[v]/varmax  
} // end of for-v 
//------------------------------------------- 
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